• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      有氧運(yùn)動(dòng)對(duì)慢性應(yīng)激大鼠空間學(xué)習(xí)記憶及海馬齒狀回BDNF表達(dá)的影響

      2018-01-31 08:54崔建梅楊文艷藥宏慧于芳薄媛媛蘇曉云龐立杰

      崔建梅+楊文艷+藥宏慧+于芳+薄媛媛+蘇曉云+龐立杰

      摘 要:通過(guò)研究跑臺(tái)運(yùn)動(dòng)對(duì)慢性應(yīng)激大鼠空間學(xué)習(xí)記憶能力及海馬齒狀回腦源性神經(jīng)營(yíng)養(yǎng)因子(BDNF)含量的改變,探討有氧運(yùn)動(dòng)改善慢性應(yīng)激大鼠認(rèn)知能力的可能機(jī)制。方法:將健康成年Sprague-Dawley(8周)大鼠隨機(jī)分為3組:正常對(duì)照組(C,n=10)、應(yīng)激模型組(CUS,n=10)及應(yīng)激運(yùn)動(dòng)組(CUS+E,n=10)3組,通過(guò)慢性不可預(yù)知應(yīng)激建立大鼠抑郁模型。CUS+E組大鼠采取4周跑臺(tái)運(yùn)動(dòng),通過(guò)八臂迷宮實(shí)驗(yàn)觀察跑臺(tái)運(yùn)動(dòng)對(duì)應(yīng)激大鼠學(xué)習(xí)記憶能力的影響;八臂迷宮實(shí)驗(yàn)結(jié)束后用ABC免疫組織染色法檢測(cè)各組大鼠海馬齒狀回BDNF的分布。結(jié)果:與CUS組大鼠比較,CUS+ E組大鼠八臂迷宮實(shí)驗(yàn)中大鼠完成八臂迷宮探索時(shí)間(P<0.05)及進(jìn)入放餌料臂平均潛伏期均顯著縮短(P<0.05),參考記憶(P<0.05)及總記憶錯(cuò)誤次數(shù)(P<0.05)均顯著增多;海馬DG區(qū)BDNF數(shù)量(P<0.05)及面積(P<0.05)均顯著增多。結(jié)論:當(dāng)前研究發(fā)現(xiàn)4周跑臺(tái)運(yùn)動(dòng)可能通過(guò)激活海馬DG區(qū)BDNF通路,增強(qiáng)海馬DG區(qū)BDNF的表達(dá),改善慢性應(yīng)激大鼠的學(xué)習(xí)記憶能力。

      關(guān)鍵詞:跑臺(tái)運(yùn)動(dòng);學(xué)習(xí)記憶;海馬DG;腦源性神經(jīng)營(yíng)養(yǎng)因子

      中圖分類(lèi)號(hào):G 804.2 學(xué)科代碼:040302 文獻(xiàn)標(biāo)識(shí)碼:A

      Abstract: Objective: To observe the effects of treadmill exercise on the learning, memory and Hippocampal DG (dentate gyrus) BDNF (brain derived neurotrophic factor) expression in CUS (chronic unpredictable mild stress) rats and explore the possible mechanism of regular aerobic exercise to improve learning and memory. Methods: 30 adult SD (Sprague-Dawley) male rats were randomly assigned into 3 groups: control group (C), chronic unpredictable stress group rats (CUS) and stress exercise group (CUS+E). All rats were subjected to CUS except the control group. The learning and memory ability of rats were tested by radial arm maze test (CUS) after CUS+E group rats received 4-week treadmill exercise. Subsequently, ABC immunohistochemical staining detected BDNF expression in Hippocampus DG in every group rats. Results: Compared with the CUS group rats, the time of completing 8-arms radial maze and latency of entering into bait arms in ERM test significantly shortened (P<0.05, P<0.05), reference memory errors and total memory errors in RAM test significantly decreased(P<0.05, P<0.05); number and area of BDNF significantly increased in Hippocampal DG (P<0.05, P<0.05) in CUE+E group rats. Conclusion: The present experiment verified that 4-week treadmill exercise reverses stress-induced learning and memory impaired via an increase in BDNF signaling and may increase BDNF expression in Hippocampal DG.

