張?jiān)獙殻S志珍,王煜倩,朱鵬,張斌,唐仕川,趙鵬
北京市勞動(dòng)保護(hù)科學(xué)研究所(職業(yè)安全健康北京市重點(diǎn)實(shí)驗(yàn)室), 北京 100054
世界衛(wèi)生組織(WHO)預(yù)計(jì),至2050年,全球約2/3的人群將生活在城市中,因此城市空氣的質(zhì)量與城市人群的健康息息相關(guān)。近幾十年的大規(guī)模流行病學(xué)研究顯示:隨著城市空氣質(zhì)量的惡化,中風(fēng)、心血管疾病(心臟病)、肺癌、急性與慢性呼吸系統(tǒng)疾病(包括哮喘)的發(fā)病風(fēng)險(xiǎn)大大增加,該風(fēng)險(xiǎn)與大氣中顆粒物的濃度密切相關(guān)[1-9]。
對(duì)人群健康產(chǎn)生損害的大氣顆粒物中,粒徑越小其可能導(dǎo)致?lián)p傷的風(fēng)險(xiǎn)愈大。美國(guó)環(huán)境保護(hù)署(EPA)在大氣顆粒物潛在的暴露風(fēng)險(xiǎn)研究報(bào)告中指出:大氣中每增加10 μg·m-3的PM10,短期暴露導(dǎo)致的全因死亡率增加0.12%~0.84%;每增加10 μg·m-3的PM2.5導(dǎo)致的相應(yīng)死亡率增加至0.29%~1.21%[1];對(duì)于超細(xì)顆粒物(ultrafine particles, UFPs),因其粒徑更小(<100 nm),可能存在更大的健康風(fēng)險(xiǎn)[10]。然而,國(guó)內(nèi)外尚沒有統(tǒng)一的UFPs檢測(cè)方法及標(biāo)準(zhǔn),傳統(tǒng)的質(zhì)量濃度法不能科學(xué)反映顆粒物暴露劑量與健康效應(yīng)之間的相關(guān)性,給環(huán)境中的UFPs定量檢測(cè)工作帶來了巨大的挑戰(zhàn),亟需建立新的檢測(cè)方法科學(xué)評(píng)價(jià)超細(xì)顆粒暴露風(fēng)險(xiǎn)。本文主要總結(jié)了目前國(guó)內(nèi)外關(guān)于超細(xì)顆粒物的檢測(cè)方法,分析最新研究動(dòng)態(tài),為進(jìn)一步的方法學(xué)研究提供參考及幫助。
環(huán)境中產(chǎn)生UFPs的主要途徑有2個(gè)[11-12]:一是自然界中產(chǎn)生的UFPs,如火山噴發(fā)、燃燒過程、海水濺沫、植物花粉末、超細(xì)粉塵等;二是人類活動(dòng)過程中產(chǎn)生的UFPs,如工業(yè)生產(chǎn)及加工活動(dòng)、煤及天然氣的燃燒、機(jī)動(dòng)車尾氣排放、工程納米材料的生產(chǎn)加工以及含納米材料的產(chǎn)品消解釋放等[13-15],也包括由一次排放出的氣態(tài)污染物(主要有二氧化硫、氮氧化物、氨氣、揮發(fā)性有機(jī)物等)轉(zhuǎn)化生成的二次顆粒物(如硫酸鹽、硝酸鹽和有機(jī)氣溶膠等)[12, 16-17]。由于來源廣、產(chǎn)生量大等,人類活動(dòng)產(chǎn)生的UFPs導(dǎo)致的健康效應(yīng)問題已逐漸引起人們的關(guān)注[18]。
傳統(tǒng)的顆粒物的檢測(cè)評(píng)價(jià)方法主要是質(zhì)量濃度法,然而超細(xì)顆粒物的粒徑極小,傳統(tǒng)的過濾式采集方法對(duì)其捕集效率極低;同時(shí)大量毒理學(xué)研究表明相同質(zhì)量的顆粒物,粒徑越小,其產(chǎn)生的損傷效應(yīng)越大[19],因此傳統(tǒng)的質(zhì)量濃度不能真實(shí)反映超細(xì)顆粒的劑量-反應(yīng)關(guān)系。目前,國(guó)內(nèi)外尚沒有統(tǒng)一的檢測(cè)方法及標(biāo)準(zhǔn),但國(guó)內(nèi)外多數(shù)科研機(jī)構(gòu)及學(xué)者推薦用質(zhì)量濃度法、數(shù)量濃度法[20-22]、表面積濃度法[23-25]和理化性質(zhì)分析等相結(jié)合,綜合檢測(cè)超細(xì)顆粒物的暴露情況。
2.1.1 質(zhì)量濃度
目前,學(xué)者多采用多級(jí)切割分層采樣和在線多通道實(shí)時(shí)檢測(cè)儀器進(jìn)行超細(xì)顆粒質(zhì)量濃度檢測(cè)。多級(jí)切割分層采樣器主要是根據(jù)不同空氣動(dòng)力學(xué)直徑顆粒物的運(yùn)動(dòng)規(guī)律不同等原理進(jìn)行采樣。如有學(xué)者在納米氧化鐵等生產(chǎn)企業(yè)采用了微孔均勻沉積碰撞采樣器(micro-orifice uniform deposit impactor,MOUDI)對(duì)暴露顆粒物進(jìn)行分級(jí)采樣,MOUDI具有多級(jí)碰撞式切割器,可檢測(cè)一定時(shí)間段內(nèi)各層級(jí)(10~18 000 nm)顆粒物的累積濃度,缺點(diǎn)是不可實(shí)時(shí)檢測(cè)各層顆粒物濃度及其變化趨勢(shì)[26-28]。類似的,Keck等[29]和Burton等[30]使用電子低壓沖擊儀(ELPI)、低壓碰撞采樣器(low pressure cascade impactor)和寬范圍氣溶膠檢測(cè)系統(tǒng)(wide range aerosol system)等對(duì)超細(xì)顆粒物進(jìn)行分級(jí)采樣檢測(cè)。在線多通道實(shí)時(shí)質(zhì)量濃度檢測(cè)儀器主要有便攜型氣溶膠檢測(cè)儀,包括Mini-WRAS(Mini Wide Range Aerosol Spectrometer)、DustTrak系列檢測(cè)儀等,如Mini-WRAS結(jié)合了光學(xué)散射粒徑分析技術(shù)、遞進(jìn)式電遷移率粒徑分級(jí)技術(shù)和法拉第電杯靜電檢測(cè)技術(shù),達(dá)到了多通道全譜粒徑的實(shí)時(shí)檢測(cè)目的,可實(shí)時(shí)顯示顆粒物的粒徑分布和質(zhì)量濃度。DustTrak可實(shí)時(shí)檢測(cè)粒徑在100 nm~10 μm范圍內(nèi)顆粒物的質(zhì)量濃度,根據(jù)切割頭粒徑的不同可檢測(cè)不同粒徑范圍內(nèi)顆粒物的質(zhì)量濃度。此外,檢測(cè)質(zhì)量濃度的儀器還包括顆粒物靜電沉淀器(electrostatic precipitator)、熱力沉淀器(thermal precipitator)以及超細(xì)顆粒個(gè)體顆粒采樣儀等,但該類儀器僅可檢測(cè)出一定時(shí)間段內(nèi)總顆粒物的累積濃度,無實(shí)時(shí)檢測(cè)功能。
