張倩倩,喬敏,*
1. 中國(guó)科學(xué)院生態(tài)環(huán)境研究中心城市與區(qū)域生態(tài)國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京 100085 2. 中國(guó)科學(xué)院大學(xué),北京 100049
五氯酚(pentachlorophenol, PCP)是一種含氯有機(jī)物,被廣泛用作農(nóng)藥和木材防腐劑等;在我國(guó),PCP及其鈉鹽常被用于殺滅血吸蟲的中間宿主——釘螺,以防治血吸蟲病[1]。PCP的廣泛使用,引起了嚴(yán)重的污染問題,在水、沉積物和土壤等環(huán)境介質(zhì)中以及一些生物體內(nèi)都有檢出[1-4]。PCP具有致癌性、免疫毒性、神經(jīng)毒性、生殖毒性和內(nèi)分泌干擾效應(yīng)等[5-6]。目前,對(duì)PCP毒理效應(yīng)的研究主要集中在大鼠、斑馬魚、大型溞等生物上[5, 7-8],對(duì)土壤無脊椎動(dòng)物的研究較少。
在土壤生態(tài)毒理學(xué)的研究中,跳蟲是一種常用的模式生物[9]。跳蟲的存活率、繁殖和回避行為等指標(biāo),可被用于指示污染物的毒性[10-11]。Crouau等[11]研究了PCP對(duì)跳蟲的繁殖毒性,在暴露時(shí)間為33~34 d時(shí),繁殖抑制EC50為87 mg·kg-1。此外,跳蟲分子水平上的指標(biāo),也越來越多地被用于生態(tài)毒理學(xué)的研究中[12-15]。與存活率、繁殖等毒性終點(diǎn)相比,分子水平上的指標(biāo)一般更敏感,反應(yīng)更快。
細(xì)胞色素P450(Cytochrome P450, CYP450)和谷胱甘肽-S-轉(zhuǎn)移酶(Glutathione-S Transferase, GST)等是常用的分子生物標(biāo)志物。CYP450和GST都是代謝轉(zhuǎn)化酶,CYP450是一相代謝酶,GST是二相代謝酶,它們?cè)谕庠次镔|(zhì)的代謝和解毒方面起重要作用[13-14, 16-17]。 有研究報(bào)道,菲能誘導(dǎo)跳蟲CYP450和GST基因的表達(dá)[13-14]。PCP能被人的CYP450 3A4轉(zhuǎn)化為四氯對(duì)苯二酚[18];四氯對(duì)苯二酚能消耗谷胱甘肽,造成氧化損傷[19]。在PCP降解菌中,PCP被氧化為四氯對(duì)苯二酚后,會(huì)被GST轉(zhuǎn)化為2,6-二氯對(duì)苯二酚,再經(jīng)其他氧化還原酶作用轉(zhuǎn)化為3-氧代己二酸[20]。
內(nèi)分泌干擾物能影響生物的內(nèi)分泌系統(tǒng),從而影響生物的生長(zhǎng)、發(fā)育和繁殖等。已有一些研究表明PCP具有內(nèi)分泌干擾效應(yīng)[5-6, 21-22],但少有PCP對(duì)土壤無脊椎動(dòng)物內(nèi)分泌干擾效應(yīng)的研究。跳蟲作為一種節(jié)肢動(dòng)物,在其整個(gè)生命過程中持續(xù)蛻皮[23]。節(jié)肢動(dòng)物的蛻皮是由激素控制的,目前對(duì)節(jié)肢動(dòng)物蛻皮過程已有一些研究,發(fā)現(xiàn)一些蛻皮相關(guān)基因,但對(duì)跳蟲蛻皮相關(guān)基因表達(dá)的研究很少,內(nèi)分泌干擾物暴露下跳蟲蛻皮相關(guān)基因表達(dá)變化更鮮有報(bào)道。
本文以人工土壤為暴露介質(zhì),研究了不同濃度PCP暴露下,跳蟲蛻皮相關(guān)基因、CYP450和GST基因表達(dá)水平的變化,以期為PCP等內(nèi)分泌干擾物的生態(tài)毒性和生態(tài)風(fēng)險(xiǎn)評(píng)價(jià)提供科學(xué)依據(jù)。
供試生物為白符跳(Folsomiacandida),來自挪威國(guó)家農(nóng)業(yè)與環(huán)境研究所(Bioforsk),在本實(shí)驗(yàn)室持續(xù)培養(yǎng)。培養(yǎng)方法如下:跳蟲飼養(yǎng)于培養(yǎng)皿中,底部有0.5 cm厚的培養(yǎng)基,培養(yǎng)基由熟石膏、活性炭和蒸餾水(質(zhì)量比為9:1:7)混合后制成。培養(yǎng)皿放在人工氣候箱(寧波江南RXZ-380D)中,控制溫度為(20±1) ℃,濕度為(70%±5%),黑暗培養(yǎng)。每周補(bǔ)充蒸餾水以保持培養(yǎng)基濕潤(rùn),并加入少量干酵母作為跳蟲食物。實(shí)驗(yàn)中選用的跳蟲需經(jīng)過同齡化培養(yǎng),同齡化方法如下:挑選50~60只活躍成蟲至新培養(yǎng)基中,加入少量干酵母,待成蟲產(chǎn)卵(約2 d)后,移去成蟲,每天觀察,當(dāng)觀察到有幼蟲孵出后,將幼蟲轉(zhuǎn)移到新培養(yǎng)基中培養(yǎng)。跳蟲培養(yǎng)到23 d大時(shí)即可用于實(shí)驗(yàn)。
主要試劑為PCP(純度98%,ULTRA scientific, USA)和丙酮(色譜純,F(xiàn)isher Chemical, USA),石英砂(Sigma-Aldrich),高嶺土(化學(xué)純,滬試),泥炭(德國(guó)Klasmann泥炭土876型)等。