      Keywords: treadmill exercise; learning and memory; Hippocampal DG; BDNF

      抑郁癥是一種慢性、復(fù)發(fā)和潛在的威脅人類(lèi)生命的情緒障礙性疾病。全世界抑郁發(fā)病率可能為17%[1]。盡管抑郁癥是全球致殘的主要病因,但其病理生理學(xué)機(jī)制仍不清楚。實(shí)驗(yàn)表明,認(rèn)知障礙如學(xué)習(xí)記憶障礙是抑郁癥的核心癥狀[2]。壓力,尤其是長(zhǎng)期反復(fù)接觸的應(yīng)激壓力,會(huì)對(duì)行為和生理反應(yīng)產(chǎn)生不良影響,也是抑郁癥發(fā)病的主要原因之一;因此,慢性不可預(yù)知的應(yīng)激壓力(chronic unpredictable mild stress,CUS)模型已經(jīng)被廣泛地應(yīng)用于模仿慢性抑郁癥的病理發(fā)展及評(píng)估抗抑郁藥的功效。研究認(rèn)為,應(yīng)激會(huì)導(dǎo)致一系列的生理、生化和大腦行為的改變,之前有研究表明長(zhǎng)期慢性應(yīng)激會(huì)通過(guò)增加糖皮質(zhì)激素的分泌損害神經(jīng)可塑性、學(xué)習(xí)和記憶過(guò)程[3]。許多動(dòng)物實(shí)驗(yàn)表明,慢性應(yīng)激可引起大鼠抑郁樣行為改變,例如動(dòng)物體質(zhì)量下降、探索活動(dòng)減少及減少對(duì)獎(jiǎng)賞刺激的反應(yīng)[3],并且通過(guò)水迷宮及八臂迷宮證實(shí),慢性應(yīng)激暴露還可削弱大鼠的認(rèn)知過(guò)程[4-5]。

      在中樞神經(jīng)系統(tǒng)中,海馬是涉及重復(fù)或慢性應(yīng)激引起神經(jīng)可塑性異常的大腦區(qū)域之一,這些異常包括海馬萎縮、神經(jīng)發(fā)生減少及突觸可塑性受損。海馬齒狀回(Hippocampal dentate gyrus,DG)對(duì)應(yīng)激激素糖皮質(zhì)激素尤其敏感,可以調(diào)節(jié)HPA軸的功能[6],并且新近研究發(fā)現(xiàn),海馬DG神經(jīng)元在提高或保持學(xué)習(xí)記憶能力方面扮演重要的角色,與學(xué)習(xí)記憶密切相關(guān)[7]。腦神經(jīng)神經(jīng)營(yíng)養(yǎng)因子(brain derived neurotrophic factor,BDNF)是神經(jīng)生長(zhǎng)因子家族的一員,在海馬及前額葉皮質(zhì)分布最為廣泛,可以調(diào)節(jié)腦神經(jīng)元的生存、突觸傳遞及突觸可塑性。多數(shù)學(xué)者認(rèn)為BDNF的調(diào)節(jié)異常與抑郁癥的病理發(fā)展有關(guān)。Karege等發(fā)現(xiàn),重癥抑郁病人血清BDNF水平下降,與抑郁評(píng)分量表得分呈負(fù)相關(guān),并且與健康受試者的情緒障礙有關(guān)[8]。動(dòng)物實(shí)驗(yàn)證實(shí),大鼠經(jīng)過(guò)應(yīng)激刺激后,大腦某些區(qū)域BDNF mRNA及BDNF蛋白均顯著減少[9],并且有學(xué)者證實(shí)慢性抗抑郁藥物治療與BDNF信號(hào)通路有關(guān),可以提高BDNF的合成。endprint

      研究認(rèn)為,體育鍛煉可以預(yù)防大腦細(xì)胞的老化、死亡、功能障礙及神經(jīng)退行性疾病。此外,研究發(fā)現(xiàn)長(zhǎng)期體育鍛煉可以改善情緒及認(rèn)知障礙[10]。雖然體育鍛煉改善認(rèn)知功能的確切機(jī)制仍有待闡明,但是多數(shù)學(xué)者認(rèn)為運(yùn)動(dòng)對(duì)依賴(lài)海馬的學(xué)習(xí)記憶的影響可能與海馬神經(jīng)發(fā)生、突觸可塑性和神經(jīng)營(yíng)養(yǎng)因子,尤其是腦源性神經(jīng)營(yíng)養(yǎng)因子BDNF等有關(guān)。跑臺(tái)運(yùn)動(dòng)的特征是讓動(dòng)物每天在有限的時(shí)間內(nèi)運(yùn)動(dòng),更類(lèi)似于人的體育鍛練。Aguiar等[11]研究表明,3~12周的跑臺(tái)運(yùn)動(dòng)可以糾正應(yīng)激對(duì)機(jī)體的不良影響及增強(qiáng)應(yīng)激大鼠的學(xué)習(xí)記憶能力。本課題組的前期研究發(fā)現(xiàn),長(zhǎng)期跑臺(tái)運(yùn)動(dòng)改善慢性應(yīng)激大鼠學(xué)習(xí)記憶能力及海馬CA1與CA3區(qū)BDNF的表達(dá),但是運(yùn)動(dòng)對(duì)應(yīng)激大鼠海馬DG區(qū)BDNF的表達(dá)尚無(wú)相關(guān)研究;因此,本實(shí)驗(yàn)采取4周中等強(qiáng)度跑臺(tái)運(yùn)動(dòng),通過(guò)制備大鼠不可預(yù)知慢性應(yīng)激模型(chronic unpredictable mild stress,CUS),探討4周中等強(qiáng)度跑臺(tái)運(yùn)動(dòng)改善CUS大鼠學(xué)習(xí)記憶能力是否與海馬DG區(qū)BDNF的表達(dá)水平變化有關(guān)。

