夏澤陽(yáng),劉愛(ài)榮
污染控制及資源化研究國(guó)家重點(diǎn)實(shí)驗(yàn)室,同濟(jì)大學(xué)環(huán)境科學(xué)與工程學(xué)院,上海 200092
納米零價(jià)鐵(nZVI)技術(shù)早在1997年就作為有效的脫鹵反應(yīng)還原劑被應(yīng)用到環(huán)境中。實(shí)驗(yàn)表明,nZVI對(duì)于環(huán)境中多種鹵化物,如鹵代烷烴、鹵代烯烴、鹵代芳香烴和有機(jī)氯農(nóng)藥等難降解的有機(jī)污染物可有效脫除鹵素[1-5],同時(shí)提高其可生化性,上述反應(yīng)主要應(yīng)用的是nZVI的還原性能。研究發(fā)現(xiàn),由于nZVI具有核-殼結(jié)構(gòu),即核心為立方結(jié)構(gòu)的單質(zhì)鐵,表面包裹一層鐵氧化物,兼具還原和吸附的性能[6],也可高效去除污染水體中的重金屬[7-10]和無(wú)機(jī)陰離子污染物。此外,將nZVI進(jìn)行修飾后,將進(jìn)一步改善其性能,提高對(duì)污染物的去除效能[11-12]。nZVI技術(shù)對(duì)于污染物的治理和修復(fù)已經(jīng)成為環(huán)境領(lǐng)域的一個(gè)研究熱點(diǎn),有望在未來(lái)助力解決眾多環(huán)境難題。
目前在原位修復(fù)中nZVI的應(yīng)用是最有前景的技術(shù)之一[13-16],這是由于nZVI具有以下4個(gè)優(yōu)點(diǎn)[17]:(1)nZVI顆粒小、比表面積大,其膠體能夠輕易地注入并在其他修復(fù)材料難以到達(dá)的土壤含水層[18]中起作用,從而能夠與污染物直接反應(yīng);(2)nZVI在地下水層與污染物反應(yīng)不僅快速,而且可以長(zhǎng)時(shí)間保持反應(yīng)活性;(3)和其他修復(fù)材料相比,nZVI的投加對(duì)環(huán)境產(chǎn)生的危害更??;(4)nZVI技術(shù)經(jīng)濟(jì)實(shí)用且操作簡(jiǎn)單。世界范圍內(nèi)有關(guān)nZVI在地下水的原位修復(fù)研究已經(jīng)蓬勃展開(kāi),在全球已經(jīng)有100多處試點(diǎn)[19]。
然而,由于nZVI性質(zhì)非常活潑,易產(chǎn)生鐵離子和鐵氧化物釋放到環(huán)境中,會(huì)對(duì)生物體乃至生態(tài)系統(tǒng)產(chǎn)生難以預(yù)測(cè)且嚴(yán)重的毒性影響[20],毒性效應(yīng)已經(jīng)引起了世界范圍內(nèi)專家學(xué)者的強(qiáng)烈關(guān)注。目前大部分研究都集中在nZVI對(duì)微生物的毒性上。但也有學(xué)者研究發(fā)現(xiàn),nZVI也會(huì)對(duì)大麥[21]、蚯蚓[22]和魚(yú)類[23-24]等生物體產(chǎn)生作用,進(jìn)一步的觀測(cè)還發(fā)現(xiàn)nZVI甚至?xí)弓h(huán)境中的理化性質(zhì)[25-27]發(fā)生變化。因此可以看出,nZVI在環(huán)境中的毒性作用范圍是非常廣泛的,在大規(guī)模應(yīng)用nZVI之前,務(wù)必要對(duì)其毒性的影響進(jìn)行全面的評(píng)估。本文會(huì)從nZVI在環(huán)境中毒性效應(yīng)、毒性產(chǎn)生機(jī)制和毒性影響因素等方面進(jìn)行綜述。
近些年來(lái),nZVI生態(tài)效應(yīng)受到越來(lái)越多的關(guān)注,學(xué)者們研究其對(duì)自然界中多種生物體和大環(huán)境的作用,基本明確了在試驗(yàn)對(duì)象上的毒性效應(yīng)。雖然目前大部分的研究成果都是在實(shí)驗(yàn)條件下獲得的,而在實(shí)際應(yīng)用中,環(huán)境因素復(fù)雜且多變,nZVI毒性效應(yīng)會(huì)受到這些因素的影響,但實(shí)驗(yàn)結(jié)果仍具有很好的指導(dǎo)意義?,F(xiàn)將近年來(lái)國(guó)內(nèi)外學(xué)者對(duì)nZVI毒性研究成果總結(jié)如下。
(1)王學(xué)等[28]分別用不同濃度的nZVI懸浮液與大腸桿菌接觸,發(fā)現(xiàn)大腸桿菌的生長(zhǎng)受到了抑制,且對(duì)數(shù)期縮短,穩(wěn)定期延長(zhǎng)。nZVI的濃度越高,大腸桿菌對(duì)數(shù)期縮短和穩(wěn)定期延長(zhǎng)的趨勢(shì)就越明顯,并且nZVI會(huì)使氧自由基在大腸桿菌細(xì)胞內(nèi)大量積累。TEM圖片表明,大腸桿菌周圍吸附了一些nZVI顆粒,且細(xì)胞表面變得模糊并出現(xiàn)破損,細(xì)胞膜也呈現(xiàn)出凹陷。Shin等[29]研究發(fā)現(xiàn)即使在nZVI濃度高達(dá)1 g·L-1時(shí),也只對(duì)脫氮細(xì)菌產(chǎn)生微弱的毒性。而在nZVI濃度較低時(shí),甚至?xí)鰪?qiáng)脫氮細(xì)菌的反硝化作用并刺激細(xì)菌生長(zhǎng)。一般來(lái)說(shuō),低溫條件不利于脫氮細(xì)菌對(duì)硝酸鹽的還原,但在nZVI存在時(shí),即使設(shè)定體系溫度為12 ℃,硝酸鹽的完全還原也只用了很短的時(shí)間,并且nZVI的加入能長(zhǎng)期使脫氮細(xì)菌保持較強(qiáng)反應(yīng)活性。
(2)Yehia等[22]先將nZVI使用羧甲基纖維素(CMC)穩(wěn)定處理后得到CMC-nZVI,然后把蚯蚓在含有不同濃度CMC-nZVI的土壤中培養(yǎng),研究發(fā)現(xiàn)蚯蚓的回避行為、單體重量變化和死亡率只有在CMC-nZVI濃度超過(guò)500 mg·kg-1時(shí)才能明顯觀察到。濃度提升至750 mg·kg-1時(shí),蚯蚓死亡率可達(dá)100%。但在CMC-nZVI濃度為100 mg·kg-1時(shí),蚯蚓的繁殖就會(huì)受到影響。Liang等[30]在含有不同濃度nZVI的土壤中培養(yǎng)蚯蚓,測(cè)定十溴聯(lián)苯醚在蚯蚓體內(nèi)的吸附量和nZVI對(duì)其毒性影響。和對(duì)照組相比,加入高濃度nZVI的實(shí)驗(yàn)組中蚯蚓的生長(zhǎng)和呼吸作用受到了明顯抑制,蚯蚓體內(nèi)間質(zhì)組織被嚴(yán)重?fù)p傷,蚯蚓對(duì)十溴聯(lián)苯醚的吸附量大幅度降低,并且蚯蚓代謝十溴聯(lián)苯醚的產(chǎn)物也發(fā)生了變化。
(3)Ma等[31]把寬葉香蒲和楊樹(shù)幼苗在不同濃度的nZVI懸浮液中培養(yǎng),觀察結(jié)果顯示nZVI在低于200 mg·L-1時(shí)會(huì)增進(jìn)寬葉香蒲和楊樹(shù)幼苗的生長(zhǎng),但高于此濃度時(shí),2種植物均會(huì)出現(xiàn)生長(zhǎng)減慢、單體重量減輕和葉子變黃等癥狀。Hjorth等[32]使用白蘿卜和黑麥草測(cè)試nZVI的毒性,發(fā)現(xiàn)在nZVI濃度低于100 mg·L-1時(shí),2種植物的根部生長(zhǎng)均未受到任何影響,但當(dāng)nZVI濃度達(dá)到1 g·L-1時(shí),2種植物的根部生長(zhǎng)顯著減慢,繼續(xù)提升濃度至10 g·L-1時(shí),根部生長(zhǎng)均完全停止。
