蔡愛芳,陸一帆
1. 山東體育學(xué)院, 濟(jì)南250102 2. 北京體育大學(xué), 北京100084
伴隨著全球工業(yè)化進(jìn)程的加速,大量化學(xué)物質(zhì)被排放到環(huán)境中,造成了嚴(yán)重的環(huán)境污染。具有親脂性、生物富集性、難降解、高毒性等特點(diǎn)的持久性有機(jī)污染物(persistent organic pollutants, POPs),對(duì)人體健康和生態(tài)系統(tǒng)造成了嚴(yán)重的危害。二噁英類(dioxins)就是一種典型的持久性有機(jī)污染物,其中毒性最強(qiáng)的是2,3,7,8-四氯二苯并二噁英(2,3,7,8-tetrachlorodibenzo-p-dioxin, 2,3,7,8-TCDD),因其來源多、分布廣、毒性強(qiáng)等特點(diǎn),成為二噁英家族中最受人們關(guān)注的一種環(huán)境污染物。最近越來越多的研究指出二噁英類可改變不同發(fā)育階段、不同細(xì)胞類型和組織中的一些激素系統(tǒng),引起內(nèi)分泌系統(tǒng)、免疫系統(tǒng)、生殖系統(tǒng)、骨骼系統(tǒng)等的紊亂,從而導(dǎo)致多種疾病[1-8]。目前全球代謝性疾病處于高發(fā)階段,大規(guī)模的流行病學(xué)調(diào)查發(fā)現(xiàn),2,3,7,8-TCDD與胰島素抵抗及糖尿病發(fā)生顯著相關(guān),并有調(diào)查發(fā)現(xiàn)接觸2,3,7,8-TCDD的工人體內(nèi)2,3,7,8-TCDD含量與高水平甘油三酯、膽固醇相關(guān)性極高,接觸工人在隨后的35年內(nèi)嚴(yán)重受到高血脂、動(dòng)脈粥樣硬化、缺血性心臟病的干擾[9-13]。
健康是人類生存、發(fā)展的基本要素,運(yùn)動(dòng)作為一種生活方式對(duì)健康的促進(jìn)起著重要的作用。運(yùn)動(dòng)可以改善胰島素抵抗、血脂代謝、提高心肺耐力,能夠有效防治心腦血管及代謝性疾病[14-17]。目前,人體少量、持續(xù)接觸有機(jī)污染物的現(xiàn)象比較常見,2,3,7,8-TCDD 低劑量持續(xù)暴露對(duì)人體的潛在影響更為突出。但2,3,7,8-TCDD是否通過影響脂質(zhì)合成代謝從而導(dǎo)致代謝性疾病的發(fā)病并沒明確,因此本研究擬通過研究2,3,7,8-TCDD染毒大鼠肝臟脂質(zhì)合成代謝關(guān)鍵酶:脂肪酸合成酶(fatty acid synthetsae, FAS)、乙酰輔酶A羧化酶(acetyl coenzyme A carboxylase, ACC)、硬脂酰輔酶A去飽和酶(stearyl coenzyme A desaturase, SCD) mRNA表達(dá),轉(zhuǎn)錄因子肝X受體a(liver X receptor A, LXRa)蛋白表達(dá),探討代謝性疾病發(fā)病機(jī)制,并對(duì)2,3,7,8-TCDD染毒大鼠進(jìn)行運(yùn)動(dòng)干預(yù),試圖發(fā)現(xiàn)運(yùn)動(dòng)這種健康的生活方式能否改變二噁英類環(huán)境污染物對(duì)脂質(zhì)合成代謝的影響,為探索環(huán)境健康風(fēng)險(xiǎn)的有效控制方法和手段提供理論依據(jù)。
7周齡VAF/SPF級(jí)雄性SD大鼠24只,體重(235.45±12.28)g,購自北京維通利華實(shí)驗(yàn)動(dòng)物中心(許可證編號(hào):SCXK(京)2012-0001),實(shí)驗(yàn)獲得北京體育大學(xué)動(dòng)物福利倫理委員會(huì)批準(zhǔn)(批準(zhǔn)號(hào):201210035)。北京體育大學(xué)實(shí)驗(yàn)動(dòng)物房分籠飼養(yǎng),每籠4只,室溫(22.15±1.65) ℃,相對(duì)濕度(55.25%±8.65%),晝夜交替時(shí)間12 h,國家標(biāo)準(zhǔn)嚙齒類動(dòng)物常規(guī)飼料喂養(yǎng),自由飲水(高壓滅菌)、飲食。24只SD大鼠適應(yīng)性喂養(yǎng)并適應(yīng)性運(yùn)動(dòng)1周后按體重隨機(jī)分為3組:對(duì)照組(C組)、染毒組(T組)、運(yùn)動(dòng)染毒組(ET組),每組8只。