本實(shí)驗(yàn)中的暴露介質(zhì)為人工土壤,配制方法為:將泥炭、高嶺土和石英砂按照1:2:7的質(zhì)量比混合均勻,用CaCO3調(diào)節(jié)pH至(6.0±0.5)。配制不同濃度的PCP的丙酮溶液,加入到人工土壤中,攪拌混合均勻,使各處理組中PCP濃度分別為0、30、60、120和240 mg·kg-1干土,每個(gè)處理組做3個(gè)重復(fù)。加入一定量蒸餾水調(diào)節(jié)土壤含水量至土壤最大持水量的50%,分裝至100 mL燒杯中(每個(gè)燒杯放入30 g濕土)。每個(gè)燒杯中加入30只23 d大的跳蟲,用封口膜將燒杯封口,2 d后,用水浮法取出跳蟲,放入離心管中,用液氮速凍后轉(zhuǎn)入-80 ℃冰箱儲(chǔ)存。
跳蟲RNA的提取利用微量樣品總RNA提取試劑盒(天根),操作按試劑盒的說明書進(jìn)行。利用瓊脂糖凝膠電泳檢測(cè)提取的RNA的完整性,利用Nanodrop測(cè)定RNA濃度,提取的RNA的OD260/OD280值在1.8~2.1范圍內(nèi)。利用FastQuant cDNA第一鏈合成試劑盒(天根)進(jìn)行反轉(zhuǎn)錄,然后將各個(gè)cDNA樣本稀釋10倍備用。定量PCR反應(yīng)在iCycle IQ2(Bio-rad, USA)儀器上進(jìn)行,使用SuperRealPreMix Plus試劑盒(天根)。反應(yīng)體系為20 μL,包括:10 μL的2×SuperReal PreMix Plus,2 μL的cDNA模板,6.8 μL的ddH2O,正向引物和反向引物各0.6 μL。反應(yīng)條件為:95 ℃預(yù)變性15 min;95 ℃變性10 s,60 ℃退火20 s,72 ℃延伸30 s并采集熒光信號(hào),40個(gè)循環(huán);并設(shè)置溶解曲線以檢測(cè)擴(kuò)增產(chǎn)物的特異性?;虮磉_(dá)水平采用2-ΔΔCT法計(jì)算[24]。
待測(cè)的基因及其引物如表1所示。部分基因的引物序列來自于已發(fā)表文獻(xiàn)。對(duì)于基因Fcc04073和Fcc01306,根據(jù)其EST序列,利用Beacon Designer 8設(shè)計(jì)引物。對(duì)新設(shè)計(jì)的引物進(jìn)行PCR反應(yīng),使用2×Taq PCR MasterMix(天根),反應(yīng)體系為50 μL,包括:25 μL的2×Taq PCR MasterMix,5 μL的cDNA模板,16 μL的ddH2O,正向引物和反向引物各2 μL。反應(yīng)條件為:94 ℃預(yù)變性3 min;94 ℃變性30 s,60 ℃退火30 s,72 ℃延伸30 s,30個(gè)循環(huán);72 ℃延伸10 min。PCR產(chǎn)物經(jīng)切膠純化后,進(jìn)行TA克隆,再進(jìn)行測(cè)序,測(cè)序結(jié)果與目的基因片段比對(duì)后確認(rèn)為需要的目的基因。各對(duì)引物qPCR擴(kuò)增效率利用標(biāo)準(zhǔn)曲線法測(cè)定,從各個(gè)cDNA樣本中取出一部分混合作為模板,進(jìn)行5倍梯度稀釋,共5個(gè)梯度。
在數(shù)據(jù)滿足(或經(jīng)數(shù)據(jù)轉(zhuǎn)換后滿足)正態(tài)性(Shapiro-Wilk檢驗(yàn))和方差齊性(Levene檢驗(yàn))的前提下,進(jìn)行單因素方差分析(One-Way ANOVA),利用Dunnett's t 檢驗(yàn)進(jìn)行多重比較,P<0.05表示差異顯著。若數(shù)據(jù)不滿足正態(tài)性和方差齊性,則利用Kruskal-Wallis單因素方差分析。數(shù)據(jù)分析和繪圖利用SPSS 20.0和Origin 8.5完成。
表1 qPCR中各個(gè)基因的引物Table 1 Primers used in the qPCR analysis
注:a根據(jù)Blastx和interPro注釋結(jié)果,獲得基因功能;bFcc02512(YWHAZ)被用作內(nèi)參基因。
Note:aFunction is derived from the annotation results of Blastx and interPro;bFcc02512(YWHAZ) is used as reference gene.
圖1 PCP暴露對(duì)跳蟲基因表達(dá)的影響(“*”)指該處理組與對(duì)照組相比差異顯著,P<0.05)Fig. 1 Effects of PCP on gene expression of F. candida (“*”) denotes significant difference between treated and control groups, P<0.05)
PCP對(duì)跳蟲的CYP450、GST基因和蛻皮相關(guān)基因的表達(dá)水平的影響如圖1所示。CYP450基因Fcc01651、Fcc02155和Fcc03650的表達(dá)水平和PCP暴露濃度之間的效應(yīng)-劑量關(guān)系不顯著(P>0.05)。隨著PCP濃度的增加,F(xiàn)cc01651的表達(dá)水平先上下波動(dòng),后有逐漸增加的趨勢(shì);Fcc02155的表達(dá)水平先增加,后上下波動(dòng);Fcc03650的表達(dá)水平整體上呈現(xiàn)逐漸降低的趨勢(shì);但這些變化都不顯著(P>0.05)。