2.1.2 數(shù)量濃度
數(shù)量濃度法是目前國(guó)內(nèi)外學(xué)者最為推薦的檢測(cè)超細(xì)顆粒物的方法之一。如美國(guó)國(guó)家職業(yè)安全與衛(wèi)生研究院(National Institute for Occupational Safety and Health,NIOSH)每年投入數(shù)百萬的科研經(jīng)費(fèi)用于超細(xì)顆粒物的暴露評(píng)價(jià)方法及標(biāo)準(zhǔn)的研究,在其科研報(bào)告中,建議使用數(shù)量濃度作為評(píng)價(jià)超細(xì)顆粒物的指標(biāo)[31];Xing等[28]學(xué)者的研究表明數(shù)量濃度較質(zhì)量濃度更靈敏,能更準(zhǔn)確地反映超細(xì)顆粒物暴露水平的變化趨勢(shì),更適合超細(xì)顆粒物的暴露檢測(cè),張?jiān)獙毜萚26]和王煜倩等[27]在研究納米氧化鐵等生產(chǎn)企業(yè)超細(xì)顆粒暴露特征時(shí)得到了相似的結(jié)果。目前,根據(jù)能否對(duì)不同粒徑范圍內(nèi)的顆粒物進(jìn)行分段計(jì)數(shù),用于檢測(cè)數(shù)量濃度的儀器可分為兩大類:(1)不可分段計(jì)數(shù):如冷凝顆粒計(jì)數(shù)儀(CPC),CPC可實(shí)時(shí)檢測(cè)粒徑在10 nm~>1 μm范圍內(nèi)總顆粒物的數(shù)量濃度,此類儀器可實(shí)時(shí)檢測(cè)適用范圍內(nèi)所有顆粒物的濃度及其變化趨勢(shì),但不可對(duì)顆粒物數(shù)量濃度進(jìn)行粒徑分級(jí)計(jì)數(shù)檢測(cè);(2)可分段計(jì)數(shù):該類儀器可以實(shí)時(shí)地檢測(cè)顆粒物的濃度和粒徑分布及其濃度變化趨勢(shì)。包括電子低壓沖擊儀(ELPI)、Mini-WRAS 粒徑譜儀、法拉利杯靜電計(jì)(FCE)、掃描電遷移率粒徑譜儀(SMPS)等,可實(shí)時(shí)檢測(cè)每個(gè)分段范圍內(nèi)的顆粒數(shù)量濃度,并可以實(shí)時(shí)顯示檢測(cè)數(shù)據(jù)[32]。其他的檢測(cè)儀器如移動(dòng)式多通道超細(xì)顆粒數(shù)量濃度檢測(cè)儀以及其他全譜粒徑譜儀、差分電遷移率分析儀(DMA)結(jié)合CPC或FCE等也可進(jìn)行實(shí)時(shí)地檢測(cè)粒徑分布及數(shù)量濃度。
2.1.3 表面積濃度
Marier等[33]和Duffin等[34]學(xué)者進(jìn)行了大量的毒理學(xué)研究,結(jié)果顯示二氧化鈦等超細(xì)顆粒物的表面積是影響顆粒物毒性效應(yīng)的重要因素之一,且與數(shù)量濃度有顯著相關(guān)性[26-28]。在超細(xì)顆粒暴露評(píng)價(jià)方法中,表面積濃度也是重要方法之一,與數(shù)量濃度法相結(jié)合,評(píng)價(jià)超細(xì)顆粒物環(huán)境暴露特征[26-28, 31]。目前,用于實(shí)時(shí)在線檢測(cè)顆粒物表面積的儀器有粒子氣溶膠監(jiān)測(cè)儀(AeroTrak),其9000型可實(shí)時(shí)檢測(cè)粒徑在10~1 000 nm范圍內(nèi)總顆粒物的表面積濃度(肺泡模式和氣管支氣管模式),但不可對(duì)顆粒物表面積濃度進(jìn)行粒徑分級(jí)檢測(cè)。
2.1.4 粒徑分布
顆粒物的粒徑不僅是影響其健康損傷效應(yīng)和毒性效應(yīng)的重要因素,同時(shí)也是決定采樣檢測(cè)方法和指標(biāo)選擇的重要因素。本研究團(tuán)隊(duì)在前期研究納米氧化鐵、納米碳酸鈣等超細(xì)顆粒物暴露特征時(shí)發(fā)現(xiàn):顆粒物的粒徑影響其3種濃度(質(zhì)量濃度、數(shù)量濃度和表面積濃度)間的相關(guān)關(guān)系,顆粒物的粒徑處在納米級(jí)別時(shí),數(shù)量濃度與表面積濃度間的相關(guān)性更強(qiáng),更能反映超細(xì)顆粒物濃度的變化[26-28]。目前可檢測(cè)超細(xì)顆粒粒徑分布的儀器主要有掃描電遷移率粒徑譜儀(SMPS)、移動(dòng)式多通道超細(xì)顆粒數(shù)量濃度檢測(cè)儀、寬范圍氣溶膠粒徑測(cè)量?jī)x、快速電遷移率粒徑譜儀(FMPS)、發(fā)動(dòng)機(jī)廢氣排放顆粒物粒徑譜儀(EEPS)、電子低壓沖擊儀(ELPI)、激光氣溶膠分光計(jì)(LAS)等,并可實(shí)時(shí)顯示各粒徑范圍內(nèi)的顆粒物濃度數(shù)據(jù)。
2.1.5 理化分析
超細(xì)材料的形貌特征與成分分析是評(píng)價(jià)其生物毒性的重要方面。通過形貌特征與成分分析,更能了解超細(xì)材料與生物學(xué)效應(yīng)之間的聯(lián)系。大量的毒理研究表明:顆粒物的毒性作用受諸多因素的影響,如形狀、粒徑、比表面積和化學(xué)成分[35-36]。Marier等[33]和Duffin等[34]研究顯示超細(xì)顆粒物的粒徑、形狀、聚集狀態(tài)等是影響顆粒物毒性效應(yīng)的重要因素。目前,國(guó)內(nèi)外用于對(duì)超細(xì)顆粒物進(jìn)行顆粒物形貌表征、團(tuán)聚狀態(tài)等分析的儀器主要有掃描電子顯微鏡(SEM)、透射電子顯微鏡(TEM);X射線衍射(XRD)可用于超細(xì)顆粒物晶型結(jié)構(gòu)的分析;BET法可檢測(cè)顆粒物的比表面積;原子吸收、原子發(fā)射、ICP質(zhì)譜法、能量色散X射線光譜儀(EDX)和色譜法等方法檢測(cè)顆粒物成分等。
國(guó)內(nèi)外尚沒有統(tǒng)一的針對(duì)超細(xì)顆粒物采樣方法、檢測(cè)策略及標(biāo)準(zhǔn)。目前,已有研究機(jī)構(gòu)及學(xué)者針對(duì)作業(yè)場(chǎng)所中超細(xì)顆粒物的采樣、檢測(cè)開展了一定的研究,并提出了相關(guān)的采樣、檢測(cè)方法及策略[37-38]。