將2,3,7,8-TCDD(純度>99.5%;Cambridge Isotope Laboratory,Andover,MA,USA)溶于玉米油中,T組、ET組按6.4 μg·kg-1(以單位體重計(jì))的劑量給予腹腔注射,C組給予腹腔注射等量的玉米油。之后每隔1周給予上述劑量的21%持續(xù)染毒[18],連續(xù)7周。ET組尾部5%體重[19]負(fù)重進(jìn)行游泳運(yùn)動(dòng),每周游泳5 d,每次游泳30 min,游泳池體積為 140 cm×54 cm×43 cm,水深35 cm,游泳池水溫(30±2) ℃。在游泳過程中,時(shí)刻觀察大鼠游泳狀態(tài),發(fā)現(xiàn)有沉水,撈出水面休息十幾秒放入水中繼續(xù)游泳。C組、T組在ET組進(jìn)行游泳訓(xùn)練的同時(shí)在水中自由浸泡 30 min,水深15 cm,水溫(30±2) ℃。
實(shí)驗(yàn)第8周末前一天給予大鼠禁食8 h,取材前稱重,用20%的烏拉坦以5 mL·kg-1劑量進(jìn)行腹腔麻醉。腹主動(dòng)脈取血處死,快速分離肝臟組織,用生理鹽水沖洗干凈,濾紙吸干,稱重并記錄,手術(shù)剪分割成200 mg左右小塊,錫紙包裹,投入液氮保存,取材結(jié)束后轉(zhuǎn)移至-80 ℃冰箱備用。
1.4.1 肝臟甘油三酯(triglyceride,TG)測(cè)定
取大鼠肝臟0.5 g,剪碎,置于裝有3倍體積甲醇的離心管中,用組織勻漿器粉碎,后向勻漿中加入6倍體積的氯仿,充分混勻,靜置18 h后,3 000 r·min-1離心10 min,小心抽取下層脂質(zhì)相,用組織TG試劑盒(中國中生北控生物科技有限公司),全自動(dòng)生化分析儀(COBAS6000,德國羅氏公司)測(cè)定。
1.4.2 肝臟組織ACC1、FAS、SCD1 mRNA表達(dá)測(cè)定
用超純RNA提取試劑盒(CWbio.Co.Ltd,Cat#CW0581)提取肝臟樣本中總RNA。通過OD260/230、 OD260/280來判定RNA純度,OD260/280在1.9~2.1之間RNA純度較好。常規(guī)瓊脂糖凝膠電泳成像,28S和18S條帶完整,并28S條帶的量是18S條帶的2倍,說明RNA完整性較好。用DNase1(CWbio. Co. Ltd, Cat# CW2090)對(duì)RNA進(jìn)行處理,以消化RNA中含有的基因組DNA。用HiFi-MMLVcDNA第一鏈合成試劑盒(CWbio.Co.Ltd,Cat#CW0744A)進(jìn)行反轉(zhuǎn)錄,用UltraSYBR Mixture(CWbio.Co.Ltd,Cat#CW0956D)進(jìn)行擴(kuò)增,擴(kuò)增產(chǎn)物取5 μL進(jìn)行電泳,擴(kuò)增產(chǎn)物為單一目的條帶,說明擴(kuò)增產(chǎn)物的特異性非常好。
引物設(shè)計(jì):在pubmed網(wǎng)站搜索相應(yīng)脂代謝基因的mRNA序列,應(yīng)用引物設(shè)計(jì)軟件Primer Premier5.0進(jìn)行引物設(shè)計(jì),所有引物均由上海生工生物工程技術(shù)服務(wù)有限公司合成,引物序列如下。
ACC1(169 bp) F:5'GATTTTTTGATTATGGCTCTTTCTC3',R: 5'TTGGCTTCAGAATCCAGGTTTG3';FAS(128 bp) F:5'GGCATTATCTTGGAAGCGATGGGTA3',R: 5'AAACTGCTCAGGACTGCGTGGG3';SCD1(199 bp) F: 5'ACACGCCGACCCTCACAACTC3',R: 5' CAGTGTGGGCAGGATGAAGCA3';β-actin(150 bp) F: 5' GGAGATTACTGCCCTGGCTCCTA3',R: 5'GACTCATCGTACTCCTGCTTGCTG3'。
擴(kuò)增程序:95 ℃,10 min;(95 ℃,15 s;60 ℃,60 s)×40個(gè)循環(huán)。數(shù)據(jù)分析:采用相對(duì)定量法2-△△CT計(jì)算各基因mRNA的表達(dá)水平,目的基因相對(duì)變化倍數(shù)=2-△△CT,2-△△CT=[(CT靶基因-CT內(nèi)參基因)實(shí)驗(yàn)組-(CT靶基因-CT內(nèi)參基因)對(duì)照組]。
1.4.3 肝臟組織LXRa蛋白測(cè)定
Western blot檢測(cè)蛋白表達(dá),蛋白抽提試劑盒(Sinoble公司)進(jìn)行組織蛋白抽提,BCA蛋白定量試劑盒(Sinoble公司)進(jìn)行蛋白濃度測(cè)定。根據(jù)目的蛋白的分子量配制8%分離膠,5%濃縮膠,進(jìn)行上樣、電泳、轉(zhuǎn)膜、封閉、一抗孵育LXRa(Sinoble Mouse LXRa antibody ab41902,Abcam公司,抗體稀釋比例1:4 000,4 ℃過夜)、洗膜、二抗孵育(山羊抗小鼠IgG,Jackson公司,稀釋比例1:10 000)、洗膜、曝光。膠片掃描,采用Image Pro Plus圖像分析系統(tǒng)測(cè)定目的條帶的光密度值(OD),GAPDH校正,計(jì)算目的蛋白表達(dá)的相對(duì)值。