      1 材料與方法

      1.1 動(dòng)物及分組

      30只雄性健康8周齡Sprague-Dawley(SD)大鼠體質(zhì)量200~220 g,飼養(yǎng)于中北大學(xué)動(dòng)物飼養(yǎng)室(鼠籠規(guī)格:50 cm×26 cm×25 cm),濕度45%~65%,室溫20 ~24 ℃,光照周期為12 h光照/12 h黑暗(晝夜顛倒除外),實(shí)驗(yàn)過(guò)程中大鼠可自由獲得食物及飲水(除了必要的應(yīng)激程序)。30只大鼠隨機(jī)分為正常對(duì)照組C(control group,n=10)、應(yīng)激模型組CUS(chronic stress group,n=10)及應(yīng)激運(yùn)動(dòng)組CUS+E(chronic stress group treated with exercise group,n=10)3組,所有大鼠均單籠飼養(yǎng)。

      1.2 CUS模型制備[12]

      CUS組及CUS+E組大鼠從第2周開(kāi)始每天上午(09:00—12:00)接受不可預(yù)知應(yīng)激4周,根據(jù)以前學(xué)者描述的方法稍作修改,應(yīng)激刺激包括7種溫和刺激。為了使應(yīng)激程序不可預(yù)知,每周隨機(jī)安排7種應(yīng)激程序順序,見(jiàn)表1。

      1.3 跑臺(tái)訓(xùn)練安排

      大鼠適應(yīng)環(huán)境1周后,從第2周開(kāi)始每天下午CUS+E組大鼠進(jìn)行跑臺(tái)訓(xùn)練(0坡度)4周[13],見(jiàn)表2。

      1.4 八臂迷宮測(cè)試

      八臂迷宮實(shí)驗(yàn)[14]是評(píng)估動(dòng)物學(xué)習(xí)記憶能力的常用模型之一,由八臂(每個(gè)臂:長(zhǎng)41.9 cm,寬11.4 cm,高10.1 cm)組成;迷宮中央有一直徑為27.4 cm的八角形區(qū)域。正式實(shí)驗(yàn)前,大鼠被放在迷宮中央八角形區(qū)域探索適應(yīng)2 d(2次/d),八臂中距離2、4、6、8號(hào)臂末端1 cm處放置食物顆粒,允許其自由探索迷宮攝取臂中食物顆粒10 min。

      正式實(shí)驗(yàn)前所有大鼠被限制飲食2 d,實(shí)驗(yàn)時(shí)按上述訓(xùn)練順序4臂各放一顆餌料,關(guān)閉各臂門(mén),將動(dòng)物放在迷宮中央;15 s后將各臂門(mén)打開(kāi),讓動(dòng)物在迷宮中自由選擇進(jìn)入8臂中任何一臂攝取餌料(時(shí)間10 min)。測(cè)試指標(biāo):大鼠進(jìn)入放食物臂潛伏期(s)、大鼠再次進(jìn)入已經(jīng)吃過(guò)餌料的臂為工作記憶錯(cuò)誤次數(shù)(次)、動(dòng)物進(jìn)入不曾放餌料的臂為參考記憶錯(cuò)誤(次)、總的錯(cuò)誤次數(shù)(工作記憶錯(cuò)誤次數(shù)+參考記憶錯(cuò)誤次數(shù))、測(cè)試時(shí)間與吃完所有餌料所花的時(shí)間(s),如果10 min餌料未吃完記為10 min。

      1.5 海馬組織取材及海馬DG區(qū)BDNF免疫化學(xué)染色

      學(xué)習(xí)記憶行為學(xué)測(cè)試結(jié)束后,大鼠被麻醉后(戊巴比妥鈉,40 mg/kg)仰臥在手術(shù)臺(tái)上,

      手術(shù)剪開(kāi)大鼠胸腔暴露心臟,灌胃針經(jīng)心尖穿入主動(dòng)脈,右心耳被剪開(kāi),快速灌入生理鹽水(4 ℃)300 mL,隨后先快后慢灌入4%的、PH7.4的4 ℃多聚甲醛150 mL,灌注結(jié)束后迅速用鑷子開(kāi)顱取腦,移至蔗糖溶液(4 ℃、30%)脫水。70%酒精30 min 1次、90%酒精30 min 2次及96% 酒精15 min 2次進(jìn)行酒精梯度脫水,石蠟包埋后取冠狀切面切片(片厚5 μm),進(jìn)行BDNF免疫組織化學(xué)染色。為消除內(nèi)源性過(guò)氧化物酶的活性雙氧水(0.3箛)室溫孵育30 min,于修復(fù)液中修復(fù)抗原,PBS 液沖洗3次×5 min,滴加BDNF一抗100 μL(1∶500),37 ℃恒溫箱孵育3 h,PBS液沖洗后加入二抗(生物素標(biāo)記的山羊抗兔),37 ℃恒溫箱孵育30 min,加DAB 顯色液顯色12~15 min,蘇木素輕度復(fù)染、脫水、透明、封片。