NIOSH建議使用“NEAT”策略(Nanoparticle Emission Assessment Technique):即先使用便攜式實(shí)時(shí)顆粒物計(jì)數(shù)器(如CPC)在作業(yè)活動(dòng)中確定有無超細(xì)顆粒物的釋放(源),若初步檢測(cè)結(jié)果與背景值無明顯差異,則可不用進(jìn)行進(jìn)一步檢測(cè);若初步檢測(cè)結(jié)果明顯高于背景值,則進(jìn)一步開展檢測(cè)調(diào)查,如開展采樣、質(zhì)量濃度檢測(cè)、電鏡分析、粒徑分布、成分分析等,結(jié)合顆粒物數(shù)量濃度與化學(xué)成分等對(duì)接觸人群進(jìn)行綜合暴露評(píng)價(jià)。此策略所收集數(shù)據(jù)多是基于靜態(tài)或定點(diǎn)檢測(cè),加之采樣檢測(cè)過程中可能存在一些不確定因素,可能對(duì)檢測(cè)結(jié)果產(chǎn)生一定影響[31,39-40]。
經(jīng)濟(jì)合作與發(fā)展組織(Organization for Economic Co-operation and Development,OECD)在其納米暴露評(píng)估策略(2009)中建議的檢測(cè)方法與NIOSH相似,即先進(jìn)行觀察性的預(yù)調(diào)查,使用CPC和OPC在生產(chǎn)作業(yè)活動(dòng)開始前檢測(cè)可疑的納米顆粒泄露區(qū)域/點(diǎn);生產(chǎn)活動(dòng)開始后,使用CPC和OPC再一次檢測(cè)可疑的暴露區(qū)域/點(diǎn),若檢測(cè)濃度值高于預(yù)調(diào)查檢測(cè)濃度值(≥10%),則進(jìn)行進(jìn)一步檢測(cè)和實(shí)驗(yàn)室分析,包括定點(diǎn)和個(gè)體的采樣、質(zhì)量濃度檢測(cè)、電鏡、元素分析等,以便確定納米顆粒的暴露情況,采取合理防護(hù)措施[41]。
德國(guó)聯(lián)邦職業(yè)安全與健康研究所聯(lián)合能源與環(huán)境技術(shù)研究所等機(jī)構(gòu)聯(lián)合推薦使用層級(jí)法(Tiered Approach)用于超細(xì)顆粒物的暴露評(píng)價(jià)及風(fēng)險(xiǎn)管理。第一級(jí):信息收集獲取階段,即通過基礎(chǔ)信息的獲取及調(diào)查,決策是否有超細(xì)顆粒物泄露及能否適當(dāng)?shù)嘏懦孤秵栴},若可以排除,則不需要下一級(jí)檢測(cè),否則進(jìn)入第二級(jí)階段;第二級(jí):基礎(chǔ)暴露評(píng)估階段,根據(jù)有無職業(yè)接觸限值(OELs),通過比較檢測(cè)超細(xì)顆粒物的濃度(如CPC檢測(cè))與背景值或是否超過干擾值(interference value),來判斷是否進(jìn)行下一級(jí)評(píng)估。若檢測(cè)值明顯高于背景顆粒物濃度值或超過干擾值,則進(jìn)入第三級(jí)階段;第三級(jí):專業(yè)暴露評(píng)估階段,即運(yùn)用CPC、SMPS等最新的現(xiàn)場(chǎng)檢測(cè)儀器,結(jié)合實(shí)驗(yàn)室分析結(jié)果(晶型、成分等),證實(shí)超細(xì)顆粒物存在的暴露情況,采取相關(guān)防護(hù)措施,再重復(fù)第二級(jí)階段,以便驗(yàn)證防護(hù)的有效性[42]。
在超細(xì)顆粒物濃度檢測(cè)的過程中,選擇背景值(顆粒)的不同,如何消除背景值的干擾,正確、適當(dāng)?shù)剡x擇背景值(或辨別背景顆粒物)至關(guān)重要。目前多數(shù)國(guó)內(nèi)外學(xué)者采用時(shí)間序列法、空間法、對(duì)比法、化學(xué)/形貌分析法或上述方法相結(jié)合的方法,通過統(tǒng)計(jì)學(xué)分析,來區(qū)分、辨別背景顆粒物。Bello等[50]在研究中使用時(shí)間序列法結(jié)合化學(xué)/形貌分析法來檢測(cè)碳納米管和碳納米顆粒的暴露、判別背景顆粒物;Bello和Tsai等[51-53]的研究中均使用時(shí)間或空間法結(jié)合元素分析、形貌分析等方法來判別背景顆粒物。
Birmili等[54]認(rèn)為環(huán)境中顆粒物的質(zhì)量濃度主要取決于粒徑大于100 nm的顆粒物,在檢測(cè)點(diǎn)附近不存在強(qiáng)暴露源條件下,其隨空間的變異性并不大;然而對(duì)于數(shù)量濃度來說,其受空間變異的影響較大,甚者可達(dá)到數(shù)個(gè)數(shù)量級(jí)的差異,如Kaur等[55]在研究大氣污染物在城市中的擴(kuò)散與滲透實(shí)驗(yàn)中發(fā)現(xiàn),隨著檢測(cè)點(diǎn)與道路間距離的增大,超細(xì)顆粒物的數(shù)量濃度有顯著的下降。Zimmer等[56]研究發(fā)現(xiàn),隨著時(shí)間和距離的增加,焊接產(chǎn)生的顆粒物間存在不確定性的團(tuán)聚/聚集和沉降現(xiàn)象,導(dǎo)致超細(xì)顆粒物數(shù)量濃度的變化。
盡管目前的檢測(cè)儀器和技術(shù)已發(fā)展到可以檢測(cè)到1 nm以下的顆粒物[57],但檢測(cè)儀器的一些缺點(diǎn)與不足仍較大程度地影響超細(xì)顆粒物的暴露檢測(cè),如儀器長(zhǎng)時(shí)間無人檢測(cè)的不穩(wěn)定性、儀器的檢測(cè)結(jié)果缺乏可重復(fù)性以及不同儀器間檢測(cè)原理的不同導(dǎo)致的數(shù)據(jù)不具有可比性等,因此亟需統(tǒng)一、科學(xué)的檢測(cè)儀器及方法來評(píng)價(jià)超細(xì)顆粒物的暴露[45]。
除以上影響因素外,有學(xué)者的研究表明部分其他因素也是影響超細(xì)顆粒物濃度檢測(cè)的原因,如Zimmer等[56]的研究中發(fā)現(xiàn)焊接過程中超細(xì)顆粒物的團(tuán)聚/聚集和沉積現(xiàn)象導(dǎo)致超細(xì)顆粒物數(shù)量濃度的降低;Elihn和Berg[58]在調(diào)查焊接、熔煉、激光切割等不同作業(yè)場(chǎng)所中納米顆粒物的暴露水平時(shí),發(fā)現(xiàn)不同的產(chǎn)生源和生產(chǎn)工藝可影響納米顆粒物的暴露濃度。Buccolieri等[59]在其城市的“透氣性”與污染物的擴(kuò)散關(guān)系研究中表明:城市環(huán)境中超細(xì)顆粒物濃度的變化不僅與風(fēng)速、風(fēng)向和逆溫現(xiàn)象有關(guān),亦受到城市的“透氣性”,即城市的高層建筑密度、建筑的序列等影響。