(4)Kunmar等[33]將以嗜酸氧化亞鐵硫桿菌和桿菌屬細(xì)菌為優(yōu)勢(shì)菌種的微生物群落接觸nZVI 130 d后,發(fā)現(xiàn)優(yōu)勢(shì)菌種被梭菌屬細(xì)菌取代,這說(shuō)明nZVI會(huì)對(duì)微生物群落產(chǎn)生長(zhǎng)期的影響。Fajardo等[34]報(bào)道稱在砂質(zhì)黏壤土中nZVI會(huì)增加培養(yǎng)體系中α-變形菌門(mén)的數(shù)量,同時(shí)降低β-和γ-變形桿菌的數(shù)量。但Fajardo等[35]在另一篇報(bào)道中稱在鉛污染的土壤中,nZVI會(huì)使β-變形桿菌數(shù)量上升,ε-變形桿菌的數(shù)量降低。Ludovica等[36]在富含沙子的壤質(zhì)土中觀察到,nZVI會(huì)同時(shí)使α-變形桿菌和β-變形桿菌的數(shù)量降低。
除此之外,nZVI在自然界中的毒性研究還包括nZVI對(duì)病毒、藍(lán)藻和自然環(huán)境等方面的影響。從已有的研究結(jié)果中可以發(fā)現(xiàn),nZVI對(duì)生物體除了負(fù)面作用以外,在某些條件下也會(huì)促進(jìn)部分生物的生長(zhǎng)和增強(qiáng)其代謝功能[34-36]。而相同條件下的重復(fù)實(shí)驗(yàn)所得的實(shí)驗(yàn)結(jié)果有時(shí)不完全相同,這說(shuō)明nZVI毒性在環(huán)境中極易受到外界條件的干擾,尤其是nZVI對(duì)微生物群落的影響中,不同的土壤質(zhì)地條件下微生物數(shù)量變化趨勢(shì)不一,可以推斷土壤質(zhì)地是影響nZVI毒性的一個(gè)重要因素。在自然條件下需要考慮的條件繁多易變,仍需要在未來(lái)逐一針對(duì)主要的可變條件進(jìn)行研究。目前研究對(duì)象較為單一,多為微生物,需要擴(kuò)大研究范圍,并且研究的指標(biāo)應(yīng)該盡可能地包含生物體在nZVI影響下主要的行為特征,而不是從個(gè)別指標(biāo)著眼。
目前,nZVI的致毒機(jī)制尚未完全弄清,但學(xué)者們總結(jié)出可能的幾種作用機(jī)制分別為氧化損傷、鐵離子釋放和基因損傷等。
Nel等[37]提出活性氧生成和氧化應(yīng)激反應(yīng)是納米材料引起生物毒性的主要方式。由于納米材料尺寸小、比表面積大、顆粒表面電子供體和受體活動(dòng)位點(diǎn)多,所以能輕易地與分子氧(O2)發(fā)生作用,形成活性氧(ROS)[28],ROS主要包括O2、O2-、H2O2和·OH等,nZVI反應(yīng)產(chǎn)生過(guò)量ROS[37]的相關(guān)方程式如下[38]:
2Fe(0)+O2+2H2O→2Fe2++4OH-
Fe(0)+O2+2H+→Fe2++H2O2
Fe(0)+H2O2+2H+→Fe2++H2
Fe2++O2→Fe3++O2-
Fe2++O2-+2H+→Fe3++H2O2
Fe2++H2O2→oxidant
這類過(guò)量的活性氧不能及時(shí)被細(xì)胞內(nèi)的抗氧化防御體系清除,因此會(huì)在細(xì)胞中大量積累,導(dǎo)致細(xì)胞內(nèi)氧化和抗氧化狀態(tài)失衡,發(fā)生氧化應(yīng)激反應(yīng),進(jìn)而致使脂類、蛋白質(zhì)和核酸等大分子變性,損害細(xì)胞的結(jié)構(gòu)并最終造成細(xì)胞死亡[39]。同時(shí)nZVI也會(huì)降低細(xì)胞內(nèi)超氧化物歧化酶(SOD)的活性,而SOD是一種特異性酶,可以維持細(xì)胞氧化和抗氧化體系的平衡,其活性的降低預(yù)示著細(xì)胞內(nèi)自由基的產(chǎn)生增加,這也會(huì)進(jìn)一步加劇氧化損傷[40]。王學(xué)等[28]研究發(fā)現(xiàn)在抗氧化劑中nZVI對(duì)大腸桿菌的毒性降低。Krittanut等[41]將野生大腸桿菌菌株和缺少抗氧化基因的大腸桿菌誘變菌株分別接觸nZVI,結(jié)果發(fā)現(xiàn)誘變菌株更易受到損傷,從而證實(shí)了氧化損傷是nZVI的毒性機(jī)制之一。
在細(xì)胞接觸到nZVI的初始階段,nZVI會(huì)快速氧化,導(dǎo)致以Fe0為核心的nZVI會(huì)在外層被鐵氧化物包裹。一旦接觸外界環(huán)境,納米顆粒的外部氧化物層的厚度就會(huì)快速增加[42]。不斷釋放出Fe2+和Fe3+。微量的鐵離子是生物體的生長(zhǎng)不可或缺的,但是當(dāng)鐵離子過(guò)量時(shí),就會(huì)對(duì)生物體產(chǎn)生危害。釋放鐵離子的反應(yīng)會(huì)一直持續(xù)到零價(jià)鐵核心被完全氧化為止,相關(guān)方程式如下[19]:
Fe0+2H2O→Fe2++H2+2OH-
2Fe0+2H2O+O2→2Fe2++4OH-
4Fe2++4H++O2→4Fe3++4H2O
通常情況下,F(xiàn)e2+相對(duì)于Fe3+,前者會(huì)在nZVI表面優(yōu)先釋放出來(lái)。而nZVI的強(qiáng)還原性會(huì)使細(xì)胞膜的滲透性降低,有利于鐵離子進(jìn)入細(xì)胞內(nèi)與H2O2反應(yīng)生成過(guò)量的ROS,造成氧化應(yīng)激和隨后的細(xì)胞死亡[43]。Fe2+和Fe3+在細(xì)胞內(nèi)參與Fenton反應(yīng)的方程式如下[44]:
Fe2++H2O2→Fe3++OH·+OH-
Fe3++3H2O2→Fe2++OOH-+H+→Fe2++2H++2O2-
Fe2++H2O2→FeO2++H2O
Fe2+和Fe3+在環(huán)境中會(huì)不可避免地逐漸轉(zhuǎn)變?yōu)殍F氧化物,Qiu等[45]將nZVI與發(fā)光細(xì)菌接觸36 d后,觀察到nZVI甚至不再對(duì)發(fā)光細(xì)菌產(chǎn)生毒性,這表明nZVI的毒性會(huì)隨著時(shí)間的推移而減小。證實(shí)了離子在初期的釋放是nZVI表現(xiàn)出毒性的原因之一,但隨后鐵離子的不斷轉(zhuǎn)化使其毒性逐漸降低。
