• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      酰胺酶的挖掘及在有機(jī)合成中的應(yīng)用進(jìn)展

      2018-01-23 00:45:15吳哲明金建強(qiáng)鄭仁朝
      生物加工過程 2018年1期
      關(guān)鍵詞:水解酶酰基中間體

      吳哲明,金建強(qiáng),鄭仁朝

      (1. 浙江工業(yè)大學(xué) 生物工程學(xué)院,浙江 杭州 310014;2. 浙江省生物有機(jī)合成技術(shù)研究重點(diǎn)實(shí)驗(yàn)室, 浙江 杭州 310014)

      酰胺酶(amidase,EC 3.5.1.X),又稱酰胺水解酶(amidohydrolase),是一類催化酰胺化合物水解生成相應(yīng)羧酸和氨的重要水解酶。該酶促反應(yīng)的本質(zhì)是催化?;鶑墓w(酰胺)轉(zhuǎn)移至受體(如水),因此,當(dāng)體系中存在比水親核性更高的羥胺時(shí),則生成相應(yīng)的氧肟酸(圖1)[1-3]。作為腈轉(zhuǎn)化酶家族的重要成員,酰胺酶的底物譜很廣,能夠水解各種天然及人工合成的脂肪族、芳香族及雜環(huán)類酰胺。酰胺酶所具有的高立體選擇性、廣底物譜等特性使其在動(dòng)力學(xué)拆分外消旋酰胺制備手性羧酸、手性酰胺衍生物及光學(xué)純氨基酸等方面具有獨(dú)特優(yōu)勢(shì),正日益受到研究者的重視(表1)[4-7]。

      酰胺酶最早由Kelly等[20]和Jakoby等[21]分別在Pseudomonasaeruginosa和P.fluorescens中發(fā)現(xiàn),其來源十分廣泛,存在于各類原核、真核微生物和動(dòng)植物中[22-23]。其中,細(xì)菌是酰胺酶的主要來源,如紅球菌屬Rhodococcus[24-25]、假單孢菌屬Pseudomonas[26]、嗜硫菌屬Sulfolobus[27-28]、芽孢桿菌屬Bacillus[29]、代爾夫特菌屬Delftia[30-31]、克雷伯氏菌屬Klebsiella[32]和蒼白桿菌屬Ochrobactrum[33]等。

      圖1 酰胺酶催化的水解和?;D(zhuǎn)移反應(yīng)Fig.1 The hydrolysis and acyl transfer reaction catalyzed by amidase

      表1 酰胺酶催化的外消旋酰胺的立體選擇性水解

      1 酰胺酶的分類及結(jié)構(gòu)

      酰胺酶的種類很多,不同來源的酰胺酶結(jié)構(gòu)和性質(zhì)差異顯著,目前仍未有一個(gè)系統(tǒng)的分類方法。根據(jù)不同的標(biāo)準(zhǔn),酰胺酶有多種分類方式。根據(jù)底物特異性差異,可分為廣譜類酰胺酶、α-氨基酰胺酶、脂肪族酰胺酶和芳香族酰胺酶等;根據(jù)酰胺酶基因上下游是否存在腈水合酶基因編碼,可以分為與腈水合酶耦聯(lián)的酰胺酶和非耦聯(lián)的酰胺酶。近年來,基于氨基酸序列的酰胺酶分類方法受到普遍認(rèn)可。Chebrou等[34]通過氨基酸序列比對(duì)分析,提出將酰胺酶分為腈水解酶超家族(nitrilase superfamily)和酰胺酶標(biāo)簽(amidase signature,AS)家族兩大類。

      腈水解酶家族酰胺酶是一類含有保守親核半胱氨酸的巰基酶。該家族酰胺酶之間序列同源性高,與腈水解酶具有序列相似性,并含有保守的Glu、Cys和Lys催化三聯(lián)體負(fù)責(zé)共價(jià)鍵催化(圖2)。目前,已知的腈水解酶家族酰胺酶底物譜較窄,催化短鏈脂肪族酰胺的水解。酶蛋白通常以同源四聚體、六聚體的形式存在,單體結(jié)構(gòu)一般表現(xiàn)為α-β-β-α式的夾心折疊。Novo等[35]以蠕蟲腈水解酶融合蛋白晶體結(jié)構(gòu)為模版,假定催化三聯(lián)體Glu-Lys-Cys在所有腈水解酶家族成員中均為保守,通過對(duì)比模擬,建立了P.aeruginosa酰胺酶3D結(jié)構(gòu)模型,證明了催化三聯(lián)體Glu-Lys-Cys負(fù)責(zé)共價(jià)鍵的催化,其中Cys為親核體。Kimani等[36]對(duì)GeobacilluspallidusRAPc8酰胺酶晶體結(jié)構(gòu)研究表明,其單體具有典型的腈水解酶超家族α-β-β-α折疊,同時(shí)也證實(shí)了在腈水解酶超家族成員中Glu-Lys-Cys催化三聯(lián)體的保守性。

      Dt-Ami7—Delftia tsuruhatensis ZJB-05174酰胺酶(KP943495);BS AMI—B. stearothermophilus酰胺酶(Q9RQ17);Bs AMI—Bacillus sp. BR449酰胺酶 (AF257487);Pa AMI—P. aeruginosa酰胺酶(AAA25697)圖2 腈水解酶家族酰胺酶序列比對(duì)Fig.2 Sequence alignment of nitrilase superfamily amidases