綜上,雖然國(guó)內(nèi)外學(xué)者針對(duì)超細(xì)顆粒物開展了一定的研究,如Kumar等學(xué)者[60-61]研究了歐洲多個(gè)城市超細(xì)顆粒物的排放源、擴(kuò)散、暴露與分布特征,并開展了與亞洲部分城市的對(duì)比研究[62-64];有學(xué)者研究了作業(yè)場(chǎng)所中超細(xì)顆粒物的暴露特征與規(guī)律,并探討了超細(xì)顆粒物的檢測(cè)方法及標(biāo)準(zhǔn)以及對(duì)接觸人群的健康效應(yīng)[26-28,65-66]。由于缺乏統(tǒng)一的采樣檢測(cè)標(biāo)準(zhǔn)與方法,檢測(cè)儀器原理不同導(dǎo)致的數(shù)據(jù)間缺乏可比性、數(shù)據(jù)重現(xiàn)性差,缺乏毒理學(xué)、大規(guī)模的人群流行病學(xué)調(diào)查研究及個(gè)體暴露數(shù)據(jù)等原因[67-71],目前超細(xì)顆粒物的健康損害機(jī)制仍有待闡明,人群暴露-反應(yīng)關(guān)系仍不明確。
因此,亟需開展超細(xì)顆粒物檢測(cè)方法與技術(shù)、人群暴露與個(gè)體暴露等相關(guān)研究,以便闡明大氣超細(xì)顆粒物的健康效應(yīng)和作用機(jī)制,為保護(hù)接觸人群提供科學(xué)依據(jù),具體建議如下:
(1)方法學(xué)研究:系統(tǒng)性地開展超細(xì)顆粒物暴露檢測(cè)的方法學(xué)研究,確定合適的檢測(cè)指標(biāo),闡明不同來源、結(jié)構(gòu)、性質(zhì)的超細(xì)顆粒物的大氣擴(kuò)散模式,闡明超細(xì)顆粒物濃度在不同氣候、不同時(shí)間空間及復(fù)雜因素影響下的變化規(guī)律。
(2)儀器優(yōu)化研究:進(jìn)一步優(yōu)化超細(xì)顆粒物的檢測(cè)、采樣儀器,提高長(zhǎng)時(shí)間在線檢測(cè)的穩(wěn)定性,實(shí)現(xiàn)不同儀器間結(jié)果的可對(duì)比性;研發(fā)個(gè)體暴露劑量的在線及離線檢測(cè)裝備。
(3)健康效應(yīng)研究:系統(tǒng)性地開展長(zhǎng)期人群流行病學(xué)調(diào)查研究,調(diào)查不同人群及個(gè)體的暴露量,揭露人群暴露劑量-反應(yīng)效應(yīng)關(guān)系,保護(hù)易感人群;開展毒理學(xué)實(shí)驗(yàn),研究超細(xì)顆粒物進(jìn)入人體器官組織及細(xì)胞的途徑、機(jī)制以及靶器官,闡明其健康損傷效應(yīng)及機(jī)制。
[1] U.S. EPA. 2009 Final Report: Integrated Science Assessment for Particulate Matter EPA/600/R-08/139F [R]. Washington, DC: U.S. Environmental Protection Agency, 2009
[2] Kumar P, Morawska L, Birmili W, et al. Ultrafine particles in cities [J]. Environment International, 2014, 66(2): 1-10
[3] Sioutas C, Delfino R J, Singh M. Exposure assessment for atmospheric ultrafine particles (UFPs) and implications in epidemiologic research [J]. Environmental Health Perspectives, 2005, 113(8): 947-955
[4] Oberd?rster G, Finkelstein J, Ferin J, et al. Ultrafine particles as a potential environmental health hazard. Studies with model particles [J]. Chest, 1996, 109(3): 68S-69S
[5] Nel A. Atmosphere. Air pollution-related illness: Effects of particles [J]. Science, 2005, 308(5723): 804-806
[6] Oberd?rster G. Pulmonary effects of inhaled ultrafine particles [J]. International Archives of Occupational and Environmental Health, 2001, 74(1): 1-8
[7] Oberd?rster G, Sharp Z, Atudorei V, et al. Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats [J]. Journal of Toxicology and Environmental Health Part A, 2002, 65(20):1531-1543
[8] Englert N. Fine particles and human health—A review of epidemiological studies [J]. Toxicology Letters, 2004, 149(1-3): 235-242
[9] Gilmour P S, Ziesenis A, Morrison E R, et al. Pulmonary and systemic effects of short-term inhalation exposure to ultrafine carbon black particles[J]. Toxicology and Applied Pharmacology, 2004, 195(1): 35-44
[10] St?lzel M, Breitner S, Cyrys J, et al. Daily mortality and particulate matter in different size classes in Erfurt, Germany [J]. Journal of Exposure Science and Environmental Epidemiology, 2007, 17(5): 458-467