      1.6 海馬DG區(qū)BDNF圖像分析

      每只大鼠選擇海馬DG區(qū)切片3張,每張切片隨機(jī)取 5 個(gè)不重疊(×400)視野觀察海馬DG區(qū)BDNF陽(yáng)性細(xì)胞分布情況,用Olympus 顯微鏡采集圖像,形態(tài)學(xué)圖像分析系統(tǒng)對(duì)海馬DG區(qū)BDNF的表達(dá)進(jìn)行半定量分析。用海馬DG區(qū)5個(gè)不同視野內(nèi)BDNF免疫陽(yáng)性細(xì)胞個(gè)數(shù)及面積的平均值表示每張切片BDNF的表達(dá)水平。

      1.7 統(tǒng)計(jì)學(xué)方法

      使用SPSS 18.0軟件,采用單因素方差分析法對(duì)學(xué)習(xí)記憶指標(biāo)及海馬DG區(qū)BDNF表達(dá)進(jìn)行組間差異比較,以P<0.05表示差異具有統(tǒng)計(jì)學(xué)意義。所有數(shù)據(jù)均采用平均數(shù)±標(biāo)準(zhǔn)差表示。

      2 實(shí)驗(yàn)結(jié)果

      2.1 跑臺(tái)運(yùn)動(dòng)對(duì)CUS大鼠學(xué)習(xí)記憶能力的影響

      與C組比較,CUS組大鼠進(jìn)入放餌料臂平均潛伏期(96.67±34.56) s及完成八臂迷宮時(shí)間(281.30±144.62) s均顯著延長(zhǎng)(P<0.01,P<0.01),參考記憶錯(cuò)誤次數(shù)(5.00±2.86)及工作記憶錯(cuò)誤次數(shù)(4.24±2.28)均顯著增加(P<0.05,P<0.01),總記憶錯(cuò)誤次數(shù)(8.70±4.54)顯著高于C組(P<0.01);與CUS組比較,CUS+E組大鼠進(jìn)入放餌料臂平均潛伏期(67.56±21.48) s及完成八臂迷宮時(shí)間(175.20±58.61) s均顯著縮短(P<0.05,P<0.05),參考記憶錯(cuò)誤次數(shù)(2.90±1.28)及總記憶錯(cuò)誤次數(shù)(4.60±1.89)均顯著減少(P<0.05,P<0.05),工作記憶錯(cuò)誤次數(shù)(3.86±1.68)與CUS組大鼠比較無(wú)統(tǒng)計(jì)學(xué)意義(P>0.05)。見(jiàn)表3和圖1所示。endprint

      2.2 跑臺(tái)運(yùn)動(dòng)對(duì)CUS大鼠海馬DG區(qū)BDNF表達(dá)的影響

      與C組比較,CUS組大鼠海馬DG區(qū)BDNF的表達(dá)顯著減少,數(shù)量(9.89±2.34)個(gè)及面積(1110.84±213.95) μm2均顯著下降(P<0.01,P<0.01),下降幅度分別為46.62%及45.94;經(jīng)過(guò)4周跑臺(tái)運(yùn)動(dòng)與CUS組大鼠比較,CUS+E組大鼠海馬DG區(qū)BDNF的表達(dá)顯著增加,BDNF數(shù)量(P<0.05)及面積(P<0.05)均顯著增多,增加幅度分別為35.99%及20.16%。如圖2、圖3所示。

      3 討論

      眾所周知,應(yīng)激對(duì)大腦及認(rèn)知功能有很重要的調(diào)節(jié)作用,且應(yīng)激與學(xué)習(xí)記憶及認(rèn)知功能之間有很復(fù)雜的關(guān)系。研究表明,急性應(yīng)激時(shí)與行為相關(guān)的大腦區(qū)域的神經(jīng)元不會(huì)受損,并且可導(dǎo)致神經(jīng)內(nèi)分泌活動(dòng)及中樞神經(jīng)系統(tǒng)功能加強(qiáng),而長(zhǎng)期應(yīng)激可產(chǎn)生一系列負(fù)面影響,神經(jīng)功能會(huì)受到明顯影響,包括認(rèn)知功能[15]。Uysal等[16]研究發(fā)現(xiàn),通過(guò)水迷宮實(shí)驗(yàn)證實(shí)大鼠經(jīng)急性足底電擊(1.6 mA)20 min大鼠學(xué)習(xí)記憶能力顯著增強(qiáng)。臨床研究證實(shí),長(zhǎng)期或嚴(yán)重的慢性應(yīng)激會(huì)影響成人的學(xué)習(xí)記憶及認(rèn)知功能。許多動(dòng)物實(shí)驗(yàn)表明,CUS可引起動(dòng)物出現(xiàn)類(lèi)似于臨床抑郁癥的表現(xiàn),例如蔗糖攝入量減少、體重增加、探索能力下降并減少獎(jiǎng)勵(lì)刺激[17],另外,CUS暴露可以影響認(rèn)知過(guò)程,如學(xué)習(xí)記憶能力下降;因此,可以認(rèn)為,應(yīng)激對(duì)學(xué)習(xí)記憶產(chǎn)生正面或負(fù)面影響或許與應(yīng)激的持續(xù)時(shí)間、應(yīng)激程度及類(lèi)型有關(guān)。本研究通過(guò)八臂迷宮實(shí)驗(yàn)證實(shí),經(jīng)過(guò)28 d不可預(yù)知的應(yīng)激,大鼠進(jìn)入有食物的臂潛伏期延長(zhǎng),錯(cuò)誤次數(shù)明顯增多,說(shuō)明長(zhǎng)期應(yīng)激顯著削弱了大鼠的學(xué)習(xí)記憶能力,與前期學(xué)者研究一致。