跳蟲GST基因Fcc04073和Fcc05260的表達(dá)水平與PCP暴露濃度之間的效應(yīng)-劑量關(guān)系不顯著(P>0.05)。在PCP濃度較高時(shí),F(xiàn)cc04073(120 mg·kg-1)和Fcc05260(120 mg·kg-1和240 mg·kg-1)的表達(dá)水平高于對(duì)照組,但并不顯著(P>0.05)。在PCP濃度為30、60和120 mg·kg-1時(shí),F(xiàn)cc00494的表達(dá)水平與對(duì)照組相近;在PCP濃度為240 mg·kg-1時(shí),GST基因Fcc00494的表達(dá)受到顯著誘導(dǎo)(P<0.05),為對(duì)照組的2.18倍。
在PCP濃度為30 mg·kg-1和60 mg·kg-1時(shí),幾丁質(zhì)酶基因Fcc00881的表達(dá)水平略有降低;在PCP濃度為120 mg·kg-1和240 mg·kg-1時(shí),F(xiàn)cc00881的表達(dá)受到顯著抑制,分別為對(duì)照組的40.95%和28.89%(P<0.05)。隨著PCP濃度的增加,幾丁質(zhì)結(jié)合蛋白基因Fcc01306的表達(dá)水平逐漸下降;在PCP濃度為120 mg·kg-1和240 mg·kg-1時(shí),F(xiàn)cc01306的表達(dá)受到顯著抑制,分別為對(duì)照組的13.11%和4.20%(P<0.05)。
CYP450是一相代謝酶,它是一類含血紅素的依賴NADPH的單加氧酶,催化許多物質(zhì)的氧化代謝[29]。菲暴露2 d和7 d均發(fā)現(xiàn)能顯著誘導(dǎo)跳蟲CYP450基因的表達(dá)[13-14]。在本實(shí)驗(yàn)條件下,跳蟲CYP450基因Fcc01651、Fcc02155和Fcc03650并未受到PCP的顯著影響?;虮磉_(dá)會(huì)受暴露時(shí)間等的影響,本實(shí)驗(yàn)的暴露時(shí)間為2 d,這些CYP450基因的表達(dá)未發(fā)生顯著變化,可能因?yàn)楸┞稌r(shí)間較短。
GST是二相代謝酶,它廣泛存在于各種好氧生物體內(nèi),在抗氧化、外源物質(zhì)的代謝和解毒方面起著重要的作用[30]。GST可以通過促進(jìn)還原脫氯化氫作用或與還原性谷胱甘肽的結(jié)合反應(yīng),將疏水性的有毒物質(zhì)轉(zhuǎn)化為具有親水性的物質(zhì),從而更易于排出體外;此外,在有毒物質(zhì)的代謝過程中可能產(chǎn)生氧自由基,GST在氧自由基的去除過程中起重要作用[31]。有研究報(bào)道,Cd[32]、吡蟲啉[12]和菲[13-14]等顯著誘導(dǎo)了跳蟲GST基因的表達(dá)。PCP能對(duì)背角無齒蚌(Anodontawoodiana)產(chǎn)生氧化脅迫,誘導(dǎo)GST基因的表達(dá)[33-34]。本研究結(jié)果表明,PCP顯著誘導(dǎo)了跳蟲GST基因Fcc00494的表達(dá),可能是因?yàn)镚ST參與了PCP的代謝,或者PCP引發(fā)了氧自由基的產(chǎn)生,GST參與了氧自由基的去除。跳蟲GST基因Fcc04073和Fcc05260有被PCP誘導(dǎo)表達(dá)的趨勢(shì),但并不顯著(P>0.05),PCP對(duì)不同跳蟲GST基因(Fcc00494、Fcc04073和Fcc05260)作用不同,這可能是因?yàn)椴煌珿ST之間存在著差異,具有不同的特異性和親和性[30-31]。Nota等[13]利用基因芯片研究菲暴露下跳蟲基因表達(dá)譜的變化,實(shí)驗(yàn)結(jié)果顯示,在暴露于濃度為24.95 mg·kg-1(干土)的菲時(shí),跳蟲GST基因Fcc00494、Fcc04073和Fcc05260都顯著上調(diào),但上調(diào)的程度不同。
蛻皮是跳蟲重要的生命過程,影響著跳蟲的生長(zhǎng)和繁殖。跳蟲在其一生中持續(xù)蛻皮,每次蛻皮會(huì)更新其表皮和中腸上皮,圍食膜是中腸上皮的一部分[35-38]。跳蟲表皮和圍食膜的主要成分是幾丁質(zhì)和蛋白質(zhì)[35-37, 39]。幾丁質(zhì)酶在蛻皮過程中起著降解幾丁質(zhì)的作用[40]。有研究報(bào)道,在干旱脅迫下,跳蟲停止蛻皮,幾丁質(zhì)酶基因Fcc00881的表達(dá)顯著下調(diào),在補(bǔ)水后,跳蟲恢復(fù)蛻皮,幾丁質(zhì)酶基因Fcc00881的表達(dá)顯著上調(diào)[28]。幾丁質(zhì)結(jié)合域是一些圍食膜蛋白質(zhì)和幾丁質(zhì)酶的組成部分[41-44]。本研究結(jié)果表明,PCP顯著抑制了跳蟲幾丁質(zhì)酶基因Fcc00881和幾丁質(zhì)結(jié)合域基因Fcc01306的表達(dá),說明PCP可能抑制了跳蟲的蛻皮。已有報(bào)道表明PCP對(duì)水生節(jié)肢動(dòng)物大型溞(Daphniamagna)的蛻皮有抑制作用[7],且雌二醇、乙烯雌酚和4-壬基酚等內(nèi)分泌干擾物也會(huì)抑制大型溞的蛻皮[45]。蛻皮又主要是由蛻皮激素調(diào)控的,PCP對(duì)蛻皮的抑制可能是通過干擾蛻皮激素進(jìn)行調(diào)控。有研究表明,PCP 能誘導(dǎo)搖蚊(Chironomusriparius)蛻皮激素受體基因和蛻皮激素應(yīng)答基因E74的表達(dá)[46]。