[11] Nowack B, Bucheli T D. Occurrence, behavior and effects of nanoparticles in the environment[J]. Environmental Pollution, 2007, 150(1): 5-22
[12] Oberd?rster G, Oberd?rster E, Oberd?rster J. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles[J]. Environmental Health Perspectives, 2005, 113(7): 823-839
[13] Kumar P, Fennell P S, Hayhurst A N, et al. Street versus roof top level concentrations of fine particles in a Cambridge Street Canyon[J]. Boundary-Layer Meteorology, 2009, 131(1): 3-18
[14] Wichmann H E. Diesel exhaust particles[J]. Inhalation Toxicology, 2007, 19 (Suppl 1): 241-244
[15] Peters T M, Heitbrink W A, Evans D E, et al. The mapping of fine and ultrafine particle concentrations in an engine machining and assembly facility [J]. The Annals of Occupational Hygiene, 2006, 50: 249-257
[16] Oberd?rster G, Ferin J, Lehnert B E. Correlation between particle size,invivoparticle persistence, and lung injury [J]. Environmental Health Perspectives, 1994, 102 (Suppl 5): 173-179
[17] Renwick L C, Brown D, Clouter A, et al. Increased inflammation and altered macrophage chemotactic responses caused by two ultrafine particle types [J]. Occupational and Environmental Medicine, 2006, 61: 442-447
[18] 蔣國(guó)翔, 沈珍瑤, 牛軍峰, 等. 環(huán)境中典型人工納米顆粒物毒性效應(yīng)[J]. 化學(xué)進(jìn)展, 2011, 23(8): 1769-1781
Jiang G X, Shen Z Y, Niu J F, et al. Toxicity of typical artificial nanoparticles in the environment [J]. Progress in Chemistry, 2011, 23(8): 1769-1781 (in Chinese)
[19] Sioutas C, Delfino R J, Singh M. Exposure assessment for atmospheric ultrafine particles (UFPs) and implications in epidemiologic research [J]. Environmental Health Perspectives, 2005, 113(8): 947-955
[20] Kumar P, Robins A, Vardoulakis S, et al. A review of the characteristics of nanoparticles in the urban atmosphere and the prospects for developing regulatory controls[J]. Atmospheric Environment, 2010, 44(39): 5035-5052
[21] Institute of Occupational Medicine for Health & Safety, Executive 2004 Research Report 274 [R]. Atlanta: Institute of Occupational Medicine for Health & Safety, 2004
[22] Peters A, Wichmann H E, Tuch T, et al. Respiratory effects are associated with the number of ultrafine particles [J]. American Journal of Respiratory & Critical Care Medicine, 1997, 155(4): 1376-1383
[23] Tran C L, Buchanan D, Cullen R T, et al. Inhalation of poorly soluble particles. II. Influence of particle surface area on inflammation and clearance [J]. Inhalation Toxicology, 2000, 12(12): 1113-1126
[24] Brown J S, Zeman K L, Bennett W D. Ultrafine particle deposition and clearance in the healthy and obstructed lung [J]. American Journal of Respiratory & Critical Care Medicine, 2002, 166(9): 1240-1247
[25] Stoeger T, Reinhard C, Takenaka S, et al. Instillation of six different ultrafine carbon particles indicates a surface area threshold dose for acute lung inflammation in mice [J]. Environmental Health Perspectives, 2006, 114(3): 328-333