實(shí)驗(yàn)數(shù)據(jù)用均數(shù)±標(biāo)準(zhǔn)差(Mean±SD)表示,SPSS 17.0軟件進(jìn)行統(tǒng)計(jì)分析。實(shí)驗(yàn)數(shù)據(jù)分析前進(jìn)行正態(tài)分布Kolmogorov-Smirnov檢驗(yàn),非正態(tài)分布數(shù)據(jù)用Box-Cox轉(zhuǎn)換為近似正態(tài)分布。各組之間的比較分析采用Compare Means中One-Way ANOVA。P<0.05為具有統(tǒng)計(jì)學(xué)差異。
大鼠體重、肝臟相對(duì)重量如表1所示,與C組相比,T組、ET組體重明顯降低,差異有統(tǒng)計(jì)學(xué)意義(P<0.01)、肝臟相對(duì)重量明顯增加,差異有統(tǒng)計(jì)學(xué)意義(P<0.01)。
大鼠肝臟TG含量如圖1所示,與C組相比,T組肝臟TG含量明顯增高,差異有統(tǒng)計(jì)學(xué)意義(P<0.01),與T組相比,ET組肝臟TG含量明顯降低,差異有統(tǒng)計(jì)學(xué)意義(P<0.01)。
大鼠肝臟脂質(zhì)合成代謝相關(guān)酶mRNA表達(dá)如圖2所示,2,3,7,8-TCDD持續(xù)染毒8周,T組、ET組脂質(zhì)合成代謝相關(guān)酶ACC1、FAS、SCD1 mRNA表達(dá)與C組比較均升高,差異有統(tǒng)計(jì)學(xué)意義(P<0.01)。持續(xù)8周游泳運(yùn)動(dòng)并伴有2,3,7,8-TCDD染毒ET組脂質(zhì)合成代謝相關(guān)酶ACC1、FAS、SCD1 mRNA表達(dá)與T組比較均降低,差異有統(tǒng)計(jì)學(xué)意義(P<0.01)。
圖1 運(yùn)動(dòng)對(duì)TCDD染毒大鼠肝組織甘油三酯(TG)含量的影響Fig. 1 The effect of exercise on the level of liver triglyceride (TG) of rats after exposure to TCDD
圖2 運(yùn)動(dòng)對(duì)TCDD染毒大鼠肝組織脂質(zhì)合成代謝相關(guān)酶ACC1、FAS、SCD1 mRNA表達(dá)相對(duì)值的影響Fig. 2 The effect of exercise on the relative expression of the crucial enzymes during liver lipid metabolism of rat after exposure to TCDD
大鼠肝臟LXRa蛋白相對(duì)表達(dá)如圖4所示,持續(xù)8周2,3,7,8-TCDD染毒T組、ET組大鼠肝臟LXRa蛋白相對(duì)表達(dá)與C組比較均增加,差異有統(tǒng)計(jì)學(xué)意義(P<0.01),ET組大鼠肝臟LXRa蛋白相對(duì)表達(dá)與T組比較降低,差異有統(tǒng)計(jì)學(xué)意義(P<0.01)。
圖3 大鼠肝組織LXRa、內(nèi)參GAPDH蛋白電泳條帶示例Fig. 3 The sample of electrophoretic bands of liver LXRa, GAPDH protein of rats
圖4 運(yùn)動(dòng)對(duì)TCDD染毒大鼠肝組織脂質(zhì)合成代謝轉(zhuǎn)錄因子LXRa蛋白相對(duì)表達(dá)的影響Fig. 4 The effect of exercise on the relative level of the transcriptional factor LXRa protein during liver lipid metabolism of rats after exposure to TCDD
表1 各組大鼠體重、肝臟相對(duì)重量Table 1 The body weight and relative liver weight of rats
注:C, 對(duì)照組; T, 染毒組; ET, 運(yùn)動(dòng)染毒組。與C組相比,**P<0.01。
Note: C, Control group; T, Toxic group; ET, Exercise toxic group. Compared with C group,**P<0.01.