      多數(shù)研究表明,體育活動(dòng)有益于大腦功能的神經(jīng)保護(hù),并且對(duì)在學(xué)習(xí)記憶過(guò)程中起重要作用的神經(jīng)活動(dòng)的變化、突觸結(jié)構(gòu)及重要神經(jīng)遞質(zhì)的合成均有很重要的作用[18]。臨床研究認(rèn)為,體育活動(dòng)可以逆轉(zhuǎn)應(yīng)激的有害影響,有效降低應(yīng)激對(duì)機(jī)體的損害和改善抑郁患者的情緒障礙及認(rèn)知功能[19]。Dimeo等[20]通過(guò)抑郁評(píng)分量表證實(shí)有氧鍛煉可以降低中度及重度抑郁病人的抑郁評(píng)分。動(dòng)物實(shí)驗(yàn)證實(shí),慢性應(yīng)激大鼠經(jīng)過(guò)0坡度、速度8 m/min、每天30 min,連續(xù)6周的跑臺(tái)運(yùn)動(dòng)可顯著改善應(yīng)激大鼠的學(xué)習(xí)記憶能力[21]。而Radahmadi等[22]發(fā)現(xiàn)規(guī)律的中等強(qiáng)度跑臺(tái)運(yùn)動(dòng)在預(yù)防及治療慢性應(yīng)激引起的記憶障礙中均扮演重要角色。一些研究也表明,跑臺(tái)運(yùn)動(dòng)可以提高學(xué)習(xí)和記憶的速度,增強(qiáng)認(rèn)知功能。Radak等[23]研究認(rèn)為動(dòng)物在跑步機(jī)上跑步更類(lèi)似于人類(lèi)的運(yùn)動(dòng)鍛煉,且最近的體外研究表明,中等強(qiáng)度跑臺(tái)運(yùn)動(dòng)不會(huì)引起作為應(yīng)激標(biāo)記的皮質(zhì)酮水平的升高[24]。因此,本研究選擇的運(yùn)動(dòng)方式為中等強(qiáng)度跑臺(tái)運(yùn)動(dòng),結(jié)果發(fā)現(xiàn)與CUS組大鼠比較,CUS+E大鼠經(jīng)過(guò)4周中等強(qiáng)度跑臺(tái)運(yùn)動(dòng)八臂迷宮實(shí)驗(yàn)中進(jìn)入有食物臂的潛伏期及完成迷宮探索時(shí)間均顯著縮短,錯(cuò)誤次數(shù)減少,提示跑臺(tái)運(yùn)動(dòng)可顯著改善CUS大鼠的學(xué)習(xí)記憶障礙,與上述學(xué)者研究結(jié)果一致。

      研究認(rèn)為,長(zhǎng)期的應(yīng)激刺激會(huì)通過(guò)改變海馬的形態(tài)和功能影響學(xué)習(xí)記憶能力,而McKinnon等研究發(fā)現(xiàn)重癥抑郁癥患者海馬體積減小;Kempermann等認(rèn)為,成年人神經(jīng)發(fā)生的特定區(qū)域在海馬DG區(qū),而有學(xué)者認(rèn)為重癥抑郁癥患者DG區(qū)神經(jīng)形成的減少與海馬體積減小有關(guān),并且抗抑郁藥物治療成功與否與神經(jīng)形成的增多有關(guān)[25]。Travis等[26]研究表明海馬DG區(qū)體積的大小在重癥抑郁癥患者中起著關(guān)鍵作用,并且與抑郁癥患者認(rèn)知功能的下降密切相關(guān)。因此,本實(shí)驗(yàn)中我們聚焦于海馬DG區(qū)域。腦源性神經(jīng)營(yíng)養(yǎng)因子BDNF在大腦中廣泛分布,在海馬DG區(qū)有較高表達(dá),與神經(jīng)元的生存、突觸的生長(zhǎng)及分化有關(guān)。Zhang等[27]研究表明海馬BDNF與海馬容量及記憶有關(guān),易受各種精神疾病及慢性應(yīng)激的影響。多數(shù)學(xué)者認(rèn)為,應(yīng)激刺激可以減弱海馬、前額葉皮質(zhì)等大腦區(qū)域BDNF的表達(dá),而抗抑郁治療可以增加這些區(qū)域BDNF的表達(dá)[28]。眾所周知,BDNF涉及長(zhǎng)時(shí)程增強(qiáng),增強(qiáng)突觸可塑性,與學(xué)習(xí)記憶的細(xì)胞機(jī)制有關(guān)。而抗抑郁藥物慢性治療可以明顯逆轉(zhuǎn)慢性應(yīng)激導(dǎo)致的抑郁行為和認(rèn)知參數(shù)的改變與海馬BDNF的表達(dá)上調(diào)有關(guān);因此,可以推測(cè)本實(shí)驗(yàn)中28 d CUS導(dǎo)致的大鼠學(xué)習(xí)記憶能力的下降與海馬DG區(qū)BDNF的表達(dá)下降有關(guān)。實(shí)驗(yàn)表明,HPA軸功能紊亂與抑郁等情緒障礙有關(guān),Liu等[29]認(rèn)為慢性應(yīng)激激活HPA軸導(dǎo)致皮質(zhì)酮過(guò)度分泌在抑郁癥的發(fā)病機(jī)制及神經(jīng)生物學(xué)方面起重要作用。本課題組的前期研究也已經(jīng)證實(shí),海馬是高濃度血漿皮質(zhì)酮攻擊的主要靶區(qū),并且與應(yīng)激性海馬損傷過(guò)程有關(guān),慢性應(yīng)激時(shí)大量的皮質(zhì)酮與海馬中糖皮質(zhì)激素受體結(jié)合,導(dǎo)致海馬神經(jīng)發(fā)生減少,突觸可塑性受損,損傷長(zhǎng)時(shí)程增強(qiáng),導(dǎo)致學(xué)習(xí)記憶能力下降;并且慢性應(yīng)激引起的皮質(zhì)酮持續(xù)增加可能會(huì)通過(guò)影響海馬腺苷酸活化蛋白激酶(AMPK)活性從而減少海馬BDNF表達(dá)[30]。Pesic等[31]認(rèn)為,給予外源性皮質(zhì)酮可顯著降低大鼠海馬BDNF的表達(dá)。因此,血清皮質(zhì)酮水平升高可能是導(dǎo)致CUS大鼠海馬DG區(qū)BDNF表達(dá)下調(diào)的重要原因之一。

