• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      運(yùn)動(dòng)通過(guò)AMPK信號(hào)通路改善高脂誘導(dǎo)的Ⅱ型糖尿病小鼠心肌糖脂代謝

      2018-02-05 01:31:13李國(guó)平
      體育科學(xué) 2018年1期
      關(guān)鍵詞:高脂葡萄糖纖維化

      田 閣, 徐 昕, 李國(guó)平

      ?

      運(yùn)動(dòng)通過(guò)AMPK信號(hào)通路改善高脂誘導(dǎo)的Ⅱ型糖尿病小鼠心肌糖脂代謝

      田 閣1, 徐 昕2, 李國(guó)平3

      1. 北京體育大學(xué)研究生院, 北京 100084; 2. 上海體育學(xué)院運(yùn)動(dòng)科學(xué)學(xué)院, 上海 200438; 3. 國(guó)家體育總局運(yùn)動(dòng)醫(yī)學(xué)研究所, 北京 100061

      目的:糖尿病是一種常見(jiàn)的慢性疾病,心肌功能受損是糖尿病患者心衰和死亡的重要原因之一。觀(guān)察8周有氧聯(lián)合抗阻運(yùn)動(dòng)對(duì)糖尿病小鼠心肌形態(tài)結(jié)構(gòu)的影響,探討AMPK信號(hào)通路在其中可能的作用機(jī)制,以期為防治糖尿病患者心肌受損提供新的靶向。方法:采用16周高脂飲食建立糖尿病模型,建模成功后將小鼠分為糖尿病安靜組(DS組)和糖尿病運(yùn)動(dòng)組(DE組);同齡C57小鼠為空白對(duì)照組(CS組)。糖尿病組采用高脂喂養(yǎng),DE組進(jìn)行8周有氧聯(lián)合抗阻運(yùn)動(dòng)干預(yù)。采用腹腔注射葡萄糖耐量實(shí)驗(yàn)(IPGTT)檢測(cè)小鼠糖耐量,天狼腥紅染色測(cè)定心肌纖維化,麥胚凝集素(WGA)染色檢測(cè)心肌橫截面積,Western blot法檢測(cè)心肌AMPKα、磷酸化的AMPKαThr172(p-AMPKα)、沉默信息調(diào)節(jié)因子2同源蛋白1(SIRT1)、過(guò)氧化物酶體增殖物激活受體γ共激活因子-1α(PGC-1α)和過(guò)氧化物酶體增殖物激活受體α(PPARα)蛋白表達(dá)。結(jié)果:1)DS組小鼠體重和糖耐量均顯著高于CS組(<0.01),DE組小鼠體重和AUC均顯著低于DS組(<0.01);2)與CS組相比,DS組小鼠心肌血管周?chē)w維化比例顯著增加(<0.05),重量和心臟重量/脛骨長(zhǎng)度顯著增加(<0.01),心肌橫截面積有所增加但無(wú)顯著性差異(>0.05);與DS組相比,DE組心肌血管周?chē)w維化比例顯著降低(<0.05);3)與CS組相比,DS組小鼠心肌p-AMPKα非常顯著降低(<0.01),SIRT1和PGC-1α顯著降低(<0.05),PPARα顯著升高(<0.05);與DS組相比,DE組小鼠心肌p-AMPKα、SIRT1和PGC-1α非常顯著升高(<0.01),PPARα非常顯著降低(<0.01)。結(jié)論:長(zhǎng)期運(yùn)動(dòng)可以激活A(yù)MPK及下游通路,改善心肌糖脂代謝,從而減輕糖尿病后心肌重構(gòu)。

      運(yùn)動(dòng);腺苷酸活化蛋白激酶;糖尿病;心?。惶侵x

      糖尿病是一種常見(jiàn)的慢性疾病,預(yù)計(jì)到2030年,世界糖尿病患者將達(dá)到3.66億,約占世界人口的4%,成為重大的公共衛(wèi)生問(wèn)題[32]。糖尿病患者多存在心肌肥大和心臟舒張功能受損等癥狀,是糖尿病患者心衰和死亡的重要原因之一[19]。糖尿病患者心肌功能受損后的主要治療方式包括藥物治療、基因處理和運(yùn)動(dòng)干預(yù)。藥物治療費(fèi)用較高,同時(shí)可能存在副作用[30]?;蛱幚砟壳叭栽谘邪l(fā)中,臨床應(yīng)用尚需時(shí)間。運(yùn)動(dòng)干預(yù)可能是相對(duì)經(jīng)濟(jì)有效的治療手段[18]。