目前環(huán)境污染問題日益嚴(yán)重,環(huán)境因素對(duì)身體健康的影響逐漸引起人們更多的關(guān)注。二噁英這類難降解、并具有生物富積性的環(huán)境污染物對(duì)人類健康的影響逐漸被研究者證實(shí)。大規(guī)模流行病學(xué)調(diào)查發(fā)現(xiàn)二噁英類作為一種持久性有機(jī)污染物,增加了代謝性疾病的發(fā)病風(fēng)險(xiǎn)[20-24]。
Ciftci等[25]研究發(fā)現(xiàn)2 μg·kg-1(以單位體重計(jì))2,3,7,8-TCDD就可以明顯減緩Wistar 大鼠體重的增長。本研究結(jié)果顯示2,3,7,8-TCDD染毒8周后,T組、ET組大鼠體重比正常對(duì)照組C組大鼠體重低,差異有統(tǒng)計(jì)學(xué)意義(P<0.01),這與前人文獻(xiàn)報(bào)道一致,充分說明了2,3,7,8-TCDD能夠改變大鼠體重的自然增長趨勢(shì)。據(jù)文獻(xiàn)報(bào)道,適宜強(qiáng)度的有氧運(yùn)動(dòng)可減控大鼠體重[26-29],本研究結(jié)果ET組大鼠體重最低,認(rèn)為這是運(yùn)動(dòng)和2,3,7,8-TCDD雙重作用的結(jié)果。
肝臟腫大是簡(jiǎn)易評(píng)價(jià)肝臟毒性的一個(gè)指標(biāo),大量研究證實(shí)2,3,7,8-TCDD染毒后以肝臟腫大、實(shí)質(zhì)細(xì)胞增生與肥大為共同肝臟毒性特征[30-32]。本研究8周末處死動(dòng)物時(shí)發(fā)現(xiàn)C組大鼠肝臟顏色鮮紅,大小無異常,而T組、ET組大鼠肝臟明顯增大,觸之有油膩感。并且T組、ET組肝臟相對(duì)重量與C組比較顯著增加,有統(tǒng)計(jì)學(xué)差異(P<0.01)。這與前人文獻(xiàn)報(bào)道肝毒性特征一致。2,3,7,8-TCDD染毒大鼠出現(xiàn)肝臟毒性的組織表觀表現(xiàn),勢(shì)必會(huì)影響到肝臟生理功能。而肝臟是脂質(zhì)從頭合成的主要部位,可能會(huì)影響到肝臟中脂質(zhì)代謝的合成。
肝臟、脂肪組織及小腸是合成甘油三酯、膽固醇的主要場(chǎng)所,以肝臟的合成能力最強(qiáng)。肝細(xì)胞能合成脂肪,但不能儲(chǔ)存脂肪。甘油三酯合成后,與磷脂、膽固醇結(jié)合,與載脂蛋白B100、C等生成極低密度脂蛋白(VLDL),再分泌入血運(yùn)輸至肝外組織,提供給其他組織器官利用。肝臟合成甘油三酯的量超過了其合成和分泌VLDL的能力,甘油三酯便積存在肝內(nèi)。2,3,7,8-TCDD染毒8周后, T組肝臟甘油三酯明顯高于C組、ET組,差異有統(tǒng)計(jì)學(xué)意義(P<0.01)。C組、ET組肝臟甘油三酯無明顯差異(P>0.05)。分析認(rèn)為2,3,7,8-TCDD持續(xù)染毒會(huì)誘導(dǎo)肝臟合成甘油三酯,超過了肝臟代謝能力促使多余的甘油三酯存積在肝臟組織中。而ET組雖然也持續(xù)染毒,但由于規(guī)律持續(xù)的運(yùn)動(dòng),甘油三酯在肝臟中積聚量相對(duì)較少,說明游泳運(yùn)動(dòng)對(duì)2,3,7,8-TCDD染毒大鼠肝臟甘油三酯沉積有一定的干預(yù)作用。
LXRa是肝臟脂肪代謝的主要推動(dòng)者,大量研究發(fā)現(xiàn)LXRa可通過調(diào)節(jié)膽固醇7a-羥化酶、ATP結(jié)合盒轉(zhuǎn)運(yùn)蛋白G5、ATP結(jié)合盒轉(zhuǎn)運(yùn)蛋白G8、ATP結(jié)合盒轉(zhuǎn)運(yùn)蛋白A1、磷酸酰轉(zhuǎn)移蛋白、載脂蛋白E、固醇調(diào)節(jié)元件結(jié)合蛋白(sterol regulatory element binding protein, SREBP)等基因表達(dá)水平[33-36],對(duì)維持體內(nèi)脂代謝平衡起重要作用。Peet等[37]首次報(bào)道LXRa缺乏,小鼠肝內(nèi)SREBP1c及其靶基因FAS、SCD1的表達(dá)都減少。隨后陸續(xù)有研究者發(fā)現(xiàn)LXR對(duì)ACC、FAS、SCD1基因可以不通過SREBP1來介導(dǎo),ACC、FAS、SCD1基因啟動(dòng)子上均含有LXRs結(jié)合位點(diǎn),可直接接受LXR的調(diào)控[38-39]。LXR可引起生脂基因表達(dá)上調(diào),增加脂肪酸的合成并使肝內(nèi)聚集大量的甘油三脂,提高血漿中甘油三酯的水平[40]。
本實(shí)驗(yàn)研究結(jié)果顯示T組、ET組肝臟組織中LXRa蛋白表達(dá)均明顯增高,與C組比較有統(tǒng)計(jì)學(xué)差異(P<0.01),表明2,3,7,8-TCDD持續(xù)染毒可以誘導(dǎo)LXRa蛋白表達(dá)的增加,增高的LXRa作為脂肪合成代謝的推動(dòng)者,能夠通過LXR-SREBP1c途徑進(jìn)而促進(jìn)下游脂質(zhì)合成代謝關(guān)鍵酶ACC、FAS、SCD1的基因和蛋白表達(dá),或直接促進(jìn)其靶基因ACC、FAS、SCD1的表達(dá),從而使脂肪合成增加,積聚在肝臟組織中。肝臟合成的甘油三酯主要由VLDL運(yùn)輸?shù)礁瓮饨M織,VLDL的甘油三酯在脂蛋白酯酶(LPL)的作用下逐步水解,可見能夠影響LPL活性的因素都會(huì)影響到肝臟甘油三酯的代謝。Angptl3(Angiopoietin-like 3)是一種肝特異性分泌蛋白,能夠抑制LPL活性,從而延緩甘油三酯代謝。Inaba等[41]發(fā)現(xiàn)Angptl3是LXR的直接靶點(diǎn),LXR能增加肝臟合成Angptl3,增加的Angptl3通過抑制LPL 活性參與脂代謝的調(diào)節(jié),延緩甘油三酯分解代謝。本研究T組、ET組肝臟組織中LXRa蛋白表達(dá)明顯高于C組(P<0.01),可能通過合成更多Angptl3,致使LPL活性抑制,使得T組、ET組大鼠肝臟甘油三酯明顯增高。雖2,3,7,8-TCDD染毒造成T組、ET組肝臟組織中LXRa蛋白表達(dá)均明顯增高,但T組、ET組之間LXRa蛋白表達(dá)還是有明顯差異,ET組大鼠肝臟LXRa蛋白表達(dá)相對(duì)較低(P<0.01)。有關(guān)運(yùn)動(dòng)對(duì)LXRa蛋白表達(dá)的報(bào)道很少,結(jié)果也不盡一致, Rocco等[42]報(bào)道膽固醇酯轉(zhuǎn)運(yùn)蛋白(CETP)轉(zhuǎn)基因小鼠進(jìn)行6周有氧運(yùn)動(dòng),能夠明顯提高膽固醇的逆向轉(zhuǎn)運(yùn),但肝臟中LXR蛋白表達(dá)水平?jīng)]有變化。但Kazeminasab等[43]報(bào)道雄性Wistar大鼠進(jìn)行耐力訓(xùn)練可以使肝臟中LXR mRNA表達(dá)明顯升高,提高膽固醇的逆向轉(zhuǎn)運(yùn),對(duì)預(yù)防動(dòng)脈粥樣硬化有積極的作用。本研究發(fā)現(xiàn)運(yùn)動(dòng)可以降低2,3,7,8-TCDD染毒大鼠脂質(zhì)合成代謝關(guān)鍵轉(zhuǎn)錄因子LXRa蛋白表達(dá),我們分析可能是運(yùn)動(dòng)下調(diào)了LXRa蛋白表達(dá),從而使的甘油三酯的合成代謝相對(duì)T組延緩,對(duì)LPL活性抑制作用也較T組減弱,使得ET組大鼠肝臟甘油三酯含量低于T組大鼠(P<0.01)。