隨著納米材料在工程領(lǐng)域中的應(yīng)用日益增多,人們也越來(lái)越關(guān)注nZVI在基因水平上的影響。葛春梅等[46]的研究稱納米材料可使貝類DNA結(jié)構(gòu)、免疫相關(guān)基因轉(zhuǎn)錄水平和相關(guān)蛋白質(zhì)表達(dá)改變。Barmo等[47]證實(shí)納米材料可降低紫貽貝抗氧化和免疫相關(guān)基因的轉(zhuǎn)錄。Neenu等[48]發(fā)現(xiàn)納米材料造成的基因影響包括染色體分裂、DNA鏈斷裂、點(diǎn)突變和基因表達(dá)譜的改變。Neenu進(jìn)一步指出,納米材料還會(huì)導(dǎo)致機(jī)體癌變甚至使后代基因出現(xiàn)畸變。McCarthy等[49]評(píng)估了納米材料在牡蠣的鰓和肝部分的毒性,發(fā)現(xiàn)肝對(duì)納米材料更敏感,其總蛋白質(zhì)水平增加得更高,更容易受到損傷和產(chǎn)生代謝障礙,證明了納米材料在同種生物的不同器官上毒性的表現(xiàn)具有差異性。納米材料產(chǎn)生的基因損傷需要在分子水平上討論,而這種分子毒性具備慢性和難以觀測(cè)性,要想全面評(píng)估納米材料對(duì)環(huán)境中生物的基因損傷,需對(duì)接觸到納米材料的生物進(jìn)行長(zhǎng)期觀測(cè),但目前這方面的數(shù)據(jù)較少,并且學(xué)者們也沒(méi)有對(duì)nZVI造成的基因損傷形成統(tǒng)一認(rèn)識(shí),因此也難以判斷nZVI在基因?qū)用嫔嫌绊懗潭鹊妮p重,還需要繼續(xù)在研究中獲知。
實(shí)際上,nZVI的致毒機(jī)制可能并不唯一,可能由多種機(jī)制共同作用。除了以上提到的3點(diǎn),致毒機(jī)制也有可能是由于nZVI具有納米尺寸,會(huì)擁有一些與常規(guī)材料完全不同的性質(zhì),如結(jié)合到生物大分子上,干擾其正常的生理功能,nZVI自身及其氧化物阻塞細(xì)胞膜上的各種離子通道,阻礙細(xì)胞對(duì)營(yíng)養(yǎng)物質(zhì)的攝取和排泄物的排放[38]。甚至也有可能是nZVI具有較強(qiáng)的吸附性,會(huì)主動(dòng)吸附環(huán)境中有毒有害物質(zhì)如重金屬As3+、Hg2+和Pb2+等,進(jìn)一步和這些重金屬協(xié)同表現(xiàn)出毒性[50-52]。為了確定毒性機(jī)制,還需要綜合考慮環(huán)境因素和nZVI自身的性質(zhì)。
在有氧環(huán)境中,nZVI只需2 h就會(huì)氧化,2 d就會(huì)完全氧化。而在缺氧環(huán)境中,nZVI的保鮮期可達(dá)數(shù)月之久[56]。但在實(shí)際使用中,幾乎不可能做到完全無(wú)氧,因此nZVI毒性的表現(xiàn)大多數(shù)時(shí)候都是氧化后的行為,有必要全面評(píng)測(cè)nZVI在氧化前后以及不同氧化時(shí)期的毒性。nZVI投加到環(huán)境中后,會(huì)逐漸氧化生成磁赤鐵礦(γ-Fe2O3)、磁鐵礦(Fe3O4)、針鐵礦(α-FeOOH)和纖鐵礦(γ-FeOOH)[57],生成氧化物的類型和速率主要和環(huán)境中溶氧量含量有關(guān)[58],反應(yīng)方程式如下[56]:
2Fe2++3H2O→γFe2O3
6Fe2++O2+6H2O→2Fe3O4
γ-FeOOH→α-FeOOH
4Fe++O2+6H2O→4γ-FeOOH
4Fe3O4+O2+6H2O→12γ-FeOOH
Zhou等[59]發(fā)現(xiàn)nZVI毒性隨著氧化程度的加深而減小,完全氧化的nZVI并未讓大腸桿菌產(chǎn)生任何失活。Wang等[60]發(fā)現(xiàn)新鮮的和老化2周的nZVI均未對(duì)水稻種子的發(fā)芽率有明顯影響,低濃度的nZVI老化2周后未產(chǎn)生任何毒性,但高濃度的nZVI在老化2周后會(huì)嚴(yán)重抑制種子的生長(zhǎng),且老化2周和4周的nZVI對(duì)種子生長(zhǎng)的抑制并無(wú)明顯不同。Diao等[44]通過(guò)實(shí)驗(yàn)證實(shí)即使在FeOOH濃度達(dá)到10 g·L-1時(shí),仍未對(duì)螢光假單胞菌造成毒性。Azam等[61]發(fā)現(xiàn)在γ-Fe2O3濃度僅為65 mg·L-1時(shí),枯草桿菌的生長(zhǎng)就會(huì)大大減緩。Auffan等[61]發(fā)現(xiàn)nZVI氧化后的產(chǎn)物Fe3O4對(duì)大腸桿菌具有毒性。Jiang等[62]證實(shí)Fe3O4甚至?xí)龠M(jìn)副球菌的反硝化作用。氧化后的nZVI對(duì)生物的作用取決于生物種類、氧化物種類和濃度,而且對(duì)于同種生物的多個(gè)觀測(cè)指標(biāo),nZVI對(duì)其影響也有可能是不同的,促進(jìn)某些指標(biāo)的同時(shí)也會(huì)抑制某些指標(biāo)。
一般來(lái)說(shuō)nZVI毒性隨著投加量的增大而增加,但也有實(shí)驗(yàn)表明在nZVI與微生物接觸2 h后,低濃度的nZVI毒性更大,接觸時(shí)間進(jìn)一步延長(zhǎng)至24 h,則只有低濃度的nZVI呈現(xiàn)毒性[63],這和nZVI自身特性有關(guān),因?yàn)閚ZVI顆粒的聚集速度隨著濃度的提高而加快,聚集成的大顆粒聚合體會(huì)從懸浮液中沉降下來(lái),導(dǎo)致nZVI毒性降低,而低濃度的nZVI聚集作用相對(duì)較弱,可以在較長(zhǎng)時(shí)間內(nèi)保持毒性[64]。An等[65]發(fā)現(xiàn)施氏假單胞菌在與nZVI接觸的初始階段其生長(zhǎng)會(huì)受到抑制,而后生長(zhǎng)會(huì)逐漸恢復(fù)正常。Saccà等[66]證實(shí)假單胞菌與nZVI接觸10 min后,nZVI毒性會(huì)漸漸減小??赡苁怯捎陔S著時(shí)間延長(zhǎng),nZVI會(huì)聚合沉降或者逐漸氧化,從而降低了nZVI毒性。
由于nZVI的高活性和其顆粒之間的磁性引力,nZVI極易發(fā)生團(tuán)聚和氧化現(xiàn)象,影響處理污染物的效率,一般在使用時(shí)都會(huì)對(duì)nZVI進(jìn)行改性處理。Dong等[67]在被CMC改性的nZVI中培養(yǎng)大腸桿菌,發(fā)現(xiàn)改性大幅度降低了nZVI毒性,大腸桿菌的細(xì)胞膜不僅沒(méi)有破碎,反而保持完好。Kirschling等[68]的研究表明聚天冬氨酸修飾nZVI后,nZVI會(huì)對(duì)微生物生長(zhǎng)起到促進(jìn)作用。王菁嬌等[69]研究了幾種常用類型的nZVI對(duì)大腸桿菌的毒性效應(yīng),通過(guò)大腸桿菌的耐受性實(shí)驗(yàn)發(fā)現(xiàn),負(fù)載型nZVI的毒性最小,包覆型nZVI毒性次之,進(jìn)一步研究發(fā)現(xiàn),空間位阻效應(yīng)是負(fù)載型和包覆型毒性減小的主要原因,原理是nZVI表面的改性材料起到了物理阻礙的作用,阻止了nZVI與細(xì)胞的直接接觸。
Cirtiu等[70]分別用CMC、藻酸雙酯鈉(PSS)、聚丙烯酸(PAA)和聚丙烯酰胺(PAM)這4種聚合物穩(wěn)定劑穩(wěn)定處理nZVI,當(dāng)采用前期穩(wěn)定處理時(shí),發(fā)現(xiàn)處理后nZVI的平均顆粒粒徑大小關(guān)系是:PAA-nZVI (189 nm) >PSS-nZVI (182 nm)>PAM-nZVI (101 nm)>CMC-nZVI (82 nm)。而當(dāng)采用后期穩(wěn)定處理時(shí),所得的改性nZVI平均粒徑均在51.8~56.9 nm之間。粒徑越大意味著nZVI在環(huán)境中更加穩(wěn)定,粒徑越小,nZVI就越易再次團(tuán)聚,不利于表現(xiàn)出毒性。因此改性材料和改性方式的選擇是改性處理影響nZVI毒性的重要因素。