      腺苷酸活化蛋白激酶(5’-adenosinemono phosphate ctivated protein kinase, AMPK)作為能量感受器,在改善糖尿病能量代謝中起到非常重要的作用[15]。近年來(lái)研究發(fā)現(xiàn),激活A(yù)MPK還可以改善胰島素抵抗[14],減輕心肌肥大和心肌纖維化,改善心力衰竭[17]。同時(shí),AMPK與運(yùn)動(dòng)關(guān)系比較密切。有氧運(yùn)動(dòng)聯(lián)合抗阻運(yùn)動(dòng)是目前臨床上推薦的糖尿病運(yùn)動(dòng)處方[8, 20],但其是否能夠通過(guò)AMPK改善糖尿病心肌受損尚不明確。因此,本研究采用高脂飼養(yǎng)建立Ⅱ型糖尿病模型,觀(guān)察8周有氧運(yùn)動(dòng)聯(lián)合抗阻運(yùn)動(dòng)干預(yù)對(duì)心肌糖脂代謝的影響,探討AMPK及其下游通路在糖尿病心肌受損運(yùn)動(dòng)康復(fù)中的作用。

      1 研究對(duì)象與方法

      1.1 研究對(duì)象

      8周齡SPF級(jí)雄性C57小鼠36只,于第二軍醫(yī)大學(xué)動(dòng)物實(shí)驗(yàn)中心購(gòu)買(mǎi),于上海體育學(xué)院實(shí)驗(yàn)動(dòng)物中心飼養(yǎng)訓(xùn)練。小鼠自由進(jìn)食飲水,4只/籠。環(huán)境溫度20℃~24℃,相對(duì)濕度40%~60%,通風(fēng)良好,晝夜12 h/12 h循環(huán)照明。所有操作均嚴(yán)格遵守上海體育學(xué)院道德倫理委員會(huì)的要求。

      1.2 實(shí)驗(yàn)造模及分組

      小鼠隨機(jī)分為空白對(duì)照組(CS組,12只)和糖尿病組(24只)。CS組以普通飼料喂養(yǎng),糖尿病組以高脂飼料喂養(yǎng)(脂肪:60% kcal、碳水化合物:20% kcal、蛋白質(zhì):20% kcal,OpenSource Diets No.D12492)。第15、16周末分別對(duì)糖尿病組小鼠進(jìn)行隨機(jī)血糖測(cè)試,連續(xù)2次隨機(jī)血糖>11.1 mmol/L認(rèn)為糖尿病建模成功[7]。23只小鼠造模成功,隨機(jī)分為糖尿病安靜組(DS組,12只)和糖尿病運(yùn)動(dòng)組(DE組,11只)。CS組和DS組無(wú)運(yùn)動(dòng)干預(yù),DE組從第17周開(kāi)始進(jìn)行有氧聯(lián)合抗阻干預(yù)8周。

      1.3 運(yùn)動(dòng)方案

      運(yùn)動(dòng)實(shí)驗(yàn)開(kāi)始前,進(jìn)行3 d運(yùn)動(dòng)預(yù)適應(yīng);每周一、三、五有氧運(yùn)動(dòng)干預(yù):20 m/min,60 min[9];每周二、四、六抗阻運(yùn)動(dòng)干預(yù):90°爬梯運(yùn)動(dòng),速度不限且不負(fù)重,4次/組,共4組[16,22]。

      1.4 腹腔注射葡萄糖耐量實(shí)驗(yàn)(Intraperitoneal glucose tolerance test,IPGTT)

      24周后,對(duì)小鼠進(jìn)行腹腔注射葡萄糖耐量實(shí)驗(yàn)。小鼠禁食12 h,腹腔注射葡萄糖溶液(2 g/kg),并分別在腹腔注射后0 min、30 min、60 min、90 min、120 min時(shí)進(jìn)行剪尾(約0.5 cm)取血。采用血糖測(cè)試儀(強(qiáng)生公司,穩(wěn)豪倍易型)和配套試紙條測(cè)定血糖值,并繪制血糖曲線(xiàn),計(jì)算血糖曲線(xiàn)下面積(Area under the curve,AUC)[34]。

      1.5 組織取材及處理

      運(yùn)動(dòng)組小鼠末次運(yùn)動(dòng)后24 h取材,取材前禁食12 h,腹腔注射10%水合氯醛(2 mL/kg)麻醉,取心臟,將左心室上1/3置于多聚甲醛固定制作石蠟切片、下2/3置于-80℃,分別用于染色和Western blot。

      1.5.1 天狼腥紅染色

      將石蠟切片脫蠟后置于0.1%苦味酸天狼猩紅溶液染色 1 h,0.5%醋酸洗滌3×10 min,梯度脫水至二甲苯,封片。在顯微鏡下觀(guān)察、拍照,采用Image Pro Plus 6.0計(jì)算心肌間質(zhì)纖維化比例和血管周?chē)w維化比例。