      有別于腈水解酶家族酰胺酶,酰胺酶標(biāo)簽家族酰胺的一級(jí)結(jié)構(gòu)中含有一段高度保守的GGSS區(qū)域,且具有含約130個(gè)富含甘氨酸、絲氨酸和丙氨酸等氨基酸組成的高度保守序列(AS序列),其催化三聯(lián)體為Ser、Ser和Lys(圖3),一般呈同源二聚體或同源八聚體。酰胺酶標(biāo)簽家族酰胺酶的底物譜通常較廣,能夠水解脂肪族、芳香族和雜環(huán)酰胺[24,37]。目前已報(bào)道結(jié)構(gòu)的標(biāo)簽家族酰胺酶較多,如來源于Stenotrophomonasmaltophilia的PAM是酰胺酶標(biāo)簽家族中第一個(gè)已解析三級(jí)結(jié)構(gòu)的酰胺酶,具有清晰的α-β夾心折疊結(jié)構(gòu),中心的β-折疊片核心被α-螺旋包圍,該折疊在標(biāo)簽酰胺酶家族成員中保守[38]。Ohtaki等[39]發(fā)現(xiàn)Rhodococcussp. N-771酰胺酶晶體結(jié)構(gòu)含有3個(gè)結(jié)構(gòu)域:N端α螺旋結(jié)構(gòu)域,小結(jié)構(gòu)域和大結(jié)構(gòu)域。大結(jié)構(gòu)域含有一個(gè)α/β結(jié)構(gòu),由一個(gè)疏水核心(18個(gè)β折疊片)和8個(gè)位于β折疊片兩側(cè)的α螺旋構(gòu)成,其包含了一段酰胺酶標(biāo)簽序列。小結(jié)構(gòu)域有5個(gè)α螺旋,位于大結(jié)構(gòu)域頂端。Ser-cisSer-Lys催化三聯(lián)體位于大結(jié)構(gòu)域,而小結(jié)構(gòu)域的一些疏水性氨基酸殘基則參與底物的識(shí)別。Lee等[40]報(bào)道了芳基酰基酰胺酶(AAA)的晶體結(jié)構(gòu),發(fā)現(xiàn)其屬于α/β水解酶家族,催化三聯(lián)體為Ser187、Ser163與Lys84。該酶外部結(jié)構(gòu)為α螺旋,內(nèi)部則由β折疊結(jié)構(gòu)組成,并且擁有一個(gè)獨(dú)特的由兩個(gè)loop環(huán)和一個(gè)α螺旋構(gòu)成的底物結(jié)合口袋。

      Dt-Ami 2、Dt-Ami 6—D. tsuruhatensis ZJB-05174酰胺酶(KP943493、KP943494);Ca. AMI—R. rhodochrous Jl 酰胺酶(BAA03744);PAM—S. maltophilia酰胺酶 (CAC93616);Re. AMI—R. erythropolis MP50酰胺酶(AY026386)圖3 腈水解酶家族酰胺酶序列比對(duì)Fig.3 Sequence alignment of amidase signature family amidases

      2 酰胺酶的催化機(jī)制

      目前,酰胺酶的催化反應(yīng)機(jī)制尚不十分明晰。Maestracci等[41]以Rhodococcussp. R312酰胺酶為研究對(duì)象,以乙酰胺和羥胺為雙底物,發(fā)現(xiàn)并證明其介導(dǎo)的?;D(zhuǎn)移反應(yīng)符合雙底物乒乓反應(yīng)機(jī)制,即底物先與酰胺酶結(jié)合形成?;?酶復(fù)合物,進(jìn)而將底物的?;D(zhuǎn)移至其受體羥胺,生成相應(yīng)的氧肟酸。Kobayashi等[42]認(rèn)為底物酰胺的羰基受到親核進(jìn)攻時(shí),與酶形成一個(gè)四面體中間體,中間體因氨的形成并解離而快速轉(zhuǎn)變?yōu)轷;?酶復(fù)合物。在水分子加入后,復(fù)合物發(fā)生水解生成相應(yīng)的酸(圖4)。

      圖4 酰胺酶水解反應(yīng)和?;D(zhuǎn)移反應(yīng)作用機(jī)制Fig.4 Mechanism of amide hydrolysis reactionand acyl transfer reaction from amide to hydrazine and hydroxylamine

      隨著酰胺酶結(jié)構(gòu)的不斷解析,基于催化三聯(lián)體的酰胺酶催化機(jī)制被研究者廣泛報(bào)道。脂肪酸酰胺水解酶(FAAH)是一個(gè)典型的標(biāo)簽家族酰胺酶,其催化機(jī)制被學(xué)者廣泛研究[43-45]。Mileni等[46]推測(cè)FAAH的反應(yīng)機(jī)制主要為以下四步:1)親核體Ser241被極化激活并進(jìn)攻底物酰胺鍵,形成酶-底物復(fù)合體;2)酰胺底物C—N鍵斷裂,氨基部分脫離,形成?;?酶中間體;3)活化的水分子進(jìn)攻?;?酶中間體并形成新的四面體中間體;4)復(fù)合體分解產(chǎn)生羧酸,而酰胺酶則獲得再生(圖5)。