實(shí)際上,nZVI的毒性也會(huì)受到其他環(huán)境中常見(jiàn)因素的影響。Temsah等[21]在溶液、沙土和黏土中測(cè)試nZVI對(duì)種子萌發(fā)率的作用,發(fā)現(xiàn)在黏土中萌發(fā)率受到的影響最大,沙土次之,黏土最小。Chen等[71]研究在腐殖酸中nZVI對(duì)大腸桿菌的影響,結(jié)果發(fā)現(xiàn)腐殖酸能大大降低nZVI毒性,TEM顯示腐殖酸會(huì)分別吸附在nZVI和大腸桿菌的表面,阻礙二者的直接接觸。Dong等[67]研究發(fā)現(xiàn)Ca2+會(huì)對(duì)nZVI毒性效應(yīng)展現(xiàn)出雙重作用。一方面Ca2+會(huì)促進(jìn)nZVI的聚集和沉降,減弱毒性;另一方面,Ca2+有助于nZVI在細(xì)胞表面的吸附,增強(qiáng)毒性,2種作用的相對(duì)強(qiáng)弱取決于Ca2+的濃度。除此之外,由于環(huán)境中的溫度、pH和其他共存離子等因素會(huì)影響nZVI的演變,因此演變過(guò)后nZVI的物理化學(xué)性質(zhì)都會(huì)發(fā)生很大變化,所以完全有可能也會(huì)改變其毒性。
nZVI作為一種新興的環(huán)境修復(fù)材料,其對(duì)環(huán)境的負(fù)面效應(yīng)需要重點(diǎn)關(guān)注。但nZVI在環(huán)境中的毒性效應(yīng)和影響因素較為復(fù)雜,目前的表征手段又非常有限,因此我們對(duì)其認(rèn)知還處在初級(jí)階段?,F(xiàn)階段有關(guān)nZVI的毒性效應(yīng)研究才剛剛起步,并未太多進(jìn)行實(shí)際環(huán)境的研究。而且已有的多數(shù)研究都是針對(duì)微生物,對(duì)其他物種毒性效應(yīng)的探索還遠(yuǎn)遠(yuǎn)不夠,無(wú)法進(jìn)行整體的類比和歸納,未來(lái)還需要從以下方面加強(qiáng)相關(guān)研究。
(1)nZVI與環(huán)境中其他物質(zhì)的聯(lián)動(dòng)作用。nZVI在環(huán)境中有時(shí)并不是孤立地在起作用,會(huì)受到其他物質(zhì)的影響,如改性物質(zhì)和環(huán)境中陰陽(yáng)離子等,相互作用的結(jié)果可能是加強(qiáng)nZVI毒性,也有可能是減弱其毒性,加強(qiáng)這方面的研究有利于確定nZVI在實(shí)際環(huán)境中的表現(xiàn)。
(2)nZVI在環(huán)境中的演變規(guī)律。nZVI由于自身的特殊性質(zhì),從進(jìn)入環(huán)境開(kāi)始,就會(huì)發(fā)生一系列改變結(jié)構(gòu)和性質(zhì)的演變,其中nZVI的氧化就是演變的一種形式,演變的同時(shí)其毒性也會(huì)隨之改變。研究影響演變的條件和演變過(guò)程應(yīng)該是未來(lái)研究的一個(gè)重點(diǎn)。
(3)nZVI在實(shí)際環(huán)境中的毒性效應(yīng)。目前的研究中考慮到的環(huán)境條件較為單一,nZVI在實(shí)際環(huán)境中會(huì)受到各種復(fù)雜條件的影響,如有機(jī)質(zhì)、土壤質(zhì)地、水分、礦物質(zhì)、溶解氧等,而這些條件中有很多還是處在動(dòng)態(tài)變化中,因此nZVI的實(shí)際毒性效應(yīng)具有很大的不確定性。
(4)nZVI毒性的表征手段。現(xiàn)階段的研究大多只是表征了nZVI對(duì)生物體的某些常規(guī)指標(biāo)產(chǎn)生的影響,難以全面描述nZVI的毒性效應(yīng)。未來(lái)還需拓展表征范圍,如研究生物體內(nèi)酶活性和后代遺傳性狀等內(nèi)在變化,深入探索nZVI對(duì)于生物體細(xì)胞內(nèi)以及基因上的影響效能。
(5)nZVI毒性的時(shí)間效應(yīng)。nZVI投加到環(huán)境中后毒性的產(chǎn)生可能是長(zhǎng)期和慢性的過(guò)程,在某些條件下,短期內(nèi)的毒性效應(yīng)可能并不明顯,因此需要加強(qiáng)nZVI對(duì)生態(tài)環(huán)境毒性效應(yīng)的長(zhǎng)期和大尺度研究。
(6)nZVI的毒性機(jī)制。盡管目前對(duì)于毒性機(jī)制已經(jīng)有較多假設(shè),但是確切的機(jī)制還不清楚,是否存在其他的機(jī)制還需要進(jìn)一步研究,研究時(shí)須同時(shí)將環(huán)境因素、受試生物和nZVI自身特性等因素納入考慮之中。
[1] Muftikian R, Fernando Q, Korte N. A method for the rapid dechlorination of low molecular weight chlorinated hydrocarbons in water [J]. Water Research, 1995, 29(10): 2434-2439
[2] Singh S P, Bose P, Guha S, et al. Impact of addition of amendments on the degradation of DDT and its residues partitioned on soil [J]. Chemosphere, 2013, 92(7): 811-820
[3] Lundin L, Molto J, Fullana A. Low temperature thermal degradation of PCDD/Fs in soil using nanosized particles of zerovalent iron and CaO [J]. Chemosphere, 2013, 91(6): 740-744
[4] Song H, Carraway E R. Reduction of chlorinated ethanes by nanosized zero-valent iron: Kinetics, pathways, and effects of reaction conditions [J]. Environmental Science & Technology, 2005, 39(16): 6237-6245
[5] Barnes R J, Riba O, Gardner M N, et al. Inhibition of biological TCE and sulphate reduction in the presence of iron nanoparticles [J]. Chemosphere, 2010, 80(5): 554-562
[6] Li X Q, Zhang W X. Iron nanoparticles: The core-shell structure and unique properties for Ni(II) sequestration [J]. Langmuir, 2006, 22(10): 4638-4642