      1.5.2 麥胚凝集素(Wheat germ agglutinin,WGA)染色

      將石蠟切片脫蠟后進(jìn)行抗原修復(fù),置于0.3%甲醇10 min,蒸餾水洗滌后置于0.01 mol/L檸檬酸鹽緩沖液,98℃水浴40 min;PBS洗滌10 min后滴加WGA-Alexa Fluor?488儲(chǔ)存液(1 mg/mL,Invitrogen公司),避光室溫孵育2 h,PBS緩沖液避光漂洗3×5 min,封片。采用Image Pro Plus 6.0計(jì)算心肌細(xì)胞大小。

      1.5.3 蛋白免疫印跡

      1)總蛋白提?。簩?0 mg心肌組織置于30 μLRIPA裂解液(內(nèi)含蛋白酶抑制劑PMFS)中,混合均勻后置于冰上勻漿;勻漿后將勻漿液置于離心機(jī)中16 000 rpm、4℃離心10 min;取上清,置于-20℃凍存?zhèn)溆谩2捎肂CA法測(cè)定蛋白濃度,按照BCA 試劑盒(Thermo Scientific)說(shuō)明書(shū)進(jìn)行蛋白濃度測(cè)定。煮沸樣本,100℃,5 min。2)Western blot:將樣本分別加入凝膠孔中,每孔20μg樣本。采用恒壓電泳,濃縮膠:90 V恒壓,30 min;分離膠120 V恒壓,60 min。采用濕式轉(zhuǎn)膜法將蛋白轉(zhuǎn)至PVDF膜,100 V,恒壓,1.5 h;5%脫脂牛奶室溫封閉,2 h;分別采用p-AMPKα、AMPKα、PGC-1α和PPARα的一抗(1︰2 000,Abcam公司)4℃冰箱孵育過(guò)夜;TBST洗膜6×5 min;采用對(duì)應(yīng)二抗(1︰3 000,Merck Millipore公司)室溫孵育1 h;TBST洗膜6×5 min;將ECL發(fā)光液以A液和B液1︰1的比例混勻后滴于膜上,暗室曝光呈像。3)計(jì)算結(jié)果:采用Image J計(jì)算蛋白條帶積分灰度值,Western blot結(jié)果以目的蛋白與內(nèi)參蛋白的積分灰度值的比值表示。

      1.6 統(tǒng)計(jì)學(xué)分析

      采用SPSS 19.0統(tǒng)計(jì)分析數(shù)據(jù),數(shù)據(jù)采用均值±標(biāo)準(zhǔn)差(±)表示。組間比較采用ANOVA單因素方差分析,以<0.05表示有顯著性差異。

      2 結(jié)果

      2.1 各組小鼠的體重和糖耐量

      表1 各組小鼠的體重

      注:*<0.05,**<0.01 vs CS組;#<0.05,##<0.01vs DS組;下同。

      表1顯示,實(shí)驗(yàn)前3組小鼠體重?zé)o顯著性差異(>0.05);24周后,DS組小鼠體重顯著高于CS組(<0.01),DE組小鼠體重顯著低于DS組(<0.01)。圖1顯示,DS組小鼠腹腔注射葡萄糖后0 min、30 min、60 min、90 min、120 min血液葡萄糖水平及IPGTT血糖曲線(xiàn)下面積(AUC)非常顯著高于CS組(<0.01);與DS組相比,DE組小鼠腹腔注射葡萄糖后30 min、60 min、90 min、120 min血液葡萄糖水平及IPGTT血糖曲線(xiàn)下面積(AUC)非常顯著降低(<0.01)。

      圖1 各組小鼠葡萄糖耐量實(shí)驗(yàn)結(jié)果

      Figure 1. Plasma Glucose Levels and AUC in IPGTT in Each Group

      2.2 各組小鼠的心肌重量和形態(tài)學(xué)指標(biāo)

      圖2 各組小鼠心臟重量

      Figure 2. Results of Heart Weight and Heart Weiht/Gibia Length

      圖3 小鼠心肌天狼腥紅染色和WGA染色結(jié)果

      Figure 3. Results of Sitius Red Staining and WGA Staining in Mice Myocardium

      圖2、圖3結(jié)果顯示,與CS組相比,DS組小鼠心臟重量和心臟重量/脛骨長(zhǎng)度非常顯著增加(<0.01),心肌間質(zhì)纖維化比例無(wú)顯著性差異(>0.05),血管周?chē)w維化比例升高(<0.05),心肌細(xì)胞橫截面積顯著增加,但無(wú)顯著性差異(>0.05);與DS組相比,DE組小鼠心肌血管周?chē)w維化顯著減低(<0.05),心肌細(xì)胞橫截面積減小,但無(wú)顯著性差異(>0.05),其他指標(biāo)均無(wú)顯著性差異(>0.05)。