      圖5 酰胺酶FAAH假設(shè)的催化機(jī)制Fig.5 Proposed reaction mechanism of FAAH

      Labahn等[38]研究標(biāo)簽家族酰胺酶PAM催化機(jī)制主要分為4步(圖6):1)cisSer202側(cè)鏈羥基的質(zhì)子轉(zhuǎn)移至堿催化劑Lys的氨基上,增強(qiáng)了其對(duì)底物酰胺羰基氧的質(zhì)子化能力;Ser226親核進(jìn)攻酰胺羰基碳原子,同時(shí)cisSer202質(zhì)子化Ser226的羰基氧;隨后,失去質(zhì)子的cisSer202奪取Ser226的質(zhì)子,形成酶-底物復(fù)合體;2)復(fù)合體上的氨基奪取cisSer202的質(zhì)子,而失去質(zhì)子的cisSer202轉(zhuǎn)而從帶正電的Lys123捕獲質(zhì)子,恢復(fù)穩(wěn)定;3)質(zhì)子化的氨基形成氨脫離復(fù)合體,而Lys123重新奪回cisSer202上的質(zhì)子;失去質(zhì)子后的cisSer202轉(zhuǎn)而捕獲底物上的羥基質(zhì)子,兩者恢復(fù)最初狀態(tài);同時(shí),底物的羰基也重新產(chǎn)生,形成酶-?;虚g體;4)水分子進(jìn)攻酶-?;虚g體使其分解,形成產(chǎn)物羧酸。Ser226獲得水分子的質(zhì)子,重新恢復(fù)穩(wěn)定。

      圖6 酰胺酶PAM假設(shè)的催化機(jī)制Fig.6 Proposed reaction mechanism of PAM

      Lee等[40]報(bào)道了標(biāo)簽家族酰胺酶AAA的晶體結(jié)構(gòu),并解釋了其催化機(jī)制。該酶以Ser163、Ser187與Lys84作為催化三聯(lián)體,其中Lys84作為廣義堿催化劑接受來自于Ser163通過氫鍵傳遞的質(zhì)子,激活Ser163(圖7)。具體催化步驟如下:1)在堿性環(huán)境下的Lys84處于去質(zhì)子化狀態(tài),其通過氫鍵網(wǎng)絡(luò)介導(dǎo)cisSer163的Oγ與親核體Ser187的OγH通過氫鍵發(fā)生極化并使之激活;2)Ser187的OγH與底物(對(duì)乙酰氨基酚)的羰基碳通過共價(jià)鍵形成四面體中間體,同時(shí)Ser187的Oγ脫去質(zhì)子;3)形成?;?酶復(fù)合體,隨后在1分子水的作用下發(fā)生脫酰反應(yīng);4)酶與產(chǎn)物分離,酰胺酶獲得再生。

      圖7 酰胺酶AAA假設(shè)的催化機(jī)制Fig.7 Proposed reaction mechanism of AAA

      3 酰胺酶的篩選與挖掘

      傳統(tǒng)的酰胺酶篩選是從土壤或菌種庫(kù)中篩選具有酰胺酶活力的微生物,但效率低,耗時(shí)長(zhǎng),而且無法區(qū)分酰胺酶是否具有立體選擇性。筆者所在團(tuán)隊(duì)的Zheng等[47]在首次證明酰胺酶催化的?;D(zhuǎn)移和水解反應(yīng)立體選擇性一致的基礎(chǔ)上,利用?;D(zhuǎn)移反應(yīng)產(chǎn)物氧肟酸與鐵離子在酸性條件下螯合顯色的特性,建立了高通量立體選擇性酰胺酶篩選模型(圖8)。該方法與已有的基于底物官能團(tuán)的酰胺酶篩選模型[48]相比,其更顯著的優(yōu)勢(shì)在于對(duì)底物的普適性,是目前報(bào)道的普適性最強(qiáng)的酰胺酶篩選模型。

      圖8 基于?;D(zhuǎn)移反應(yīng)的比色法篩選立體選擇性酰胺酶Fig.8 Selective colorimetric screen for enantioselective amidase-producing microorganisms

      近20年來,雖然已從自然環(huán)境中篩選獲得大量產(chǎn)酰胺酶的微生物(表2),但由于野生菌中酰胺酶的表達(dá)水平通常較低,且可能同一微生物中存在幾種不同立體選擇性的酰胺酶,酶活、對(duì)映選擇性低等問題成為其大規(guī)模應(yīng)用的瓶頸。因此,研究人員把目光投向了如何快速、高效獲得高立體選擇性、高催化活力的酰胺酶。近年來,得益于DNA測(cè)序技術(shù)的進(jìn)步,急劇增加的生物信息為新酶的開發(fā)帶來了前所未有的機(jī)遇,基因挖掘已成為快速開發(fā)新酶的有力手段。截至2017年10月,根據(jù)基因組測(cè)序計(jì)劃統(tǒng)計(jì)網(wǎng)站GOLD(www.genomesonline.org)的統(tǒng)計(jì)數(shù)據(jù),目前已完成全基因組測(cè)序的生物多達(dá)282 640種,其中細(xì)菌完成測(cè)序250 327種,真核生物20 956種,這為酰胺酶的挖掘提供了寶庫(kù)(圖9)。筆者根據(jù)酰胺酶保守序列,通過基因挖掘從DelftiatsuruhatensisZJB-05174、ParvibaculumlavamentivoransZJB14001[63]以及BurkholderiaphytofirmansZJB-15079[64]全基因組中分別獲得了若干重組酰胺酶。同時(shí),Ruan等[65]利用基因組同源比對(duì)和HiTAIL-PCR對(duì)未知區(qū)域的高效擴(kuò)增,從B.epidermidisZJB-07021基因組中克隆獲得2個(gè)酰胺酶基因,并實(shí)現(xiàn)了異源表達(dá)。

      表2 不同來源酰胺酶的性質(zhì)

      圖9 完成全基因組測(cè)序生物組成Fig.9 Sequenced genome projects in GOLD (www.genomesonline.org)