近期,跳蟲的基因組信息進(jìn)一步完善,從中找到與蛻皮激素緊密相關(guān)的基因(如蛻皮激素受體基因),研究PCP暴露下這些基因的表達(dá)變化,將能進(jìn)一步闡明PCP對(duì)跳蟲內(nèi)分泌系統(tǒng)的影響。生物體內(nèi)含有多種CYP450和GST,找到跳蟲其他的CYP450和GST基因開展相關(guān)研究,將能進(jìn)一步了解PCP對(duì)跳蟲代謝轉(zhuǎn)化酶的影響。此外,基因表達(dá)會(huì)隨著時(shí)間的變化而變化,而且不同基因的響應(yīng)速度不同,本實(shí)驗(yàn)的暴露時(shí)間為2 d,測(cè)定不同時(shí)間暴露下的基因表達(dá),將能進(jìn)一步了解PCP對(duì)跳蟲基因表達(dá)的影響。自然土壤和人工土壤的性質(zhì)存在著差異,而土壤性質(zhì)能影響污染物的毒性,本實(shí)驗(yàn)使用的土壤是人工土壤,應(yīng)進(jìn)一步對(duì)具有代表性的自然土壤開展相關(guān)研究。
[1] Zheng W, Yu H, Wang X, et al. Systematic review of pentachlorophenol occurrence in the environment and in humans in China: Not a negligible health risk due to the re-emergence of schistosomiasis [J]. Environment International, 2012, 42: 105-116
[2] Campbell L M, Muir D C G, Whittle D M, et al. Hydroxylated PCBs and other chlorinated phenolic compounds in lake trout (Salvelinusnamaycush) blood plasma from the great lakes region [J]. Environmental Science and Technology, 2003, 37(9): 1720-1725
[3] Ge J, Pan J, Fei Z, et al. Concentrations of pentachlorophenol (PCP) in fish and shrimp in Jiangsu Province, China [J]. Chemosphere, 2007, 69(1): 164-169
[4] Zheng M H, Zhang B, Bao Z C, et al. Analysis of pentachlorophenol from water, sediments, and fish bile of Dongting Lake in China [J]. Bulletin of Environmental Contamination and Toxicology, 2000, 64(1): 16-19
[5] U S Environmental Protection Agency. Toxicological review of pentachlorophenol [R]. Washington, DC: US EPA, 2010
[6] Orton F, Lutz I, Kloas W, et al. Endocrine disrupting effects of herbicides and pentachlorophenol:Invitroandinvivoevidence [J]. Environmental Science & Technology, 2009, 43(6): 2144-2150
[7] Chen Y, Huang J, Xing L, et al. Effects of multigenerational exposures ofD.magnato environmentally relevant concentrations of pentachlorophenol [J]. Environmental Science and Pollution Research, 2014, 21(1): 234-243
[8] Xu T, Zhao J, Hu P, et al. Pentachlorophenol exposure causes Warburg-like effects in zebrafish embryos at gastrulation stage [J]. Toxicology and Applied Pharmacology, 2014, 277(2): 183-191
[9] Fountain M T, Hopkin S P.Folsomiacandida(Collembola): A "standard" soil arthropod [J]. Annual Review of Entomology, 2005, 50: 201-222
[10] Campiche S, L'Ambert G, Tarradellas J, et al. Multigeneration effects of insect growth regulators on the springtailFolsomiacandida[J]. Ecotoxicology and Environmental Safety, 2007, 67(2): 180-189