      2.3 各組小鼠心肌組織AMPKα及相關(guān)蛋白的表達(dá)

      圖4 心肌組織各蛋白表達(dá)水平

      Figure 4. Expression of Relative Protein in Mice Myocardium

      圖4顯示,與CS組相比,DS組小鼠心肌p-AMPKα非常顯著降低(<0.01),SIRT1和PGC-1α顯著降低(<0.05),PPARα顯著升高(<0.05);與DS組相比,DE組小鼠心肌p-AMPKα、SIRT1和PGC-1α非常顯著升高(<0.01),PPARα非常顯著降低(<0.01)。

      3 分析討論

      本研究發(fā)現(xiàn),8周有氧聯(lián)合抗阻運(yùn)動(dòng)可以明顯改善高脂飲食誘導(dǎo)的Ⅱ型糖尿病小鼠糖耐量受損和心肌血管周?chē)w維化;同時(shí),高脂飲食導(dǎo)致Ⅱ型糖尿病小鼠心肌p-AMPKα顯著降低,沉默信息調(diào)節(jié)因子2同源蛋白1(Silent matingtype information regulation homolog1,SIRT1)和過(guò)氧化物酶體增殖物激活受體γ共激活因子-1 alpha (Peroxisome proliferator-activated receptor γ coactivator-1,PGC-1α)顯著降低,過(guò)氧化物酶體增殖劑激活受體α(Peroxisome proliferators-activated receptor alpha,PPARα)顯著升高,而運(yùn)動(dòng)可以激活A(yù)MPKα,增加SIRT1和 PGC-1α表達(dá),抑制PPARα表達(dá)??梢?jiàn),長(zhǎng)期有氧聯(lián)合抗阻運(yùn)動(dòng)可以通過(guò)激活A(yù)MPK及其下游通路改善Ⅱ型糖尿病小鼠心肌糖脂代謝紊亂,減輕心肌重塑。

      3.1 Ⅱ型糖尿病小鼠模型建立

      糖尿病患者中Ⅱ型糖尿病約占90%。而在飲食誘導(dǎo)的糖尿病模型中,動(dòng)物心臟受損進(jìn)程與人體較為相似[13],因此,本研究采用高脂飲食建立Ⅱ型糖尿病模型。Ⅱ型糖尿病是由脂肪組織、骨骼肌和肝臟胰島素抵抗并伴隨胰島素分泌缺陷導(dǎo)致的,中心性肥胖是其基本特征,糖耐量受損是其重要診斷標(biāo)準(zhǔn)之一[1, 2]。本研究發(fā)現(xiàn),24周后,DS組小鼠體重和AUC顯著高于CS組,說(shuō)明DS組小鼠出現(xiàn)肥胖和糖耐量受損,進(jìn)一步證明糖尿病造模成功。同時(shí),本研究發(fā)現(xiàn),高脂喂養(yǎng)后,小鼠心臟重量和心臟重量/脛骨長(zhǎng)度以及心肌血管周?chē)w維化比例顯著增加,糖尿病小鼠心肌出現(xiàn)能量代謝紊亂,以及血管周?chē)w維化和心肌肥大,此結(jié)果與以往大多數(shù)研究相一致。Zeng等(2015)和Ouwens等(2005)發(fā)現(xiàn),高脂飲食后小鼠和大鼠心臟重量和心臟重量/脛骨長(zhǎng)度或者心臟重量/體重顯著增加,出現(xiàn)病理性心肌肥厚。Cannon等(2016)發(fā)現(xiàn),16周高脂喂養(yǎng)后,小鼠出現(xiàn)心肌纖維化和心肌肥大,心臟舒縮功能受損。但Patel等(2016)采用高脂喂養(yǎng)小鼠24周后發(fā)現(xiàn)小鼠未出現(xiàn)心肌肥厚,可能與其高脂飼料中脂肪含量較低(45% kcal)有關(guān)。

      3.2 運(yùn)動(dòng)對(duì)心肌形態(tài)學(xué)的影響

      連續(xù)泵血使心臟成為機(jī)體對(duì)能量需求較高的器官之一,其ATP大部分由線(xiàn)粒體氧化磷酸化產(chǎn)生,恒定流量的底物輸送到線(xiàn)粒體是滿(mǎn)足心臟高能量需求的關(guān)鍵。心臟中葡萄糖和脂肪酸是主要的代謝底物,正常心臟的一個(gè)重要特征是具有在不同生理和飲食條件下確保代謝靈活性和適當(dāng)ATP生產(chǎn)率的能力。糖尿病心臟主要依賴(lài)于脂肪酸氧化,并伴隨著葡萄糖氧化的減少[29]。缺乏代謝靈活性已被認(rèn)為是心力衰竭,包括糖尿病心肌病,發(fā)展的根本,但其機(jī)制尚不清楚。糖尿病心臟中,游離脂肪酸儲(chǔ)存增加會(huì)引起心臟脂毒性,導(dǎo)致心肌細(xì)胞凋亡和心肌纖維化[3]。同時(shí),血糖增高引發(fā)間質(zhì)糖基化,可能會(huì)導(dǎo)致心肌纖維化和心室順應(yīng)性降低[25]。因此,改善糖脂代謝可能是防治糖尿病及其并發(fā)癥的關(guān)鍵。