ACC、FAS 和 SCD1是肝臟脂質(zhì)從頭合成的3個(gè)重要的關(guān)鍵酶。ACC催化丙二酰單酰輔酶A生成,是脂肪酸合成的第一步反應(yīng)。FAS是動(dòng)物體內(nèi)長鏈脂肪酸合成的最后一步關(guān)鍵酶。SCD是肝細(xì)胞合成單不飽和脂肪酸的限速酶,具有催化飽和脂肪酸的脂酰輔酶A脫氫的作用。本研究結(jié)果顯示,T組、ET組大鼠肝臟ACC1、FAS、SCD1 mRNA表達(dá)升高,與C組比較有統(tǒng)計(jì)學(xué)差異(P<0.01),分析認(rèn)為2,3,7,8-TCDD染毒導(dǎo)致上游的LXRa蛋白表達(dá)增高,從而出現(xiàn)LXRa蛋白靶基因ACC1、FAS、SCD1 mRNA表達(dá)升高。
許多學(xué)者研究發(fā)現(xiàn),ACC、FAS在多種癌組織中呈高表達(dá)。Yahagi等[44]研究發(fā)現(xiàn),小細(xì)胞肝癌組織中脂肪酸合成異常活躍,檢測(cè)顯示脂肪酸合成的關(guān)鍵酶ACC、FAS mRNA表達(dá)增高,并呈協(xié)同作用。動(dòng)物實(shí)驗(yàn)已證實(shí)二噁英具有很強(qiáng)的致癌性,國際癌癥研究機(jī)構(gòu)已把二噁英列為一級(jí)致癌物。SCD的表達(dá)量會(huì)改變生物膜磷脂的組成,生物膜的流動(dòng)性、通透性和完整性在細(xì)胞間物質(zhì)轉(zhuǎn)運(yùn)和生物信號(hào)傳導(dǎo)過程中起著非常重要的作用。大量研究認(rèn)為,生物膜磷脂組分發(fā)生改變往往與肥胖、脂肪肝、糖尿病及癌癥等許多慢性疾病狀態(tài)相關(guān)。SCD的正常表達(dá)和調(diào)控對(duì)維持機(jī)體的生理狀態(tài)和體內(nèi)脂質(zhì)內(nèi)環(huán)境的穩(wěn)定具有重要作用。本實(shí)驗(yàn)T組、ET組大鼠肝臟ACC1、FAS、SCD1 mRNA表達(dá)升高是由8周2,3,7,8-TCDD持續(xù)染毒造成的異常表達(dá)。
Rector等[45]研究發(fā)現(xiàn)肥胖大鼠進(jìn)行16 周運(yùn)動(dòng),脂肪酸氧化明顯增加,脂肪酸從頭合成的關(guān)鍵酶ACC1 mRNA表達(dá)降低70%,F(xiàn)AS mRNA表達(dá)降低35%。Yasari等[46]發(fā)現(xiàn)大鼠進(jìn)行8周運(yùn)動(dòng)訓(xùn)練,肝臟中SCD mRNA和蛋白表達(dá)均降低。這說明進(jìn)行長期、持續(xù)的運(yùn)動(dòng)鍛煉有利于減少脂肪的合成。ET組肝臟ACC1、FAS、SCD1 mRNA表達(dá)明顯低于T組(P<0.01),表明8周規(guī)律游泳運(yùn)動(dòng)可以抵抗2,3,7,8-TCDD染毒引起肝臟中ACC1、FAS、SCD1 mRNA表達(dá)的加強(qiáng),減少脂肪合成。
綜上所述,2,3,7,8-TCDD持續(xù)染毒8周可上調(diào)脂質(zhì)合成代謝關(guān)鍵酶ACC1、FAS、SCD1 mRNA的表達(dá)及轉(zhuǎn)錄因子LXRa蛋白的表達(dá),從而造成脂質(zhì)代謝紊亂,肝臟甘油三酯沉積。而8周有氧運(yùn)動(dòng)降低了ACC1、FAS、SCD1 mRNA、LXRa蛋白表達(dá),有效改善了脂質(zhì)代謝的紊亂,降低了甘油三酯在肝臟中的沉積,提示運(yùn)動(dòng)干預(yù)可以改善二噁英類污染物造成的肝臟脂質(zhì)代謝紊亂。
致謝:感謝華南師范大學(xué)體育科學(xué)學(xué)院李婷博士后在文章修改中給予的幫助。
[1] Bock K W. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)-mediated deregulation of myeloid and sebaceous gland stemprogenitor cell homeostasis [J]. Archives of Toxicology, 2017, 91: 1-7
[2] Boyd S A, Sallach J B, Zhang Y, et al. Sequestration of TCDD by activated carbon eliminates bioavailability and the suppression of immune function in mice [J]. Environmental Toxicology and Chemistry, 2017, 36(10): 2671-2678
[3] Yun C, Weiner J A, Chun D S, et al. Mechanistic insight into the effects of aryl hydrocarbon receptor activation on osteogenic differentiation [J]. Bone Reports, 2017, 16(6):51-59
[4] Iszatt N, Stigum H, Govarts E, et al. Perinatal exposure to dioxins and dioxin-like compounds and infant growth and body mass index at seven years: A pooled analysis of three European birth cohorts [J]. Environment International, 2016, 94: 399-407
[5] Sofo V, G?tte M, Laganà A S, et al. Correlation between dioxin and endometriosis: Anepigenetic route to unravel the pathogenesis of the disease [J]. Archives of Gynecology and Obstetrics, 2015, 292(5): 973-986