      腦源性神經(jīng)營(yíng)養(yǎng)因子BDNF是運(yùn)動(dòng)對(duì)大腦是否有影響的重要調(diào)節(jié)因子。許多研究認(rèn)為運(yùn)動(dòng)對(duì)中樞神經(jīng)系統(tǒng)神經(jīng)形成及認(rèn)知功能改變與BDNF有關(guān),并且BDNF對(duì)于有益于學(xué)習(xí)記憶的海馬突塑性的調(diào)節(jié)尤其重要,神經(jīng)營(yíng)養(yǎng)因子水平的增加會(huì)降低海馬神經(jīng)元死亡和增強(qiáng)海馬突觸傳遞[32]。學(xué)者的前期研究表明,自愿或強(qiáng)迫的跑臺(tái)運(yùn)動(dòng)均可以增加內(nèi)源性神經(jīng)營(yíng)養(yǎng)因子如BDNF的水平[33]。Fang等[34]認(rèn)為,跑臺(tái)運(yùn)動(dòng)通過(guò)調(diào)節(jié)應(yīng)激大鼠海馬BDNF通路改善應(yīng)激大鼠的學(xué)習(xí)記憶能力。本研究也證實(shí)了上述觀點(diǎn)。研究表明,BDNF可以調(diào)節(jié)自由基代謝,增加谷胱甘肽氧化物酶(Gpx)及超氧化物歧化酶(SOD)等在神經(jīng)元內(nèi)的含量,對(duì)減輕神經(jīng)元損傷起重要作用[35]。也有研究認(rèn)為,BDNF可通過(guò)阻斷細(xì)胞凋亡蛋白激酶3抑制細(xì)胞凋亡防止大腦損傷,提高腦缺血大鼠空間學(xué)習(xí)和記憶功能[36]。本課題組前期研究已經(jīng)證實(shí),4周中等強(qiáng)度跑臺(tái)運(yùn)動(dòng)可顯著降低慢性應(yīng)激大鼠的血清皮質(zhì)酮水平;因此,可以推測(cè)本實(shí)驗(yàn)中4周中等強(qiáng)度跑臺(tái)運(yùn)動(dòng)增強(qiáng)CUS大鼠學(xué)習(xí)記憶能力可能與拮抗HPA軸功能亢進(jìn),減少血清皮質(zhì)酮分泌,上調(diào)CUS大鼠海馬DG區(qū)BDNF表達(dá),從而增強(qiáng)海馬抗氧化能力及抑制細(xì)胞凋亡有關(guān),具體機(jī)制需進(jìn)一步研究。endprint