      前瞻性研究發(fā)現(xiàn),運(yùn)動(dòng)可以減少Ⅱ型糖尿病和心血管疾病風(fēng)險(xiǎn),降低全因死亡率[18,31,32]。Duvivier等(2017)發(fā)現(xiàn),運(yùn)動(dòng)可以降低Ⅱ型糖尿病患者血糖水平,增加胰島素敏感性,改善機(jī)體胰島素抵抗。Xu等(2015)人發(fā)現(xiàn),采用主動(dòng)脈弓縮窄術(shù)誘導(dǎo)大鼠心衰前進(jìn)行4 W運(yùn)動(dòng)預(yù)適應(yīng)干預(yù),可以明顯減輕小鼠心肌病理性肥大和心臟收縮功能受損。本研究發(fā)現(xiàn),DE組小鼠心臟重量、心臟重量/脛骨長(zhǎng)度和心肌血管纖維化比例非常顯著降低,心肌細(xì)胞橫截面積出現(xiàn)一定程度減小??梢?jiàn),8周有氧聯(lián)合抗阻運(yùn)動(dòng)可以改善高脂誘導(dǎo)的糖尿病小鼠心肌重塑。

      3.3 運(yùn)動(dòng)對(duì)糖尿病小鼠心肌AMPK及其下游通路的影響

      AMPK是一個(gè)由功能亞基(α)和調(diào)節(jié)亞基(β,γ)構(gòu)成的異源三聚體蛋白[21],通過(guò)醛縮酶或感受胞漿內(nèi)AMP/ATP比值變化,廣泛參與機(jī)體能量代謝調(diào)節(jié)[38]。AMPK在調(diào)節(jié)心肌能量代謝中起重要作用,Chang等(2013)發(fā)現(xiàn),小檗堿調(diào)節(jié)胰島素抵抗大鼠心肌細(xì)胞葡萄糖代謝、減輕胰島素抵抗具有AMPK依賴(lài)性。以往研究表明,運(yùn)動(dòng)是激活體內(nèi)AMPK的最主要生理應(yīng)激[23]。運(yùn)動(dòng)可以通過(guò)激活脂肪組織、肝臟[27]、胰腺和骨骼肌[24]等組織中的AMPK改善胰島素抵抗,提示,運(yùn)動(dòng)激活A(yù)MPK也可能是改善糖尿病心肌代謝紊亂的關(guān)鍵。

      Canto等(2009)發(fā)現(xiàn),AMPK通過(guò)增加NAD/NADH比率或煙酰胺磷酸核糖轉(zhuǎn)移酶(Nicotinamide phosphoribosyltransferase,NAMPT)激活SIRT1及其下游轉(zhuǎn)錄因子PGC-1α和FOXO家族成員等。Xu等(2010)采用高脂喂養(yǎng)SIRT1基因敲除雜合子小鼠后發(fā)現(xiàn),SIRT1缺乏后肝臟脂肪酸氧化相關(guān)基因PGC-1α、肉毒堿棕櫚?;D(zhuǎn)移酶(Carnitinepalmitoyl transferase1A,CPT1A)和細(xì)胞色素-C(Cytochrome C,cytoc)表達(dá)減少,炎癥因子NF-κB表達(dá)增加,加重了高脂誘導(dǎo)的肝臟能量代謝紊亂和肝脂肪變性。Doan等(2015)采用細(xì)胞培養(yǎng),發(fā)現(xiàn)AMPK/SIRT1/PGC-1α通路在沒(méi)食子酸(Gallic acid)調(diào)節(jié)肥胖小鼠肩胛間棕色脂肪組織脂肪代謝,改善周身糖耐量受損中起重要作用。另外,PPARα是AMPK下游重要的脂質(zhì)調(diào)節(jié)因子,F(xiàn)inck等(2002)發(fā)現(xiàn),PPARα基因過(guò)表達(dá)小鼠心肌脂肪酸氧化率增加,葡萄糖攝取和利用減少,同時(shí)出現(xiàn)心肌病理性肥厚等與糖尿病心臟類(lèi)似的表征。本研究發(fā)現(xiàn),糖尿病小鼠心肌p-AMPKα顯著降低,SIRT1和PGC-1α顯著降低,PPARα顯著升高,而運(yùn)動(dòng)可以激活A(yù)MPKα,增加SIRT1和PGC-1α表達(dá),抑制PPARα表達(dá)??梢?jiàn),AMPK/SIRT1/PGC-1α和AMPK/ PPARα也可能是運(yùn)動(dòng)改善糖尿病心肌中代謝紊亂的重要通路。