[6] Fukushi J, Tokunaga S, Nakashima Y, et al. Effects of dioxin-related compounds on bonemineral density in patients affected by the Yusho incident[J]. Chemosphere, 2016, 145: 25-33
[7] Chevrier J, Warner M, Gunier R B, et al. Serum dioxin concentrations and thyroid hormone levels in the seveso women's health study [J]. American Journal of Epidemiology, 2014, 180(5): 490-498
[8] Birnbaum L S. Developmental effects of dioxins and related endocrine disrupting chemicals[J]. Toxicology letters, 1995, 82: 743-750
[9] Ngwa E N, Kengne A P, Tiedeu-Atogho B, et al. Persistent organic pollutants as risk factors for type 2 diabetes[J]. Diabetology and Metabolic Syndrome, 2015, 7: 41-56
[10] Charles J, Olivia M. Associationsof exposure to dioxins and polychlorinated biphenyls with diabetes: Based on epidemiological findings[J]. Environmental Research, 2012, 118(10): 107-111
[11] Kim M J, Pelloux V, Guyot E, et al. Inflammatory pathway genes belong to major targets of persistent organic pollutants in adipose cells [J]. Environmental Health Perspectives, 2012, 120(4): 508-514
[12] Lee D, Lee I, Song K, et al. Astrong dose-response relation between serum concentrations of persistent organic pollutants and diabetes results from the national health and examination survey 1999-2002[J]. Diabetes Care, 2006, 29(7): 1638-1644
[13] Pelclová D, Fenclova Z, Preiss J, et al. Lipid metabolism and neuropsychological follow-up study of workers exposed to 2, 3, 7, 8-tetrachlordibenzo-p-dioxin [J]. International Archives of Occupational and Environmental Health, 2002, 75: 60-66
[14] Lockard B, Earnest C P, Oliver J, et al. Retrospective analysis of protein- and carbohydrate-focused diets combinedwith exerciseon metabolic syndrome prevalence in overweight and obese women [J]. Metabolic Syndrome and Related Disorders, 2016, 14(4): 228-237
[15] Heald A,Sein K,Anderson S,et al. Diet,exercise and the metabolic syndrome in Schizophrenia: A cross-sectional study [J]. Schizophrenia Research, 2015, 169(1-3): 494-495
[16] Lee S, Norheim F, Gulseth H L, et al. Interaction between plasma fetuin-A and free fatty acids predicts changes in insulin sensitivity in response to long-term exercise [J]. Physiological Reports, 2017, 5(5): 1-14
[17] Zhao J, Su Z, Qu C, et al. Effects of 12 weeks resistance training on serum irisin in older male adults [J]. Frontiers in Physiology, 2017, 8: 171-175
[18] Croutch C R, Lebofsky M, Schramm K, et al. 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD) and 1, 2, 3, 4, 7, 8-hexachlorodibenzo-p-dioxin (HxCDD) alter body weight by decreasing insulin-like growth factor I (IGF-I) signaling [J]. Toxicological Sciences, 2005, 85(1): 560-571
[19] 嚴(yán)翊, 謝敏豪. 大鼠游泳運(yùn)動(dòng)的最大乳酸穩(wěn)態(tài)負(fù)荷的確定——乳酸最小試驗(yàn)[J]. 北京體育大學(xué)學(xué)報(bào), 2010, 33(9): 43-45
Yan Y, Xie M H. The selection of rat swimming training load in maximal lactate steady state-lacate minimum test [J]. Journal of Beijing Sport University, 2010, 33(9): 43-45 (in Chinese)