      4 酰胺酶的應(yīng)用

      手性羧酸和酰胺衍生物是重要的旋光性模塊化合物,可用于大量手性生物活性分子的合成,包括羥基酸、氨基酸、甲基氨基酸、伯胺和偽核苷化合物等,在精細(xì)化工、醫(yī)藥、農(nóng)用化學(xué)品及功能材料等方面有廣泛應(yīng)用。酰胺酶底物譜廣、催化活性高以及對(duì)映選擇性嚴(yán)格等特點(diǎn)使其在制備復(fù)雜結(jié)構(gòu)手性羧酸及酰胺衍生物具有無可比擬的優(yōu)勢(shì)。筆者所在課題組多年來致力于酰胺酶生物催化工業(yè)應(yīng)用開發(fā),建立了一系列以酰胺酶為催化劑的(手性)羧酸及酰胺的生物合成新工藝。

      4.1 (S)-2,2-二甲基環(huán)丙甲酰胺的合成

      (S)-2,2-二甲基環(huán)丙甲酰胺是抗重癥感染首選藥物亞胺培南/西司他丁鈉的關(guān)鍵手性中間體,開發(fā)其高效合成技術(shù)對(duì)控制西司他丁鈉成本具有重要意義。目前工業(yè)上應(yīng)用的化學(xué)法合成工藝步驟冗長(zhǎng),反應(yīng)條件苛刻,工藝總收率低,且需大量有毒有害試劑,環(huán)境負(fù)擔(dān)大。

      筆者所在團(tuán)隊(duì)的Zheng等[31]通過建立普適性高通量立體選擇性酰胺酶篩選模型,獲得了能夠R型立體選擇性水解2,2-二甲基環(huán)丙烷甲酰胺的酰胺酶產(chǎn)生菌D.tsuruhatensisZJB-05174,對(duì)映體選擇率E>100(圖10)。在添加5%的乙腈作為共溶劑后,(S)-2,2-二甲基環(huán)丙甲酰胺的收率為43.6%,光學(xué)純度達(dá)到99%以上。

      4.2 1-氰基環(huán)己基乙酸的合成

      加巴噴丁(Gabapentin)是一種新型抗癲癇藥物,具有療效好、安全性高和耐受性好等特點(diǎn)[66-67]。1-氰基環(huán)己基乙酸(1-CCHAA)是合成加巴噴丁的關(guān)鍵中間體。筆者等[68]通過基因挖掘,篩選獲得了可高效水解1-氰基環(huán)己基乙酰胺(1-CCHAM)合成1-CCHAA 的酰胺酶Pa-Ami,比酶活達(dá)297.6 U/mg。以含Pa-Ami的重組菌為催化劑水解1-CCHAM(圖11),底物質(zhì)量濃度為80 g/L,濕菌體質(zhì)量濃度為1 g/L時(shí),反應(yīng)20 min,轉(zhuǎn)化率可達(dá)100%。

      圖10 R,S-2,2-二甲基環(huán)丙烷甲酰胺的酶法拆分Fig.10 Enzymatic resolution of (R,S)-2,2-dimethylcyclopropane carboxamide

      圖11 酰胺酶法制備加巴噴丁路線Fig.11 Enzymatic route for synthesis of gabapentin by amidase

      4.3 R -3,3,3-三氟-2-羥基-2-甲基丙酸的合成

      3,3,3-三氟-2-羥基-2-甲基丙酸(TFHMA)是一種手性醫(yī)藥中間體,其S型或R型異構(gòu)體均可用于系列藥物的合成[69-70],如S型異構(gòu)體可用于制備新型ATP敏感性鉀(KATP)通道開放劑[71];R型異構(gòu)體可合成丙酮酸脫氫酶激酶(PDK)抑制劑等[72]。瑞士Lonza公司的Shaw等[73]利用產(chǎn)酸克雷伯氏菌KlebsiellaoxytocaR-酰胺酶拆分外消旋3,3,3-三氟-2-羥基-2-甲基丙酰胺(TFHMM)(圖12),制備R-3,3,3-三氟-2-羥基-2-甲基丙酸和S-3,3,3-三氟-2-羥基-2-甲基丙酰胺,底物質(zhì)量濃度100 g/L,產(chǎn)率接近50%,產(chǎn)物e.e.>98%。筆者等[64]利用來源于B.phytofirmansZJB-15079的重組酰胺酶工程菌拆分3,3,3-三氟-2-羥基-2-甲基丙酰胺,在底物質(zhì)量濃度200 g/L、濕菌體質(zhì)量濃度5 g/L、80 ℃下反應(yīng)10 min,R-3,3,3-三氟-2-羥基-2-甲基丙酸質(zhì)量濃度可達(dá)86.2 g/L,e.e.>95%,E值達(dá)86。

      圖12 R,S-3,3,3-三氟-2-羥基-2-甲基丙酰胺的酰胺酶法拆分Fig.12 Enzymatic resolution of (R,S)-3,3,3-trifluoro-2-hydroxy-2-methylpropanamide

      4.4 2-氯煙酸的合成

      2-氯煙酸是一種重要精細(xì)化工中間體,廣泛用于殺菌劑、殺蟲劑、抗生素和心血管疾病藥物的合成[74-76]。金建強(qiáng)[77]通過大量篩選,獲得了可高活性水解2-氯煙酰胺合成2-氯煙酸的重組酰胺酶工程菌(圖13),并考察了其對(duì)系列氯代煙酰胺的反應(yīng)動(dòng)力學(xué)。全細(xì)胞(濕菌體質(zhì)量濃度5 g/L)催化2-氯煙酰胺水解底物濃度可達(dá)400 mmol/L,轉(zhuǎn)化率達(dá)94%。