[11] Crouau Y, Chenon P, Gisclard C. The use ofFolsomiacandida(Collembola, Isotomidae) for the bioassay of xenobiotic substances and soil pollutants [J]. Applied Soil Ecology, 1999, 12(2): 103-111
[12] Sillapawattana P, Sch?ffer A. Effects of imidacloprid on detoxifying enzyme glutathione S-transferase onFolsomiacandida(Collembola) [J]. Environmental Science and Pollution Research, 2016, 23: 11111-11119
[13] Nota B, Bosse M, Ylstra B, et al. Transcriptomics reveals extensive inducible biotransformation in the soil-dwelling invertebrateFolsomiacandidaexposed to phenanthrene [J]. BMC Genomics, 2009, 10: 236
[14] Holmstrup M, Slotsbo S, Schmidt S N, et al. Physiological and molecular responses of springtails exposed to phenanthrene and drought [J]. Environmental Pollution, 2014, 184: 370-376
[15] Maria V L, Ribeiro M J, Amorim M J. Oxidative stress biomarkers and metallothionein inFolsomiacandida—Responses to Cu and Cd [J]. Environmental Research, 2014, 133: 164-169
[16] de Boer M E, Ellers J, van Gestel C A, et al. Transcriptional responses indicate attenuated oxidative stress in the springtailFolsomiacandidaexposed to mixtures of cadmium and phenanthrene [J]. Ecotoxicology, 2013, 22(4):619-631
[17] Janssens T K, Giesen D, Marien J, et al. Narcotic mechanisms of acute toxicity of chlorinated anilines inFolsomiacandida(Collembola) revealed by gene expression analysis [J]. Environment International, 2011, 37(5): 929-939
[18] Mehmood Z, Williamson M P, Kelly D E, et al. Metabolism of organochlorine pesticides: The role of human cytochrome P450 3A4 [J]. Chemosphere, 1996, 33(4): 759-769
[19] Wang Y J, Ho Y S, Chu S W, et al. Induction of glutathione depletion, p53 protein accumulation and cellular transformation by tetrachlorohydroquinone, a toxic metabolite of pentachlorophenol [J]. Chemico-Biological Interactions, 1997, 105(1): 1-16
[20] Huang Y, Xun R, Chen G, et al. Maintenance role of a glutathionyl-hydroquinone lyase (PcpF) in pentachlorophenol degradation bySphingobiumchlorophenolicumATCC 39723 [J]. Journal of Bacteriology, 2008, 190(23):7595-7600
[21] Yu L, Zhao G, Feng M, et al. Chronic exposure to pentachlorophenol alters thyroid hormones and thyroid hormone pathway mRNAs in zebrafish [J]. Environmental Toxicology and Chemistry, 2014, 33(1): 170-176
[22] Guo Y, Zhou B. Thyroid endocrine system disruption by pentachlorophenol: Aninvitroandinvivoassay [J]. Aquatic Toxicology, 2013, 142-143: 138-145