[26] 張?jiān)獙? 付朝暉, 王煜倩, 等. 某納米氧化鐵生產(chǎn)企業(yè)工作場(chǎng)所中納米顆粒暴露特征分析[J]. 中華勞動(dòng)衛(wèi)生職業(yè)病雜志, 2015, 33(6): 427-429
Zhang Y B, Fu Z H, Wang Y Q, et al. Analysis of the exposure characteristics of nano-particles in the workplace of a nano-iron oxide manufacturing enterprise [J]. Chinese Journal of Occupational Health and Occupational Diseases, 2015, 33(6): 427-429 (in Chinese)
[27] 王煜倩, 張?jiān)獙? 趙鵬, 等. 某納米碳酸鈣企業(yè)超細(xì)顆粒暴露特征及其健康影響[J]. 環(huán)境與職業(yè)醫(yī)學(xué), 2015, 32(10): 903-908
Wang Y Q, Zhang Y B, Zhao P, et al. Exposure characteristics of ultrafine particles in a nano-calcium carbonate enterprise and their health effects [J]. Environmental and Occupational Medicine, 2015, 32(10):903-908 (in Chinese)
[28] Xing M, Zhang Y, Zou H, et al. Exposure characteristics of ferric oxide nanoparticles released during activities for manufacturing ferric oxide nanomaterials[J]. Inhalation Toxicology, 2015, 27(3): 1-11
[29] Keck L, Pesch M, Grimm H. Comprehensive measurement of atmospheric aerosols with a wide range aerosol spectrometer [J]. Journal of Physics: Conference Series, 2011, 304(11): 77-82
[30] Burton R M, Lundgren D A. Wide range aerosol classifier: A size selective sampler for large particles [J]. Aerosol Science and Technology, 1987, 6(3): 289-301
[31] NIOSH. Approaches to safe nanotechnology [R]. Atlanta: The National Institute for Occupational Safety and Health (NIOSH), 2009
[32] Tritscher T, Beeston M, Zerrath A F, et al. NanoScan SMPS—A novel, portable nanoparticle sizing and counting instrument [J]. Journal of Physics: Conference Series, 2013, 429(1): 2757-2767
[33] Maier M, Hannebauer B, Holldorff H, et al. Does lung surfactant promote disaggregation of nanostructured titanium dioxide?[J]. Journal of Occupational & Environmental Medicine, 2006, 48(12): 1314-1320
[34] Duffin R, Tran C L, Clouter A, et al. The importance of surface area and specific reactivity in the acute pulmonary inflammatory response to particles [J]. Annals of Occupational Hygiene, 2002, 46(Suppl 1): 242-245
[35] Donaldson K, Stone V, Clouter A, et al. Ultrafine particles [J]. Occupational and Environmental Medicine, 2001, 58: 211-216
[36] Stoeger T, Reinhard C, Takenaka S, et al. Installation of six different ultrafine carbon particles indicates a surface area threshold dose for acute lung inflammation in mice [J]. Environmental Health Perspectives, 2006, 114: 328-333
[37] Asbach C, Clavaguera S, Todea A M. Measurement Methods for Nanoparticles in Indoor and Outdoor Air[M]// Indoor and Outdoor Nanoparticles. Springer International Publishing, 2015: 1-31
[38] Zhao H, Stephens B. Using portable particle sizing instrumentation to rapidly measure the penetration of fine and ultrafine particles in unoccupied residences [J]. Indoor Air, 2016, DOI: 10.1111/ina.12295
[39] Kuhlbusch T A, Asbach C, Fissan H, et al. Nanoparticle exposure at nanotechnology workplaces: A review [J]. Particle & Fibre Toxicology, 2011, 8(1): 22