      圖13 酰胺酶水解合成2-氯煙酸Fig.13 Enzymatic route for synthesis of 2-chloronicotinic acid by amidase

      5 結(jié)論

      不對(duì)稱生物合成方興未艾,酰胺酶正崛起為不對(duì)稱生物催化的重要工具酶。作為腈轉(zhuǎn)化酶家族中的重要一員,酰胺酶所具有的高立體選擇性、廣底物譜等特性使其在動(dòng)力學(xué)拆分外消旋酰胺制備復(fù)雜結(jié)構(gòu)手性羧酸及酰胺衍生物中占據(jù)無可比擬的優(yōu)勢(shì)。隨著酰胺酶空間結(jié)構(gòu)的解析,其反應(yīng)催化機(jī)制也正逐漸被揭示。然而,由于對(duì)酰胺酶底物特異性和立體選擇性規(guī)律研究的缺乏,酰胺酶的開發(fā)仍只能局限于以“底物”為探針篩選“催化劑”的傳統(tǒng)研究范疇,無法主動(dòng)進(jìn)行生物催化劑的選擇和理性改造。通過探究酰胺酶的“結(jié)構(gòu)和功能”的關(guān)系,在掌握酶的結(jié)構(gòu)信息的情況下對(duì)酰胺酶進(jìn)行分子改造,可進(jìn)一步促進(jìn)酰胺酶的工業(yè)化應(yīng)用。

      [1] NEL A J,TUFFIN I M,SEWELL B T,et al.Unique aliphatic amidase from a psychrotrophic and haloalkaliphilicNesterenkoniaisolate[J].Appl Environ Microbiol,2011,77(11):3696-3702.

      [2] SHEN W,CHEN H,JIA K,et al.Cloning and characterization of a novel amidase fromParacoccussp. M-1,showing aryl acylamidase and acyl transferase activities[J].Appl Microbiol Biotechnol,2012,94(4):1007-1018.

      [3] ZHANG J,YIN J G,HANG B J,et al.Cloning of a novel arylamidase gene fromParacoccussp. strain FLN-7 that hydrolyzes amide pesticides[J].Appl Environ Microbiol,2012,78(14):4848-4855.

      [5] LORENZ P,ECK J.Screening for novel industrial biocatalysts[J].Eng Life Sci,2010,4(6):501-504.

      [6] MA D Y,WANG D X,PAN J,et al.Nitrile biotransformations for the synthesis of highly enantioenrichedβ-hydroxy andβ-amino acid and amide derivatives:a general and simple but powerful and efficient benzyl protection strategy to increase enantioselectivity of the amidase[J].J Org Chem,2008,73(11):4087-4091.

      [7] JAEGER K E,DIJKSTRA B W,REETZ M T.Bacterial biocatalysts:molecular biology,three-dimensional structures,and biotechnological applications of lipases[J].Annu Rev Microbiol,1999,53(1):315-351.

      [8] HIRRLINGER B,STOLZ A,KNACKMUSS H J.Purification and properties of an amidase fromRhodococcuserythropolisMP50 which enantioselectively hydrolyzes 2-arylpropionamides[J].J Bacteriol,1996,178(12):3501-3507.

      [9] DORAN J P,DUGGAN P,MASTERSON M,et al.Expression and purification of a recombinant enantioselective amidase[J].Protein Exp Purif,2005,40(1):190-196.

      [10] BIANCHI D,BATTISTEL E,CESTI P,et al.Substrate specificity and stereoselectivity of hydrolytic enzymes fromBrevibacteriumimperialeB222[J].Appl Microbiol Biotechnol,1993,40(1):53-56.

      [11] NOJIRI M,TAOKA N,YASOHARA Y.Characterization of an enantioselective amidase fromCupriavidussp.KNK-J915 (FERM BP-10739) useful for enzymatic resolution of racemic 3-piperidine carboxamide[J].J Mol Catal B:Enzymatic,2014,109:136-142.

      [12] SNELL D,COLBY J.Enantioselective hydrolysis of racemic ibuprofen amide toS-(+)-ibuprofen byRhodococcusAJ270[J].Enzyme Microb Technol,1999,24(4):160-163.

      [13] EICHHORN E,RODUIT J P,SHAW N,et al.Preparation of (S)-piperazine-2-carboxylic acid,(R)-piperazine-2-carboxylic acid,and (S)-piperidine-2-carboxylic acid by kinetic resolution of the corresponding racemic carboxamides with stereoselective amidases in whole bacterial cells[J].Tetrahedron Asymmetry,1998,29(1):2533-2536.

      [14] WEGMAN M A,HEINEMANN U,RANTWIJK F V,et al.Hydrolysis of D,L -phenylglycine nitrile by new bacterial cultures[J].J Mol Catal B:Enzymatic,2001,11(4):249-253.

      [15] KOMEDA H,ASANO Y.Gene cloning,nucleotide sequencing,and purification and characterization of the D-stereospecific amino-acid amidase fromOchrobactrumanthropiSV3[J].Eur J Biochem,2000,267(7):2028-2035.

      [16] BAEK D H,KWON S J,HONG S P,et al.Characterization of a thermostable D-stereospecific alanine amidase fromBrevibacillusborstelensisBCS-1[J].Appl Environ Microbiol,2003,69(2):980-986.