[7] Li X Q, Zhang W X. Sequestration of metal cations with zerovalent iron nanoparticles—A study with high resolution X-ray photoelectron spectroscopy (HR-XPS) [J]. Journal of Physical Chemistry C, 2007, 111(19): 6939-6946
[8] Jing C, Landsberger S, Li Y L. The application of illite supported nanoscale zero valent iron for the treatment of uranium contaminated groundwater [J]. Journal of Environmental Radioactivity, 2017, 175: 1-6
[9] Zhang W X. Nanoscale iron particles for environmental remediation: An overview [J]. Journal of Nanoparticle Research, 2003, 5(3-4): 323-332
[10] Kanel S R, Greneche J M, Choi H. Arsenic(V) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material [J]. Environmental Science & Technology, 2006, 40(6): 2045-2050
[11] Dong H R, Deng J M, Xie Y K, et al. Stabilization of nanoscale zero-valent iron (nZVI) with modified biochar for Cr(VI) removal from aqueous solution [J]. Journal of Hazardous Materials, 2017, 332: 79-86
[12] Dong H R, He Q, Zeng G M, et al. Chromate removal by surface-modified nanoscale zero-valent iron: Effect of different surface coatings and water chemistry [J]. Journal of Colloid and Interface Science, 2016, 471: 7-13
[13] Pettibone J M, Louie S M. Research highlights: Improved understanding of ecological impacts resulting from nanomaterial-basedinsituremediation. [J]. Environmental Science-Nano, 2016, 3(2): 236-239
[14] Karn B, Kuiken T, Otto M. Nanotechnology andinsituremediation: A review of the benefits and potential risks [J]. Ciencia and Saude Coletiva, 2011, 16(1): 165-178
[15] Su H J, Fang Z Q, Tsang P E, et al. Stabilisation of nanoscale zero-valent iron with biochar for enhanced transport andin-situremediation of hexavalent chromiuminsitu[J]. Environmental Pollution, 2016, 214: 94-100
[16] Ahn J Y, Kim C, Kim H S, et al. Effects of oxidants oninsitutreatment of a DNAPL source by nanoscale zero-valent iron: A field study [J]. Water Research, 2016, 107: 57-65
[17] Zhao X, Liu W, Cai Z Q, et al. An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation [J]. Water Research, 2016, 100: 245-266
[18] Jia H Z, Song C Y, Li H. Research progress of ground water treatment technology of nano-scale zero valent iron [J]. Chemical Industry and Engineering Progress, 2009, 28(11): 2028-2034
[19] Lefevre E, Bossa N, Wiesner M R, et al. A review of the environmental implications ofinsituremediation by nanoscale zero valent iron (nZVI): Behavior, transport and impacts on microbial communities [J]. Science of the Total Environment, 2016, 565: 889-901
[20] Chaithawiwat K, Vangnai A, McEvoy J M, et al. Impact of nanoscale zero valent iron on bacteria is growth phase dependent [J]. Chemosphere, 2016, 144: 352-359
[21] EI-Temsah Y S, Joner E J. Impact of the Fe and Ag nanoparticles on seed germination and differences in bio-availability during exposure in aqueous suspension and soil [J]. Environmental Toxicology, 2012, 27(1): 42-49
[22] El-Temsah Y S, Joner E J. Ecotoxicological effects on earthworms of fresh and aged nano-sized zero-valent iron (nZVI) in soil [J]. Chemosphere, 2012, 89(1): 76-82
[23] Chen P J, Su C H, Tseng C Y, et al. Toxicity assessments of nanoscale zerovalent iron and its oxidation products in medaka (Oryziaslatipes) fish [J]. Marine Pollution Bulletin, 2011, 63(5-12): 339-346