[23] Marshall V G, Kevan D K M. Preliminary observations on the biology ofFolsomiacandidaWillem, 1902 (Collembola: Isotomidae) [J]. The Canadian Entomologist, 1962, 94(6): 575-586
[24] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT Method [J]. Methods, 2001, 25(4): 402-408
[25] Timmermans M J, de Boer M E, Nota B, et al. Collembase: A repository for springtail genomics and soil quality assessment [J]. BMC Genomics, 2007, 8(1): 341
[26] de Boer M E, de Boer T E, Marien J, et al. Reference genes for qRT-PCR tested under various stress conditions inFolsomiacandidaandOrchesellacincta(Insecta, Collembola) [J]. BMC Molecular Biology, 2009, 10: 54
[27] Qiao M, Wang G P, Zhang C, et al. Transcriptional profiling of the soil invertebrateFolsomiacandidain pentachlorophenol-contaminated soil [J]. Environmental Toxicology and Chemistry, 2015, 34(6): 1362-1368
[28] Waagner D, Bayley M, Marien J, et al. Ecological and molecular consequences of prolonged drought and subsequent rehydration inFolsomiacandida(Collembola) [J]. Journal of Insect Physiology, 2012, 58(1): 130-137
[29] Menzel R, Bogaert T, Achazi R. A systematic gene expression screen ofCaenorhabditiseleganscytochrome p450 genes reveals CYP35 as strongly xenobiotic inducible [J]. Archives of Biochemistry and Biophysics, 2001, 395(2): 158-168
[30] Sherratt P J, Hayes J D. Glutathione S-transferases [M]//Loannides C. Enzyme Systems that Metabolise Drugs and Other Xenobiotics. Wiley, 2002: 319-352
[31] Enayati A A, Ranson H, Hemingway J. Insect glutathione transferases and insecticide resistance [J]. Insect Molecular Biology, 2005, 14(1): 3-8
[32] Nakamori T, Fujimori A, Kinoshita K, et al. mRNA expression of a cadmium-responsive gene is a sensitive biomarker of cadmium exposure in the soil collembolanFolsomiacandida[J]. Environmental Pollution, 2010, 158(5): 1689-1695
[33] Liu Q, Shang X, Ma Y, et al. Isolation and characterization of two glutathione S-transferases from freshwater bivalveAnodontawoodiana: Chronic effects of pentachlorophenol on gene expression profiles [J]. Fish and Shellfish Immunology, 2017, 64: 339-351
[34] Xia X, Hua C, Xue S, et al. Response of selenium-dependent glutathione peroxidase in the freshwater bivalveAnodontawoodianaexposed to 2,4-dichlorophenol, 2,4,6-trichlorophenol and pentachlorophenol [J]. Fish and Shellfish Immunology, 2016, 55: 499-509
[35] Tebbe C C, Czarnetzki A B, Thimm T. Collembola as a Habitat for Microorganisms [M]// K?nig H, Varma A. Intestinal Microorganisms of Termites and Other Invertebrates. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006: 133-153