[40] Methner M, Hodson L, Geraci C. Nanoparticle emission assessment technique (NEAT) for the identification and measurement of potential inhalation exposure to engineered nanomaterials--Part A [J]. Journal of Occupational & Environmental Hygiene, 2010, 7(3): 127
[41] OECD. Environment Health and Safety Publications Series on the Safety of Manufactured Nanomaterials [R]. Paris: OECD, 2009
[42] BAuA, BGRCI, IFA and VCI. Consent report:Tiered approach to an exposure measurement and assessment of nanoscale aerosols released from engineered nanomaterials in workplace operations [R]. Germany: BAuA, BGRCI, IFA and VCI, 2011
[43] Dall'Osto M, Thorpe A, Beddows D C S, et al. Remarkable dynamics of nanoparticles in the urban atmosphere [J]. Atmospheric Chemistry & Physics & Discussions, 2011, 10(13): 6623-6637
[44] Kulmala M, Vehkam?ki H, Pet?j? T, et al. Formation and growth rates of ultrafine atmospheric particles: A review of observations [J]. Journal of Aerosol Science, 2004, 35(2):143-176
[45] Kumar P, Robins A, Vardoulakis S, et al. Technical challenges in tackling regulatory concerns for urban atmospheric nanoparticles [J]. Particuology, 2011, 9(6): 566-571
[46] Carpentieri M, Kumar P. Ground-fixed and on-board measurements of nanoparticles in the wake of a moving vehicle [J]. Atmospheric Environment, 2011, 45(32): 5837-5852
[47] Kumar P, Robins A, Britter R. Fast response measurements of the dispersion of nanoparticles in a vehicle wake and a street canyon [J]. Atmospheric Environment, 2009, 43(38): 6110-6118
[48] Morawska L, Wang H, Ristovski Z, et al. JEM spotlight: Environmental monitoring of airborne nanoparticles [J]. Journal of Environmental Monitoring, 2009, 11(10): 1758-1773
[50] Bello D, Wardle B L, Yamamoto N, et al. Exposure to nanoscale particles and fibers during machining of hybrid advanced composites containing carbon nanotubes[J]. Journal of Nanoparticle Research, 2009, 11(1): 231-249
[51] Tsai C J, Wu C H, Leu M L, et al. Dustiness test of nanopowders using a standard rotating drum with a modified sampling train [J]. Journal of Nanoparticle Research, 2009, 11(1): 121-131
[52] Bello D, Hart A J, Ahn K, et al. Particle exposure levels during CVD growth and subsequent handling of vertically-aligned carbon nanotube films [J]. Carbon, 2008, 46(6):974-977
[53] Tsai S J, Ashter A, Ada E, et al. Control of airborne nanoparticles release during compounding of polymer nanocomposites [J]. Nanoparticles, 2008, 3(4): 301-309
[54] Birmili W, Tomsche L, Sonntag A, et al. Variability of aerosol particles in the urban atmosphere of Dresden (Germany): Effects of spatial scale and particle size[J]. Meteorologische Zeitschrift, 2013, 22(2): 195-211
[55] Kaur S, Clark R D R, Walsh P T, et al. Exposure visualisation of ultrafine particle counts in a transport microenvironment [J]. Atmospheric Environment, 2006, 40(2): 386-398