[20] Ngwa E N, Kengne A P, Tiedeu-Atogho B, et al. Persistent organic pollutants as risk factors for type 2 diabetes [J]. Diabetology and Metabolic Syndrome, 2015, 7(1): 1-15
[21] Singh K, Chan H M. Persistent organic pollutants and diabetes among Inuit in the Canadian Arctic [J]. Environmental International, 2017, 101: 183-189
[22] Thibault V, Bélanger M, Leblanc E, et al. Factors that could explain the increasing prevalence of type 2 diabetes among adults in a Canadian Province: A critical review and analysis[J]. Diabetology and Metabolic Syndrome, 2016, 8(1): 71-81
[23] Lee D H, Porta M, Jacobs D R Jr, et al. Chlorinated persistent organic pollutants, obesity, and type 2 diabetes[J]. Endocrine Reviews, 2014, 5(4): 557-601
[24] Taylor K W, Novak R F, Anderson H A, et al. Evaluation of the association between persistent organic pollutants (POPs) and diabetes in epidemiological studies: A national toxicology program workshop review[J]. Environmental Health Perspectives, 2013, 121(7): 774-783
[25] Ciftci O, Tanyildizi S, Godekmerdan A. Protective effect of curcumin on immune system and body weight gain on rats intoxicated with 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD)[J]. Immunopharmacology and Immunotoxicology, 2010, 32(1): 99-104
[26] Medina-Contreras J M, Colado-Velázquez J, Gómez-Viquez N L. Effects of topical capsaicin combined with moderate exercise on insulin resistance, body weight and oxidative stress in hypoestrogenic obese rats[J]. International Journal of Obesity, 2017, 41(5): 750-758
[27] Machado M V, Vieira A B, Nascimento A R, et al. Physical exercise restores microvascular function in obese rats with metabolic syndrome [J]. Metabolic Syndrome and Related Disorders, 2014, 12(9): 484-492
[28] 魏冰, 白厚增, 靳一哲, 等. 運(yùn)動(dòng)、EGCG和肉堿對(duì)肥胖大鼠體重、內(nèi)臟脂肪及肝臟CPT1表達(dá)的影響[J]. 中國運(yùn)動(dòng)醫(yī)學(xué)雜志, 2012(4): 331-335, 352
Wei B, Bai H Z, Jin Y Z, et al. Exercise combined with administration of egcg and l-carnitine affects the weight,visceral fat and cpt1 expression in obese rats [J]. Chinese Journal Sports Medicine, 2012(4): 331-335,352 (in Chinese)
[29] 張顥, 卜淑敏, 朱一力, 等. 跑臺(tái)運(yùn)動(dòng)對(duì)去卵巢大鼠體重、腹腔內(nèi)脂肪重量以及血清瘦素和脂聯(lián)素含量的影響[J]. 中國運(yùn)動(dòng)醫(yī)學(xué)雜志, 2009(2): 175-178
Zhang H, Bu S M, Zhu Y L, et al. Effects of treadmill exercise on body weight, intraabdominal fat, serum leptin and adiponedtin levels in ovariectomized rats[J]. Chinese Journal Sports Medicine, 2009(2): 175-178 (in Chinese)
[30] Ohbayashi H, Sasaki T, Matsumoto M, et al. Dose-and time-dependent effects of 2,3,7,8-tetrabromodibenzo-p-dioxin on rat liver [J]. The Journal of Toxicological Sciences, 2007, 32(1): 47-56
[31] Korenaga T, Fukusato T, Ohta M, et al. Long-term effects of subcutaneously injected 2,3,7,8-tetrachlorodibenzo-p-dioxin on the liver of Rhesus monkeys [J]. Chemosphere, 2007, 67(9): 399-404