      4 結(jié)論

      本實(shí)驗(yàn)結(jié)果顯示:長(zhǎng)期慢性不可預(yù)知應(yīng)激導(dǎo)致八臂迷宮實(shí)驗(yàn)中大鼠空間學(xué)習(xí)記憶能力下降、海馬DG區(qū)BDNF表達(dá)減弱,提示海馬BDNF信號(hào)通路的改變與慢性應(yīng)激致大鼠學(xué)習(xí)記憶的損害有關(guān)。而4周中等強(qiáng)度跑臺(tái)運(yùn)動(dòng)可以改善慢性應(yīng)激導(dǎo)致的大鼠記憶損害,可能與規(guī)律運(yùn)動(dòng)激活海馬BDNF信號(hào)通路,增強(qiáng)海馬DG區(qū)BDNF的表達(dá),增強(qiáng)海馬神經(jīng)元的營(yíng)養(yǎng)從而削弱慢性應(yīng)激對(duì)大鼠的腦損害有關(guān);因此,本研究從分子學(xué)角度證實(shí)跑臺(tái)運(yùn)動(dòng)在改善慢性應(yīng)激導(dǎo)致的大鼠認(rèn)知功能下降方面起重要的有益作用,具體機(jī)制需進(jìn)一步研究。

      參考文獻(xiàn):

      [1] SCHECHTER L E, RING R H, BEYER C E, et al. Innovative approaches for the development of antidepressant drugs: Current and future strategies[J]. Neurorx, 2005, 2(4):590.

      [2] COOPER A A, STRUNK D R, RYAN E T, et al. The therapeutic alliance and therapist adherence as predictors of dropout from cognitive therapy for depression when combined with antidepressant medication[J]. Journal of Behavior Therapy & Experimental Psychiatry, 2016(50):113.

      [3] LI Y C, SHEN J D, LI J, et al. Chronic treatment with baicalin prevents the chronic mild stress-induced depressive-like behavior: involving the inhibition of cyclooxygenase-2 in rat brain[J]. Progress in neuro-psychopharmacology & biological psychiatry, 2013, 40(2):138.

      [4] GE L, ZHU M M, YANG J Y, et al. Differential proteomic analysis of the anti-depressive effects of oleamide in a rat chronic mild stress model of depression[J]. Pharmacology Biochemistry & Behavior, 2015(131):77.

      [5] LIU D, ZHEN W, GAO Z, et al. Effects of curcumin on learning and memory deficits, BDNF, and ERK protein expression in rats exposed to chronic unpredictable stress[J]. Behavioural Brain Research, 2014(271):116.

      [6] RADAHMADI M, HOSSEINI N, NASIMI A. Effect of chronic stress on short and long-term plasticity in dentate gyrus; Study of recovery and adaptation[J]. Neuroscience, 2014(280):121.

      [7] KESNER R P, KIRK R A, YU Z, et al. Dentate gyrus supports slope recognition memory, shades of grey-context pattern separation and recognition memory, and CA3 supports pattern completion for object memory[J]. Neurobiology of Learning & Memory, 2016(129):29.

      [8] MUNNO D, STERPONE S, FANIA S, et al. Plasma brain derived neurotrophic factor levels and neuropsychological aspects of depressed patients treated with paroxetine[J]. Panminerva Medica, 2013, 55(4):377.

      [9] LEEM Y H, YOON S S, KIM Y H, et al. Disrupted MEK/ERK signaling in the medial orbital cortex and dorsal endopiriform nuclei of the prefrontal cortex in a chronic restraint stress mouse model of depression[J]. Neuroscience Letters, 2014, 580(10):163.

      [10] DESCHAMPS T, THOMASOLLIVIER V, SAUVAGET A, et al. Balance characteristics in patients with major depression after a two-month walking exercise program: A pilot study[J]. Gait & Posture, 2015, 42(4):590.endprint

      [11] JR A A, CASTRO A A, MOREIRA E L, et al. Short bouts of mild-intensity physical exercise improve spatial learning and memory in aging rats: involvement of hippocampal plasticity via AKT, CREB and BDNF signaling[J]. Mechanisms of Ageing & Development, 2011, 132(11/12):560.

      [12] BRAUN A A, SKELTON M R, VORHEES C V, et al. Comparison of the elevated plus and elevated zero mazes in treated and untreated male Sprague Dawley rats: Effects of anxiolytic and anxiogenic agents[J]. Pharmacology Biochemistry & Behavior, 2011, 97(3):406.

      [13] ZAGAAR M, ALHAIDER I, DAO A, et al. The beneficial effects of regular exercise on cognition in REM sleep deprivation: behavioral, electrophysiological and molecular evidence[J]. Neurobiology of Disease, 2012, 45(3):1153.

      [14] SPIEKER E A, ASTUR R S, WEST J T, et al. Spatial memory deficits in a virtual reality eight-arm radial maze in schizophrenia[J]. Schizophrenia Research, 2012, 135(1/3):84.

      [15] WU R, SHUI L, WANG S, et al. Bilobalide alleviates depression-like behavior and cognitive deficit induced by chronic unpredictable mild stress in mice[J]. Behavioural Pharmacology, 2016, 27(7):596.

      [16] UYSAL N, SISMAN A R, DAYI A, et al. Acute footshock-stress increases spatial learning -memory and correlates to increased hippocampal BDNF and VEGF and cell numbers in adolescent male and female rats[J]. Neurosci Lett, 2012,514(2):141.

      [17] PESARICO A P, SARTORI G, BRüNING C A, et al. A novel isoquinoline compound abolishes chronic unpredictable mild stress-induced depressive-like behavior in mice[J]. Behavioural Brain Research, 2016(307):73.