      4 結(jié)論

      8周有氧聯(lián)合抗阻運(yùn)動(dòng)可能是通過(guò)激活A(yù)MPK/SIRT1/ PGC-1α和AMPK/PPARα通路,促進(jìn)心肌脂質(zhì)代謝,減輕糖耐量受損,從而改善高脂誘導(dǎo)的Ⅱ型糖尿病小鼠心肌重塑。

      [1] 王正珍. ACSM運(yùn)動(dòng)測(cè)試與運(yùn)動(dòng)處方指南[J]. 北京:人民衛(wèi)生出版社, 2015: 274-275.

      [2] AMERICAN DIABETES ASSOCIATION. Classification and dia-gnosis of diabetes[J]. Diabetes Care, 2017, 40(Suppl 1): S11-S24.

      [3] BUGGER H, ABEL E D. Molecular mechanisms of diabetic card-iomyopathy[J]. Diabetologia, 2014, 57(4): 660-671.

      [4] CANNON M V, SILLJE H H, SIJBESMA J W,. LXRalpha improves myocardial glucose tolerance and reduces cardiac hyper-trophy in a mouse model of obesity-induced type 2 diabetes[J]. Diabetologia, 2016, 59(3): 634-643.

      [5] CANTO C, GERHART-HINES Z, FEIGE J N,. AMPK regul-ates energy expenditure by modulating NAD+ metabolism and SIRT1 activity[J]. Nat, 2009, 458(7241): 1056-1060.

      [6] CHANG W, ZHANG M, LI J,. Berberine improves insulin resistance in cardiomyocytes via activation of 5'-adenosine monophosphate-activated protein kinase[J]. Metabolism, 2013, 62 (8): 1159-1167.

      [7] CHEN F, XIONG H, WANG J,. Antidiabetic effect of total flavonoids from Sanguis draxonis in type 2 diabetic rats[J]. J Ethnopharmacol, 2013, 149(3): 729-736.

      [8] CHURCH T S, BLAIR S N, COCREHAM S,. Effects of aerobic and resistance training on hemoglobin A1c levels in patients with type 2 diabetes: a randomized controlled trial[J]. JAMA, 2010, 304(20): 2253-2262.

      [9] DE ANGELIS K, WICHI R B, JESUS W R,. Exercise training changes autonomic cardiovascular balance in mice[J]. J Appl Physiol (1985), 2004, 96(6): 2174-2178.

      [10] DOAN K V, KO C M, KINYUA A W,. Gallic acid regulates body weight and glucose homeostasis through AMPK activation [J]. Endocrinol, 2015, 156(1): 157-168.

      [11] DUVIVIER B M, SCHAPER N C, HESSELINK M K,. Breaking sitting with light activities vs structured exercise: a randomised crossover study demonstrating benefits for glycaemic control and insulin sensitivity in type 2 diabetes[J]. Diabetologia, 2017, 60(3): 490-498.

      [12] FINCK B N, LEHMAN J J, LEONE T C,. The cardiac phen-otype induced by PPARα overexpression mimics that caused by diabetes mellitus[J]. J Clin Invest, 2002, 109(1): 121-130.

      [13] FUENTES-ANTRAS J, PICATOSTE B, GOMEZ-HERNANDEZ A,. Updating experimental models of diabetic cardiomyo pathy [J]. J Diabetes Res, 2015, 2015: 656795.

      [14] GAUTAM S, ISHRAT N, YADAV P,. 4-Hydroxyisoleucine attenuates the inflammation-mediated insulin resistance by the activation of AMPK and suppression of SOCS-3 coimmunopre cipitation with both the IR-beta subunit as well as IRS-1[J]. Mol Cell Biochem, 2016, 414(1-2): 95-104.

      [15] HU M, YE P, LIAO H,. Metformin protects H9C2 cardiomyocytes from high-glucose and hypoxia/reoxygenation injury via inhibition of reactive oxygen species generation and inflammatory responses: Role of AMPK and JNK[J]. J Diabetes Res, 2016, 2016: 2961954.

      [16] KIM H J, SO B, CHOI M,. Resistance exercise training increases the expression of irisin concomitant with improvement of muscle function in aging mice and humans[J]. Exp Gerontol, 2015, 70: 11-17.

      [17] LEE J E, YI C O, JEON B T,. alpha-Lipoic acid attenuates cardiac fibrosis in Otsuka Long-Evans Tokushima Fatty rats[J]. Cardiovasc Diabetol, 2012, 11: 111.