[24] 張章, 唐天樂(lè), 唐文浩. 人工納米材料對(duì)斑馬魚(yú)生態(tài)毒理效應(yīng)研究進(jìn)展[J]. 生態(tài)毒理學(xué)報(bào), 2016,11(5): 14-23
Zhang Z, Tang T L, Tang W H. Research progress in ecotoxicological effects of engineered nanomaterials [J]. Asian Journal of Ecotoxicology, 2016, 11(5): 14-23 (in Chinese)
[25] Tilston E L, Collins C D, Mitchell G R, et al. Nanoscale zerovalent iron alters soil bacterial community structure and inhibits chloroaromatic biodegradation potential in Aroclor 1242-contaminated soil [J]. Environmental Pollution, 2013, 173: 38-46
[26] Cullen L G, Tilston E L, Mitchell G R, et al. Assessing the impact of nano- and micro-scale zerovalent iron particles on soil microbial activities: Particle reactivity interferes with assay conditions and interpretation of genuine microbial effects [J]. Chemosphere, 2011, 82(11): 1675-1682
[27] Barnes R J, van der Gast C J, Riba O, et al. The impact of zero-valent iron nanoparticles on a river water bacterial community [J]. Journal of Hazardous Materials, 2010, 184(1-3): 73-80
[28] 王學(xué), 李勇超, 李鐵龍, 等. 零價(jià)納米鐵對(duì)大腸桿菌的毒性效應(yīng)[J]. 生態(tài)毒理學(xué)報(bào), 2012, 7(1): 49-56
Wang X, Li Y C, Li T L, et al. Toxicity effects of nano-Fe0 onEscherichiacoli[J]. Asian Journal of Ecotoxicology, 2012, 7(1): 49-56 (in Chinese)
[29] Shin K H, Cha D K. Microbial reduction of nitrate in the presence of nanoscale zero-valent iron [J]. Chemosphere, 2008, 72(2): 257-262
[30] Liang J, Xia X, Zaman W Q, et al. Bioaccumulation and toxic effects of decabromodiphenyl ether in the presence of nanoscale zero-valent iron in an earthworm soil system [J]. Chemosphere, 2017, 169: 78-88
[31] Ma X, Gurung A, Deng Y. Phytotoxicity and uptake of nanoscale zero-valent iron (nZVI) by two plant species [J]. Science of the Total Environment, 2013, 443: 844-849
[32] Hjorth R, Coutris C, Nguyen N H A, et al. Ecotoxicity testing and environmental risk assessment of iron nanomaterials for sub-surface remediation—Recommendations from the FP7 project NanoRem [J]. Chemosphere, 2017, 182: 525-531
[33] Kumar N, Omoregie E O, Rose J, et al. Inhibition of sulfate reducing bacteria in aquifer sediment by iron nanoparticles [J]. Water Research, 2014, 51: 64-72
[34] Fajardo C, Ortiz L T, Rodriguez-Membibre M L, et al. Assessing the impact of zero-valent iron (ZVI) nanotechnology on soil microbial structure and functionality: A molecular approach [J]. Chemosphere, 2012, 86(8): 802-808
[35] Fajardo C, Gil-Diaz M, Costa G, et al. Residual impact of aged nZVI on heavy metal-polluted soils [J]. Science of the Total Environment, 2015, 535: 79-84
[36] Ludovica S M, Fajardo C, Martinez-Gomariz M, et al. Molecular stress responses to nano-sized zero-valent iron (nZVI) particles in the soil bacteriumPseudomonasstutzeri[J]. Plos One, 2014, 9(2): e89677
[37] Nel A, Xia T, Madler L, et al. Toxic potential of materials at the nanolevel [J]. Science, 2006, 311(5761): 622-627
[38] 葛興彬, 王振虹, 郭楚奇, 等. 納米零價(jià)鐵的生態(tài)毒性效應(yīng)研究進(jìn)展[J]. 生態(tài)毒理學(xué)報(bào), 2015, 10(3): 25-27
Ge X B, Wang Z H, Guo C Q, et al. Review of the ecotoxicity of nanoscale zero-valent iron [J]. Asian Journal of Ecotoxicology, 2015, 10(3): 25-27 (in Chinese)