[36] Timmermans M J, Roelofs D, Nota B, et al. Sugar sweet springtails: On the transcriptional response ofFolsomiacandida(Collembola) to desiccation stress [J]. Insect Molecular Biology, 2009, 18(6): 737-746
[37] Thimm T, Hoffmann A, Borkott H, et al. The gut of the soil microarthropodFolsomiacandida(Collembola) is a frequently changeable but selective habitat and a vector for microorganisms [J]. Applied and Environmental Microbiology, 1998, 64(7): 2660-2669
[38] Humbert W. The midgut ofTomocerusminorLubbock (Insecta, Collembola): Ultrastructure, cytochemistry, ageing and renewal during a moulting cycle [J]. Cell and Tissue Research, 1979, 196(1): 39-57
[39] Frederik Nijhout H. Arthropod Developmental Endocrinology [M]//Minelli A, Boxshall G, Fusco G. Arthropod Biology and Evolution: Molecules, Development, Morphology. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013:123-148
[40] Merzendorfer H. Chitin metabolism in insects: Structure, function and regulation of chitin synthases and chitinases [J]. Journal of Experimental Biology, 2003, 206(24): 4393-4412
[41] Suetake T. Chitin-binding proteins in invertebrates and plants comprise a common chitin-binding structural motif [J]. Journal of Biological Chemistry, 2000, 275(24):17929-17932
[42] Shen Z, Jacobs-Lorena M. A type I peritrophic matrix protein from the malaria vectorAnophelesgambiaebinds to chitin. Cloning, expression, and characterization [J]. The Journal of Biological Chemistry, 1998, 273(28):17665-17670
[43] Casu R, Eisemann C, Pearson R, et al. Antibody-mediated inhibition of the growth of larvae from an insect causing cutaneous myiasis in a mammalian host [J]. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(17): 8939-8944
[44] Elvin C M, Vuocolo T, Pearson R D, et al. Characterization of a major peritrophic membrane protein, peritrophin-44, from the larvae ofLuciliacuprina[J]. The Journal of Biological Chemistry, 1996, 271(15): 8925
[45] Brennan S J, Brougham C A, Roche J J, et al. Multi-generational effects of four selected environmental oestrogens onDaphniamagna[J]. Chemosphere, 2006, 64(1): 49-55
[46] Morales M, Martínez-Paz P, Martín R, et al. Transcriptional changes induced byinvivoexposure to pentachlorophenol (PCP) inChironomusriparius(Diptera) aquatic larvae [J]. Aquatic Toxicology, 2014, 157: 1-9