      [18] LI G, ZHANG P, WANG J,. Cardiovascular mortality, all-cause mortality, and diabetes incidence after lifestyle intervention for people with impaired glucose tolerance in the Da Qing Diabetes Prevention Study: a 23-year follow-up study[J]. Lancet Diabetes Endocrinol, 2014, 2(6): 474-480.

      [19] LIU F, SONG R, FENG Y,. Upregulation of MG53 induces diabetic cardiomyopathy through transcriptional activation of per-oxisome proliferation-activated receptor alpha[J]. Circulation, 2015, 131(9): 795-804.

      [20] MAIORANA A, O'DRISCOLL G, GOODMAN C,. Combin-ed aerobic and resistance exercise improves glycemic control and fitness in type 2 diabetes[J]. Diabetes Res Clin Pract, 2002, 56(2): 115-123.

      [21] MINOKOSHI Y, ALQUIER T, FURUKAWA N,. AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus[J]. Nat, 2004, 428(6982): 569-574.

      [22] MOLANOURI SHAMSI M, MAHDAVI M, QUINN L S,. Effect of resistance exercise training on expression of Hsp70 and inflammatory cytokines in skeletal muscle and adipose tissue of STZ-induced diabetic rats[J]. Cell Stress Chaperon, 2016, 21(5): 783-791.

      [23] MUSI N, HIRSHMAN M F, ARAD M,. Functional role of AMP-activated protein kinase in the heart during exercise[J]. FEBS Lett, 2005, 579(10): 2045-2050.

      [24] NIU Y, WANG T, LIU S,. Exercise-induced GLUT4 transcription via inactivation of HDAC4/5 in mouse skeletal muscle in an AMPKalpha2-dependent manner[J]. Biochim Biophys Acta, 2017, 1863(9): 2372-2381.

      [25] NUNODA S, GENDA A, SUGIHARA N,. Quantitative approach to the histopathology of the biopsied right ventricular myocardium in patients with diabetes mellitus[J]. Heart Vessels, 1985, 1(1): 43-47.

      [26] OUWENS D M, BOER C, FODOR M,. Cardiac dysfunction induced by high-fat diet is associated with altered myocardial insulin signalling in rats[J]. Diabetologia, 2005, 48(6): 1229-1237.

      [27] PARK H, KAUSHIK V K, CONSTANT S,. Coordinate regulation of malonyl-CoA decarboxylase, sn-glycerol-3-phosphate acyltransferase, and acetyl-CoA carboxylase by AMP-activated protein kinase in rat tissues in response to exercise[J]. J Biol Chem, 2002, 277(36): 32571-32577.

      [28] PATEL V B, MORI J, MCLEAN B A,. ACE2 deficiency worsens epicardial adipose tissue inflammation and cardiac dysfunction in response to diet-induced obesity[J]. Diabetes, 2016, 65(1): 85-95.

      [29] PETERSON L R, HERRERO P, SCHECHTMAN K B,. Effect of obesity and insulin resistance on myocardial substrate metabolism and efficiency in young women[J]. Circulation, 2004, 109(18): 2191-2196.

      [30] QIN F, SIWIK D A, LUPTAK I,. The polyphenols resveratrol and S17834 prevent the structural and functional sequelae of diet-induced metabolic heart disease in mice[J]. Circulation, 2012, 125(14): 1757-1764, S1751-1756.

      [31] Surgeon General's report on physical activity and health. From the centers for disease control and prevention[J]. JAMA, 1996, 276 (7):522.

      [33] WILD S, ROGLIC G, GREEN A,. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030[J]. Diabetes Care, 2004, 27(5): 1047-1053.

      [34] WOLEVER T M. Effect of blood sampling schedule and method of calculating the area under the curve on validity and precision of glycaemic index values[J]. Br J Nutr, 2004, 91(2): 295-301.

      [35] XU F, GAO Z, ZHANG J,. Lack of SIRT1 (Mammalian Sirtuin 1) activity leads to liver steatosis in the SIRT1+/- mice: a role of lipid mobilization and inflammation[J]. Endocrinol, 2010, 151(6): 2504-2514.

      [36] XU T, TANG H, ZHANG B,. Exercise preconditioning atten-uates pressure overload-induced pathological cardiac hypertrophy [J]. Int J Clin Exp Pathol, 2015, 8(1): 530-540.

      [37] ZENG H, VAKA V R, HE X,. High-fat diet induces cardiac remodelling and dysfunction: assessment of the role played by SIRT3 loss[J]. J Cell Mol Med, 2015, 19(8): 1847-1856.

      [38] ZHANG C S, HAWLEY S A, ZONG Y,. Fructose-1,6-bisph-osphate and aldolase mediate glucose sensing by AMPK[J]. Nat, 2017, 548(7665): 112-116.