      [18] SHEN H, TONG L, BALAZS R, et al. Physical activity elicits sustained activation of the cyclic AMP response element-binding protein and mitogen-activated protein kinase in the rat hippocampus[J]. Neuroscience, 2001, 107(2):219.

      [19] STANTON R, REABURN P. Exercise and the treatment of depression: A review of the exercise program variables[J]. Journal of Science & Medicine in Sport, 2014, 17(2):177.

      [20] DIMEO F, BAUER M, VARAHRAM I, et al. Benefits from aerobic exercise in patients with major depression: a pilot study[J]. British Journal of Sports Medicine, 2001, 35(2):114.

      [21] CETINKAYA C, SISMAN A R, KIRAY M, et al. Positive effects of aerobic exercise on learning and memory functioning, which correlate with hippocampal IGF-1 increase in adolescent rats[J]. Neuroscience Letters, 2013, 549(33):177.

      [22] RADAHMADI M, ALAEI H, SHARIFI M R, et al. Preventive and therapeutic effect of treadmill running on chronic stress-induced memory deficit in rats[J]. Journal of Bodywork & Movement Therapies, 2015, 19(2):238.endprint

      [23] RADAK Z, TOLDY A, SZABO Z, et al. The effects of training and detraining on memory, neurotrophins and oxidative stress markers in rat brain[J]. Neurochemistry International, 2006, 49(4):387.

      [24] MOKHTARIZAER A, GHODRATI-JALDBAKHAN S, VAFAEI A A, et al. Effects of voluntary and treadmill exercise on spontaneous withdrawal signs, cognitive deficits and alterations in apoptosis -associated proteins in morphine-dependent rats[J]. Behav Brain Res, 2014(271):160.

      [25] KEMPERMANN G, KRONENBERG G. Depressed new neurons-adult hippocampal neurogenesis and a cellular plasticity hypothesis of major depression[J]. Biol Psychiatry, 2003,54(5):499.

      [26] TRAVIS S, COUPLAND N J, SILVERSONE P H, et al. Dentate gyrus volume and memory performance in major depressive disorder[J]. J Affect Disord, 2015(172):159.

      [27] ZHANG L, BENEDEK D M, FULLERTON C S, et al. PTSD risk is associated with BDNF Val66Met and BDNF overexpression[J]. Molecular Psychiatry, 2014, 19(1):8.

      [28] LEE B H, KIM Y K. The Roles of BDNF in the Pathophysiology of Major Depression and in Antidepressant Treatment[J]. Psychiatry Investigation, 2010, 7(4):231.

      [29] DEXIANG L, KAI X, XUDONG Y, et al. Resveratrol reverses the effects of chronic unpredictable mild stress on behavior, serum corticosterone levels and BDNF expression in rats[J]. Behavioural Brain Research, 2014, 264(5):9.

      [30] KIM D M, LEEM Y H. Chronic stress-induced memory deficits are reversed by regular exercise via AMPK-mediated BDNF induction[J]. Neuroscience, 2016, 324(2):271.

      [31] PESIC V, STANIC D, PETROVIC J, et al. Oxytocin affects changes in behaviour, BDNF and Ki-67 expression in hippocampus, caused by chronic corticosterone treatment[J]. European Neuropsychopharmacology, 2016, 26(2):289.

      [32] HAN H, WU L M, HAN M X, et al. Diabetes impairs spatial learning and memory and hippocampal neurogenesis via BDNF in rats with transient global ischemia[J]. Brain Research Bulletin, 2016(124):269.

      [33] ALOMARI M A, KHABOUR O F, ALZOUBI K H, et al. Forced and voluntary exercises equally improve spatial learning and memory and hippocampal BDNF levels[J]. Behavioural Brain Research, 2013, 247(7):34.

      [34] FANG Z H, LEE C H, SEO M K, et al. Effect of treadmill exercise on the BDNF-mediated pathway in the hippocampus of stressed rats[J]. Neuroscience Research, 2013, 76(4):187.

      [35] KWON D H, KIM B S, CHANG H, et al. Exercise ameliorates cognition impairment due to restraint stress-induced oxidative insult and reduced BDNF level[J]. Biochemical & Biophysical Research Communications, 2013, 434(2):245.

      [36] ZHANG Y, LAN R, WANG J, et al. Acupuncture reduced apoptosis and up-regulated BDNF and GDNF expression in hippocampus following hypoxia-ischemia in neonatal rats[J]. Journal of Ethnopharmacology, 2015(172):124.endprint

      德令哈市| 基隆市| 青龙| 赤壁市| 囊谦县| 平江县| 汽车| 祁东县| 乐至县| 三江| 肥西县| 新化县| 阳江市| 潞西市| 武胜县| 云和县| 贵州省| 府谷县| 特克斯县| 南涧| 曲周县| 繁峙县| 云阳县| 临沂市| 龙泉市| 阳城县| 林州市| 岐山县| 松滋市| 蒙自县| 沙雅县| 昆山市| 龙泉市| 内江市| 靖西县| 英超| 泌阳县| 枞阳县| 神池县| 兴海县| 仁布县|