[39] Gillissen A, Scharling B, Jaworska M, et al. Oxidant scavenger function of ambroxolinvitro: A comparison with N-acetylcysteine [J]. Research in Experimental Medicine, 1997, 196(6): 389-398
[40] Xiong D, Fang T, Chen X, et al. Oxidative stress effects and damage of nanoscale TiO2and ZnO on zebrafish [J]. Chinese Journal of Environmental Science, 2010, 31(5): 1320-1327
[41] Chaithawiwat K, Vangnai A, McEvoy J M, et al. Role of oxidative stress in inactivation ofEscherichiacoliBW25113 by nanoscale zero-valent iron [J]. Science of the Total Environment, 2016, 565: 857-862
[42] Crane R A, Scott T B. Nanoscale zero-valent iron: Future prospects for an emerging water treatment technology [J]. Journal of Hazardous Materials, 2012, 211: 112-125
[43] Adeleye A S, Keller A A, Miller R J, et al. Persistence of commercial nanoscaled zero-valent iron (nZVI) and by-products [J]. Journal of Nanoparticle Research, 2013, 15(1): 18-24
[44] Diao M, Yao M. Use of zero-valent iron nanoparticles in inactivating microbes [J]. Water Research, 2009, 43(20): 5243-5251
[45] Qiu X Q, Fang Z Q, Yan X M, et al. Chemical stability and toxicity of nanoscale zero-valent iron in the remediation of chromium-contaminated watershed [J]. Chemical Engineering Journal, 2013, 220: 61-66
[46] 葛春梅, 黃茜枝, 林道輝, 等. 人工納米材料對(duì)貝類生態(tài)毒理效應(yīng)的研究進(jìn)展[J]. 生態(tài)毒理學(xué)報(bào), 2015, 10(4): 1-16
Ge C M, Huang X Z, Lin D H, et al. Research progress in ecotoxic effects of manufactured nanomaterials on shellfish [J]. Asian Journal of Ecotoxicology, 2015, 10(4): 1-16(in Chinese)
[47] Barmo C, Ciacci C, Canonico B, et al.Invivoeffects of n-TiO2on digestive gland and immune function of the marine bivalveMytilusgalloprovincialis[J]. Aquatic Toxicology, 2013, 132: 9-18
[48] Singh N, Manshian B, Jenkins G J S, et al. NanoGenotoxicology: The DNA damaging potential of engineered nanomaterials [J]. Biomaterials, 2009, 30(23-24): 3891-3914
[49] McCarthy M P, Carroll D L, Ringwood A H. Tissue specific responses of oysters,Crassostreavirginica, to silver nanoparticles [J]. Aquatic Toxicology, 2013, 138: 123-128
[50] Amiri M J, Abedi-Koupai J, Eslamian S. Adsorption of Hg(II) and Pb(II) ions by nanoscale zero valent iron supported on ostrich bone ash in a fixed-bed column system [J]. Water Science and Technology, 2017, 76(3): 671-682
[51] Pojananukij N, Wantala K, Neramittagapong S, et al. Improvement of As(III) removal with diatomite overlay nanoscale zero-valent iron (nZVI-D): Adsorption isotherm and adsorption kinetic studies [J]. Water Science and Technology-Water Supply, 2017, 17(1): 212-220
[52] Liu P, Luo H, Fang W. As(Ⅲ) removal by nanoscale zero valent iron-graphene/silica nanocomposites [J]. Chinese Journal of Environmental Engineering, 2016, 10(7): 3607-3615
[53] Han Y L, Yang M D Y, Zhang W X, et al. Optimizing synthesis conditions of nanoscale zero-valent iron (nZVI) through aqueous reactivity assessment [J]. Frontiers of Environmental Science and Engineering, 2015, 9(5): 813-822
[54] Hwang Y H, Kim D G, Shin H S. Effects of synthesis conditions on the characteristics and reactivity of nano scale zero valent iron [J]. Applied Catalysis B-Environmental, 2011, 105(1-2): 144-150