      Exercise Improving Cardiac Glycolipid Metabolism in High Fat Diet Induced Type 2 Diabetic Mice through AMPK Pathway

      TIAN Ge1, XU Xin2, LI Guo-ping3

      1.Beijing Sport University, Beijing 100084, China; 2. Shanghai University of Sport, Shanghai 200438, China; 3. National ResearchInstitute of Sport Medicine, Beijing 100061, China.

      Objective: Diabetes mellitus is an emerging global threat to human health, and impaired myocardial function in diabetic patients is the major pathogenic factor leading to heart failure or sudden death. To test the hypothesis that exercise may protect the heart from metabolic disturbance in type 2 diabetes heart via AMPK, we studied the expression of AMPK and its downstream proteins in high-fat diet (HFD)-induced type 2 diabetic mice with eight weeks aerobic combined with resistance exercise intervention. Methods: The diabetic mice model were induced by HFD for sixteen weeks. After that, diabetes mice were divided into diabetic sedentary group (DS) and diabetic exercise group (DE) randomly. DE group was intervened with eight weeks aerobic combined with aerobic resistance exercise. The intraperitoneal glucose tolerance test (IPGTT) was used to detect glucose tolerance, Sirius red staining was applied to detect fibrosis and wheat germ agglutinin (WGA) staining was used to evaluate myocyte size in heart tissue. Western blot was used to measure the protein level of AMPK pathway. Results: Compared with controls, HFD increased body weight, blood glucose levels in IPGTT in diabetic mice(<0.01), heart weight (<0.05), heart weight / tibia length (<0.01) and perivascular fibrosis (<0.05) . Eight weeks combined exercise program could alleviate compromised glucose tolerance (<0.01) and decrease perivascular fibrosis (<0.01). More importantly, we identified that exercise might alleviate glycolipid metabolic disturbance in HFD-induced diabetic heart via activating AMPK (<0.01) and its downstream protein, involving upregulation of SIRT1(<0.01), PGC-1a (<0.01) and downregulation of PPARa (<0.01). Conclusion: The results suggest that eight weeks aerobic combined with resistance exercise could alleviate glycolipid metabolic disturbance and myocardial remodeling in HFD-induced diabetic heart AMPK and its downstream. These data indicated that long-term aerobic combined with resistance exercise might exert a cardiac protective effect against diabetes mellitus and associated cardiomyopathy.

      G804.5

      1000-677X(2018)01-0049-06

      10.16469/j.css.201801007

      2017-10-12;

      2017-12-26

      國(guó)家自然科學(xué)基金資助項(xiàng)目(81370197)。

      田閣,女,在讀博士研究生,主要研究方向?yàn)檫\(yùn)動(dòng)損傷與康復(fù), E-mail: tiangebsu@163.com;徐昕,男,教授,主要研究方向?yàn)檫\(yùn)動(dòng)與心臟, E-mail: xxu2000@outlook.com;李國(guó)平,男,教授,主要研究方向?yàn)檫\(yùn)動(dòng)醫(yī)學(xué), E-mail: Ligp@263.net。

      猜你喜歡
      高脂葡萄糖纖維化
      肝纖維化無(wú)創(chuàng)診斷研究進(jìn)展
      傳染病信息(2022年3期)2022-07-15 08:24:28
      肝纖維化的中醫(yī)藥治療
      肝博士(2021年1期)2021-03-29 02:32:16
      葡萄糖漫反射三級(jí)近紅外光譜研究
      高脂血標(biāo)本對(duì)臨床檢驗(yàn)項(xiàng)目的干擾及消除對(duì)策
      糖耐量試驗(yàn)對(duì)葡萄糖用量的要求
      葡萄糖對(duì)Lactobacillus casei KDL22發(fā)酵及貯藏性能的影響
      運(yùn)動(dòng)降低MG53表達(dá)及其在緩解高脂膳食大鼠IR中的作用
      多發(fā)性肺硬化性血管瘤18~F-脫氧葡萄糖PET/CT顯像1例
      腎纖維化的研究進(jìn)展
      高脂飲食誘導(dǎo)大鼠生精功能障礙
      东乡| 榆林市| 剑河县| 铁力市| 湘阴县| 全州县| 苏尼特左旗| 布拖县| 同江市| 阿图什市| 平塘县| 弥渡县| 舒城县| 平舆县| 玉环县| 崇礼县| 华容县| 花垣县| 尖扎县| 嘉定区| 彰武县| 连云港市| 西林县| 乡宁县| 巴中市| 于田县| 湖南省| 商丘市| 万安县| 河津市| 高淳县| 富宁县| 山丹县| 桃江县| 花莲县| 永年县| 池州市| 察隅县| 闻喜县| 郎溪县| 宝应县|