      [17] VAN DEN TWEEL W J J,VAN DOOREN T J G M,DE JONGE P H,et al.OchrobactrumanthropiNCIMB 40321:a new biocatalyst with broad-spectrum L-specific amidase activity[J].Appl Microbiol Biotechnol,1993,39(3):296-300.

      [18] KRIEG L,KULA M R.Screening for amidases:isolation and characterization of a novel D-amidase fromVariovoraxparadoxus[J].Adv Synth Catal,2002,344(9):965-973.

      [19] KOMEDA H,ASANO Y.A novel D-stereoselective amino acid amidase fromBrevibacteriumiodinum:gene cloning,expression and characterization[J].Enzyme Microb Technol,2008,43(3):276-283.

      [20] KELLY M,KORNBERG H L.Purification and properties of acyltransferases fromPseudomonasaeruginosa[J].Biochem J,1964,93(3):557-566.

      [21] JAKOBY W B,FREDERICKS J.Reactions catalyzed by amidases[J].J Biol Chem,1964,239(6):1978-1982.

      [22] SHARMA M,SHARMA N N,BHALLA T C.Amidases:versatile enzymes in nature[J].Rev Environ Sci Biotechnol,2009,8(4):343-366.

      [23] FOURNAND D,ARNAUD A.Aliphatic and enantioselective amidases:from hydrolysis to acyl transfer activity[J].J Appl Microbiol,2001,91(3):381-393.

      [24] PERTSOVICH S I,GURANDA D T,PODCHERNYAEV D A,et al.Aliphatic amidase fromRhodococcusrhodochrousM8 is related to the nitrilase/cyanide hydratase family[J].Biochemistry,2005,70(11):1280-1287.

      [25] JIN L Q,LI Y F,LIU Z Q,et al.Characterization of a newly isolated strainRhodococcuserythropolisZJB-09149 transforming 2-chloro-3-cyanopyridine to 2-chloronicotinic acid[J].New Biotechnol,2011,28(6):610-615.

      [26] NOVO C,FARNAUD S,TATA R,et al.Support for a three-dimensional structure predicting a Cys-Glu-Lys catalytic triad forPseudomonasaeruginosaamidase comes from site-directed mutagenesis and mutations altering substrate specificity[J].Biochem J,2002,365(3):731-738.

      [27] CILIA E,FABBRI A,URIANI M,et al.The signature amidase fromSulfolobussolfataricusbelongs to the CX3C subgroup of enzymes cleaving both amides and nitriles:Ser195 and Cys145 are predicted to be the active site nucleophiles[J].FEBS J,2010,272(18):4716-4724.

      [28] GIORDANO C,AMMENDOLA S.Characterization of mutants ofSulfolobussolfataricussignature amidase able to hydrolyseR-ketoprofen amide[J].Protein Pept Lett,2008,15(6):617-623.

      [29] AGARWAL S,CHOUDHURY B.Presence of multiple acyltranferases with diverse substrate specificity inBacillussmithiistrain IITR6b2 and characterization of unique acyltransferase with nicotinamide[J].J Mol Catal B:Enzymatic,2014,107:64-72.

      [30] HONGPATTARAKERE T,KOMEDA H,ASANO Y.Purification,characterization,gene cloning and nucleotide sequencing of D-stereospecific amino acid amidase from soil bacterium:Delftiaacidovorans[J].J Ind Microbiol Biotechnol,2005,32(11/12):567-576.

      [31] ZHENG R C,WANG Y S,ZHENG Y G,et al.Kinetic resolution of (R,S)-2,2-dimethylcyclopropanecarboxamide byDelftiatsuruhatensisZJB-05174:role of organic cosolvent in reaction medium[J].Catal Commun,2012,18(1):68-71.

      [32] GUO F M,WU J P,YANG L R,et al.Soluble and functional expression of a recombinant enantioselective amidase fromKlebsiellaoxytocaKCTC 1686 inEscherichiacoliand its biochemical characterization[J].Process Biochem,2015,50(8):1264-1271.

      [33] KOMEDA H,ISHIKAWA N,ASANO Y.Enhancement of the thermostability and catalytic activity ofd-stereospecific amino-acid amidase fromOchrobactrumanthropiSV3 by directed evolution[J].J Mol Catal B:Enzymatic,2003,21(4):283-290.

      [34] CHEBROU H,BIGEY F,ARNAUD A,et al.Study of the amidase signature group[J].Biochim Biophys Acta,1996,1298(2):285-293.

      [35] NOVO C,FARNAUD S,TATA R,et al.Support for a three-dimensional structure predicting a Cys-Glu-Lys catalytic triad forPseudomonasaeruginosaamidase comes from site-directed mutagenesis and mutations altering substrate specificity[J].Biochem J,2002,365(3):731-738.

      [36] KIMANI S W,AGARKAR V B,COWAN D A,et al.Structure of an aliphatic amidase fromGeobacilluspallidusRAPc8[J].Acta Crystallogr,2007,63:1048-1058.

      [37] WU Z M,ZHENG R C,ZHENG Y G.Exploitation and characterization of three versatile amidase super family members fromDelftiatsuruhatensisZJB-05174[J].Enzyme Microb Technol,2016,86:93-102.

      [38] LABAHN J,NEUMANN S,BüLDT G,et al.An alternative mechanism for amidase signature enzymes[J].J Mol Biol,2002,322(5):1053-1064.

      [39] OHTAKI A,MURATA K,SATO Y,et al.Structure and characterization of amidase fromRhodococcussp.N-771:insight into the molecular mechanism of substrate recognition[J].Biochim Biophys Acta,2010,1804(1):184-192.