[55] Barreto-Rodrigues M, Silveira J, Zazo J A, et al. Synthesis, characterization and application of nanoscale zero-valent iron in the degradation of the azo dye Disperse Red 1 [J]. Journal of Environmental Chemical Engineering, 2017, 5(1): 628-634
[56] Liu A R, Liu J, Pan B C, et al. Formation of lepidocrocite (gamma-FeOOH) from oxidation of nanoscale zero-valent iron (nZVI) in oxygenated water [J]. RSC Advances, 2014, 4(101): 57377-57382
[57] Li Z, Greden K, Alvarez P J J, et al. Adsorbed polymer and NOM limits adhesion and toxicity of nano scale zerovalent iron toE.coli[J]. Environmental Science & Technology, 2010, 44(9): 3462-3467
[58] Jiang D, Hu X, Wang R, et al. Oxidation of nanoscale zero-valent iron under sufficient and limited dissolved oxygen: Influences on aggregation behaviors [J]. Chemosphere, 2015, 122: 8-13
[59] Zhou L, Thanh T L, Gong J, et al. Carboxymethyl cellulose coating decreases toxicity and oxidizing capacity of nanoscale zerovalent iron [J]. Chemosphere, 2014, 104: 155-161
[60] Wang J, Fang Z Q, Cheng W, et al. Ageing decreases the phytotoxicity of zero-valent iron nanoparticles in soil cultivated withOryzasativa[J]. Ecotoxicology, 2016, 25(6): 1202-1210
[61] Azam A, Ahmed A S, Oves M, et al. Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: A comparative study [J]. International Journal of Nanomedicine, 2012, 7: 6003-6009
[62] Jiang C, Liu Y, Chen Z, et al. Impact of iron-based nanoparticles on microbial denitrification byParacoccussp. strain YF1 [J]. Aquatic Toxicology, 2013, 142: 329-335
[63] Thao T L, Murugesan K, Kim E J, et al. Effects of inorganic nanoparticles on viability and catabolic activities ofAgrobacteriumsp PH-08 during biodegradation of dibenzofuran [J]. Biodegradation, 2014, 25(5): 655-668
[64] Phenrat T, Saleh N, Sirk K, et al. Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions [J]. Environmental Science & Technology, 2007, 41(1): 284-290
[65] An Y, Li T L, Jin Z H, et al. Effect of bimetallic and polymer-coated Fe nanoparticles on biological denitrification [J]. Bioresource Technology, 2010, 101(24): 9825-9828
[67] Dong H R, Xie Y K, Zeng G M, et al. The dual effects of carboxymethyl cellulose on the colloidal stability and toxicity of nanoscale zero-valent iron [J]. Chemosphere, 2016, 144: 1682-1689
[68] Kirschling T L, Gregory K B, Minkley E G, Jr., et al. Impact of nanoscale zero valent iron on geochemistry and microbial populations in trichloroethylene contaminated aquifer materials [J]. Environmental Science & Technology, 2010, 44(9): 3474-3480
[69] 王菁姣, 陳家瑋. 不同種類納米零價(jià)鐵的毒性比較研究[J]. 現(xiàn)代地質(zhì), 2012, 26(5): 926-931
Wang J J, Chen J W. Comparison study on toxicity of different nanoscale zero-valent iron [J]. Geoscience, 2012, 26(5): 926-931 (in Chinese)
[70] Cirtiu C M, Raychoudhury T, Ghoshal S, et al. Systematic comparison of the size, surface characteristics and colloidal stability of zero valent iron nanoparticles pre- and post-grafted with common polymers [J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2011, 390(1-3): 95-104
[71] Chen J, Xiu Z, Lowry G V, et al. Effect of natural organic matter on toxicity and reactivity of nano-scale zero-valent iron [J]. Water Research, 2011, 45(5): 1995-2001