[32] Du J L, Cao L P, Liu Y J, et al. A study of 2,3,7,8-tetrachlorodibenzo-p-dioxin induced liver injury in Jian carp (Cyprinuscarpiovar. Jian) using precision-cut liver slices[J]. Bulletin of Environmental Contamination and Toxicology, 2016, 96(1): 55-61
[33] Chiang J Y, Kimmel R, Stroup D. Regulation of cholesterol 7alpha-hydroxylase gene (CYP7A1) transcription by the liver orphan receptor (LXRalpha) [J]. Gene, 2001, 262(1-2) : 257- 265
[34] Vogelvan D, Bosch H M, Wit N J, et al. A cholesterol-free, high-fat diet suppresses gene expression of cholesterol transporters in murine small intestine [J]. American Journal of Physiology Gastrointestal and Liver Physiology, 2008, 294(5): 1171-1180
[35] Castrillo A, Tontonoz P. Nuclear receptors in macrophage biology: At the crossroads of lipid metabolism and inflammation [J]. Annual Review of Cell and Developmental Biology, 2004, 20: 455-480
[36] Makishima M. Nuclear receptors as targets for drug development: Regulation of cholesterol and bile acid metabolism by nuclear receptors [J]. Journal of Pharmacological Sciences, 2005, 97(2): 177-183
[37] Peet D J, Turley S D, Ma W, et al. Cholesterol and bile acid metabolism are impaired in mice lacking the nuclear oxysterol receptor LXRα [J]. Cell, 1998, 93(5): 693-704
[38] Chu K, Miyazaki M, Man W C, et al. Stearoyl-coenzyme A desaturase 1 deficiency protects against hypertriglyceridemia and increases plasma high-density lipoprotein cholesterol induced by liver X receptor activation [J]. Molecular and Cellular Biology, 2006, 26(18): 6786-6798
[39] Talukdar S, Hillgartner F B. The mechanism mediating the activation of acetyl-coenzyme A carboxylase-alpha gene transcription by the liver X receptor agonist T0-901317 [J]. Journal of Lipid Research, 2006, 47(11): 2451-2461
[40] Schultz J R, Tu H, Luk A, et al. Role of LXRs in control of lipogenesis [J]. Genes and Development, 2000, 14(22): 2831-2838
[41] Inaba T, Matsuda M, Shimamura M, et al. Angiopoietin-like protein 3 mediates hypertriglyceridemia induced by the liver X receptor [J]. Biochemistry, 2003, 46(7): 21344-21351
[42] Rocco D D, Okuda L S, Pinto R S, et al. Aerobic exercise improves reverse cholesterol transport in cholesteryl ester transfer protein transgenic mice [J]. Lipids, 2011, 46(7): 617-625
[43] Kazeminasab M M, Ghaedi K, Esfarjani F, et al. Endurance training enhances LXR expression in the liver of male Wistar rats [J]. Research in Pharmaceutical Sciences, 2012, 7(5): S544-553
[44] Yahagi N, Shimano H, Hasegawa K, et al. Cordinate activation of lipogenic enzymes in hepatocellular carcinoma[J]. European Journal of Cancer, 2005, 41(9): 1316-1322
[45] Rector R S, Thyfault J P, Morris R T, et al. Daily exercise increases hepatic fatty acid oxidation and prevents steatosis in Otsuka Long-Evans Tokushima fatty rats [J]. American Journal of Physiology-Gastrointestinal and Liver Physiology, 2008, 294(3): G619-G626
[46] Yasari S, Prud Homme D, Wang D, et al. Exercise training decreases hepatic SCD-1 gene expression and protein content in rats [J]. Molecular and Cellular Biochemistry, 2010, 335(1): 291-299