      [40] LEE S,PARK E H,KO H J,et al.Crystal structure analysis of a bacterial aryl acylamidase belonging to the amidase signature enzyme family[J].Biochem Biophys Res Commun,2015,467(2):268-274.

      [41] MAESTRACCI M,THIERY A,ARNAUD A,et al.A study of the mechanism of the reactions catalyzed by the amidaseBrevibacteriumsp.R312[J].Agric Biol Chem,2006,50(9):2237-2241.

      [42] KOBAYASHI M,SHIMIZU S.Identification of active sites in amidase:evolutionary relationship between amide bond- and peptide bond-cleaving enzymes[J].PANS,1997,94(22):11986-11991.

      [43] MCKINNEY M K,CRAVATT B F.Structure and function of fatty acid amide hydrolase[J].Annu Rev Biochem,2005,74(74):411-432.

      [44] LABAR G,MICHAUX C.Fatty acid amide hydrolase:from characterization to therapeutics[J].Chem Biodivers,2007,38(47):1882-1902.

      [45] PALERMO G,ROTHLISBERGER U,CAVALLI A,et al.Computational insights into function and inhibition of fatty acid amide hydrolase[J].Eur J Med Chem,2015,91:15-26.

      [46] MILENI M,KAMTEKAR S,WOOD D C,et al.Crystal structure of fatty acid amide hydrolase bound to the carbamate inhibitor URB597:discovery of a deacylating water molecule and insight into enzyme inactivation[J].J Mol Biol,2010,400(4):743-754.

      [47] ZHENG R C,ZHENG Y G,SHEN Y C.A screening system for active and enantioselective amidase based on its acyl transfer activity[J].Appl Microbiol Biotechnol,2007,74(1):256-262.

      [48] DUCHATEAU A L,HILLEMANS-CROMBACH M G,VAN DUIJNHOVEN D A,et al.A colorimetric method for determination of amino amidase activity[J].Anal Biochem,2004,330(2):362-364.

      [49] WU Z M,ZHENG R C,ZHENG Y G.Exploitation and characterization of three versatile amidase super family members fromDelftiatsuruhatensisZJB-05174[J].Enzyme Microb Technol,2016,86:93-102.

      [50] ZHENG R C,WANG Y S,LIU Z Q,et al.Isolation and characterization ofDelftiatsuruhatensisZJB-05174,capable ofR-enantioselective degradation of 2,2-dimethylcyclopropanecarboxamide[J].RES Microbiol,2007,158(3):258-264.

      [51] CHEONG T K,ORIEL P J.Cloning of a wide-spectrum amidase fromBacillusstearothermophilusBR388 inEscherichiacoliand marked enhancement of amidase expression using directed evolution[J].Enzyme Microb Technol,2000,26(2/3/4):152-158.

      [52] KOMEDA H,HARIYAMA N,ASANO Y.L-Stereoselective amino acid amidase with broad substrate specificity fromBrevundimonasdiminuta:characterization of a new member of the leucine aminopeptidase family[J].Appl Microbiol Biotechnol,2006,70(4):412-421.

      [53] MAYAUX J F,CEREBELAUD E,SOUBRIER F,et al.Purification,cloning,and primary structure of an enantiomer-selective amidase fromBrevibacteriumsp.strain R312:structural evidence for genetic coupling with nitrile hydratase[J].J Bacteriol,1990,172(12):6764-6773.

      [54] RUAN L T,ZHENG R C,ZHENG Y G.A novel amidase fromBrevibacteriumepidermidisZJB-07021:gene cloning,refolding and application in butyrylhydroxamic acid synthesis[J].J Ind Microbiol Biotechnol,2016,43(8):1071-1083.

      [55] YAMAMOTO K,OTSUBO K,MATSUO A,et al.Production ofR-(2)Ketoprofen from an amide compound byComamonasacidovoransKPO-2771-4[J].Appl Environ Microbiol,1996,62(1):152-155.

      [56] MAKHONGELA H S,GLOWACKA A E,AGARKAR V B,et al.A novel thermostable nitrilase superfamily amidase fromGeobacilluspallidusshowing acyl transfer activity[J].Appl Microbiol Biotechnol,2007,75(4):801-811.

      [57] NAWAZ M S,KHAN A D,SIITONEN P H,et al.Physical,biochemical,and immunological characterization of a thermostable amidase fromKlebsiellapneumoniaeNCTR 1[J].J Bacteriol,1996,178(8):2397-2401.

      [58] CISKANIK L M,WILCZEK J M,FALLON R D.Purification and characterization of an enantioselective amidase fromPseudomonaschlororaphisB23[J].Appl Environ Microbiol,1995,61(3):998-1003.

      [59] KOMEDA H,HARADA H,WASHIKA S,et al.A novelR-stereoselective amidase fromPseudomonassp. MCI3434 acting on piperazine-2-tert-butylcarboxamide[J].Eur J Biochem,2004,271(8):1580-1590.

      [60] EGOROVA K,TRAUTHWEIN H,VERSECK S,et al.Purification and properties of an enantioselective and thermoactive amidase from the thermophilic actinomycetePseudonocardiathermophila[J].Appl Microbiol Biotechnol,2004,65(1):38-45.

      [61] SCOTTO D A A,AMMENDOLA S,SCANDURRA R,et al.Molecular and biochemical characterization of the recombinant amidase from hyperthermophilic archaeonSulfolobussolfataricus[J].Extremophiles,2001,5(3):183-192.