[56] Zimmer A T, Baron P A, Biswas P. The influence of operating parameters on number-weighted aerosol size distribution generated from a gas metal arc welding process [J]. Journal of Aerosol Science, 2002, 33(3): 519-531
[57] Kulmala M, Kontkanen J, Junninen H, et al. Direct observations of atmospheric aerosol nucleation[J]. Science, 2013, 339(6122): 943-946
[58] Elihn K, Berg P. Uhrafine particle characteristics in seven industrial plants [J]. The Annals of Occupational Hygiene, 2009, 53: 475-484
[59] Buccolieri R, Sandberg M, Sabatino S D. City breathability and its link to pollutant concentration distribution within urban-like geometries[J]. Atmospheric Environment, 2010, 44(15): 1894-1903
[60] Kumar P, Jain S, Gurjar B R, et al. New directions: Can a “blue sky” return to Indian megacities?[J]. Atmospheric Environment, 2013, 71: 198-201
[61] Kumar P, Pirjola L, Ketzel M, et al. Nanoparticle emissions from 11 non-vehicle exhaust sources - A review [J]. Atmospheric Environment, 2013, 67(2): 252-277
[62] Sharma P, Sharma P, Jain S, et al. An integrated statistical approach for evaluating the exceedence of criteria pollutants in the ambient air of megacity Delhi [J]. Atmospheric Environment, 2013, 70(4): 7-17
[63] Kupiainen K. Aerosol particle number emissions and size distributions: Implementation in the GAINS Model and initial results [R]. Laxenburg, Austria: International Institute for Applied System Analysis, 2013
[64] Reddington C L, Carslaw K S, Spracklen D V, et al. Primary versus secondary contributions to particle number concentrations in the European boundary layer [J]. Atmospheric Chemistry & Physics, 2011, 11(23): 12007-12036
[65] Ravanel X, Derrough S, Zimmermann E, et al. Characterization of manufactured nanoparticles at workplace[J]. Journal of Physics Conference Series, 2011, 304(1), DOI: 10.1088/1742-6596/304/1/012003
[66] Wang J, Pui D Y H. Characterization, exposure measurement and control for nanoscale particles in workplaces and on the road [J]. Journal of Physics: Conference Series, 2011, 304(1), DOI: 10.1088/1742-6596/304/1/012008
[67] Mazaheri M, Clifford S, Jayaratne R, et al. School children’s personal exposure to ultrafine particles in the urban environment [J]. Environmental Science & Technology, 2014, 48(1): 113-120
[68] Buonanno G, Marini S, Morawska L, et al. Individual dose and exposure of Italian children to ultrafine particles [J]. Science of the Total Environment, 2012, 438(3): 271-277
[69] Heal M R, Kumar P, Harrison R M. Particles, air quality, policy and health [J]. Chemical Society Reviews, 2012, 41(19): 6606-6630
[70] Health Effects Institute. Understanding the health effects of ambient ultrafine particles[R]. Boston: Health Effects Institute, 2013
[71] Rückerl R, Schneider A, Breitner S, et al. Health effects of particulate air pollution: A review of epidemiological evidence [J]. Inhalation Toxicology, 2011, 23(10): 555