      [62] SUZUKI Y,OHTA H.Identification of a thermostable and enantioselective amidase from the thermoacidophilic archaeonSulfolobustokodaiistrain 7[J].Protein Exp Purif,2006,45(2):368-373.

      [63] WU Z M,ZHENG R C,ZHENG Y G.Identification and characterization of a novel amidase signature family amidase fromParvibaculumlavamentivoransZJB14001[J].Protein Exp Purif,2017,129:60-68.

      [64] WU Z M,ZHENG R C,TANG X L,et al.Identification and characterization of a thermostable and cobalt-dependent amidase fromBurkholderiaphytofirmansZJB-15079 for efficient synthesis of (R)-3,3,3-trifluoro-2-hydroxy-2-methylpropionic acid[J].Appl Microbiol Biotechnol,2017,101(5):1953-1964.

      [65] RUAN L T,ZHENG R C,ZHENG Y G.Mining and characterization of two amidase signature family amidases fromBrevibacteriumepidermidisZJB-07021 by an efficient genome mining approach[J].Protein Exp Purif,2016,126:16-25.

      [66] 陳寶泉,劉肖英,李彩文.新型抗癲癇藥加巴噴丁[J].中國(guó)新藥雜志,2007,16(11):900-902.

      [67] ZHU D,MUKHERJEE C,BIEHL E R,et al.Nitrilase-catalyzed selective hydrolysis of dinitriles and green access to the cyanocarboxylic acids of pharmaceutical importance[J].Adv Synth Catal,2007:349(10):1667-1670.

      [68] WU Z M,ZHENG R C,DING X,et al.Enzymatic production of key intermediate of gabapentin by recombinant amidase fromPantoeasp.with high ratio of substrate to biocatalyst[J].Process Biochem,2016,51(5):607-613.

      [69] MENZEL K,MACHROUHI F,BODENSTEIN M,et al.Process development of a potent Bradykinin 1 antagonist[J].Org Process Res Dev,2015,13(3):519-524.

      [70] PARKER J S,BOWER J F,MURRAY P M,et al.Kepner-Tregoe decision analysis as a tool to aid route selection:part 3.application to a back-up series of compounds in the PDK project[J].Org Process Res Dev,2008,12(6):1060-1071.

      [71] OHNMACHT C J,RUSSELL K,EMPFIELD J R,et al.N-aryl-3,3,3-trifluoro-2-hydroxy-2-methylpropanamides:KATP potassium channel openers:modifications on the western region[J].J Med Chem,1996,39(23):4592-4601.

      [72] AICHER T D,ANDERSON R C,GAO J,et al.Secondary amides of (R)-3,3,3-trifluoro-2-hydroxy-2-methylpropionic acid as inhibitors of pyruvate dehydrogenase kinase[J].J Med Chem,2000,43(2):236-249.

      [73] SHAW N M,NAUGHTON A,ROBINS K,et al.Selection,purification,characterisation,and cloning of a novel heat-stable stereo-specific amidase fromKlebsiellaoxytoca,and its application in the synthesis of enantiomerically pure (R)- and (S)-3,3,3-trifluoro-2-hydroxy-2-methylpropionic acids and (S)-3,3,3-trifluoro-2-hydroxy-2-methylpropionamide[J].Org Process Res Dev,2002,6(4):497-504.

      [74] 徐加利,王金信.煙嘧磺隆的研究與開發(fā)進(jìn)展[J].農(nóng)藥科學(xué)與管理,2007,28(6):151-154.

      [75] 胡斐.超高效磺酰脲類除草劑煙嘧磺隆的合成[D].杭州:浙江工業(yè)大學(xué),2014.

      [76] 陳升.抗抑郁藥米氮平及其中間體的合成工藝研究[D].南京:東南大學(xué),2007.

      [77] 金建強(qiáng).泛生菌酰胺酶的改造及催化合成2-氯煙酸研究[D].杭州:浙江工業(yè)大學(xué),2017.

      猜你喜歡
      水解酶?;?/a>中間體
      無底物情況下來白R(shí)hoclococcus zopfii的腈水解酶中親核進(jìn)攻試劑CYS165的活性狀態(tài)的探究(英文)
      腈水解酶反應(yīng)機(jī)制與催化性能調(diào)控研究進(jìn)展
      建立A注射液中間體中肉桂酸含量測(cè)定方法
      氨基甲酸乙酯水解酶的家族生物信息學(xué)分析
      激發(fā)態(tài)和瞬態(tài)中間體的光譜探測(cè)與調(diào)控
      石油化工應(yīng)用(2018年3期)2018-03-24 14:54:36
      N-月桂?;劝彼猁}性能的pH依賴性
      當(dāng)代化工研究(2016年2期)2016-03-20 16:21:23
      N-脂肪酰基氨基酸鹽的合成、性能及應(yīng)用
      α-甲氧甲?;?γ-丁內(nèi)酯和α-乙氧甲酰基-γ-丁內(nèi)酯的合成及表
      天等县| 慈溪市| 虞城县| 莫力| 东阿县| 贵定县| 铅山县| 旺苍县| 两当县| 容城县| 梧州市| 迭部县| 博客| 临漳县| 固阳县| 苗栗县| 吴江市| 嘉义县| 雷山县| 孝感市| 友谊县| 八宿县| 乌恰县| 修武县| 沁阳市| 富顺县| 来宾市| 习水县| 醴陵市| 资阳市| 巴彦淖尔市| 台北市| 宜兰市| 青河县| 墨江| 车险| 达州市| 黄浦区| 莆田市| 余江县| 平武县|