• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      一種組合趨近律準(zhǔn)滑模控制的列車停車算法

      2018-03-07 01:48:46陳東牛宏俠王剛寧正張肇鑫
      關(guān)鍵詞:控制算法滑模加速度

      陳東,牛宏俠,王剛,寧正,張肇鑫

      (1. 蘭州交通大學(xué) 自動(dòng)控制研究所,甘肅 蘭州 730070;2. 甘肅省高原交通信息工程及控制重點(diǎn)實(shí)驗(yàn)室,甘肅 蘭州 730070)

      城軌列車停車精度通常要求保證在±0.30 m內(nèi)。影響列車停車精度的主要因素有控制器的性能、停車時(shí)刻的速度、測(cè)量的反饋精度、線路的運(yùn)行環(huán)境等[1],其中控制器的設(shè)計(jì)是重要因素之一,性能好的控制器在一定條件下能夠?qū)ζ渌绊懸蛩赜幸欢ǖ恼{(diào)整和補(bǔ)償,因此,目前研究主要集中在控制器控制算法上[2-3]。于振宇等[4]考慮了制動(dòng)力產(chǎn)生過程及傳輸延時(shí)的影響,從面向控制角度提出了列車制動(dòng)數(shù)學(xué)模型,通過現(xiàn)場(chǎng)實(shí)驗(yàn)數(shù)據(jù)驗(yàn)證了該模型較好的描述了制動(dòng)系統(tǒng)的動(dòng)態(tài)特性,為后來許多研究學(xué)者搭建了控制制動(dòng)模型平臺(tái)。楊艷飛等[5]針對(duì)城軌列車模型具體參數(shù)未知,存在外界干擾時(shí),設(shè)計(jì)了滑??刂婆cPID組合的在線跟蹤控制器,通過PID誤差閉環(huán)控制來達(dá)到抑制抖振的目的,較好的解決了由滑模控制的引入而引起穩(wěn)態(tài)抖振問題?,F(xiàn)階段主要研究方向?yàn)閷?duì)于控制算法的優(yōu)化上,針對(duì)列車控制系統(tǒng)的非線性特性,控制器通常采用先進(jìn)控制智能化方法,如模糊控制[6]、預(yù)測(cè)控制[7]和自適應(yīng)控制[8]等,但文獻(xiàn)[6]和[7]控制器設(shè)計(jì)過程中,需事先得知模型的準(zhǔn)確參數(shù),所以造成一定局限性。王青元等[9]引入?yún)?shù)自適應(yīng)機(jī)制,使得終端滑模控制增強(qiáng)自適應(yīng)性,且避免了切換頻繁,舒適性較好。本文在對(duì)比文獻(xiàn)[5]的基礎(chǔ)上,設(shè)計(jì)了組合趨近律的準(zhǔn)滑模控制停車算法,該控制算法,保留一般趨近律和變速趨近律兩種趨近律的優(yōu)點(diǎn),來解決滑??刂票旧矶墩竦膯栴},無需另外設(shè)計(jì)其他輔助控制器來補(bǔ)償和消除抖振,物理實(shí)現(xiàn)結(jié)構(gòu)簡(jiǎn)單,利于實(shí)現(xiàn)。通過仿真驗(yàn)證了組合趨近律準(zhǔn)滑模控制算法在停車過程中,不失舒適性的同時(shí),能達(dá)到較高的停車精度。

      1 列車制動(dòng)過程描述

      ATO子系統(tǒng)在 ATP子系統(tǒng)的防護(hù)下自動(dòng)控制列車行駛,確保列車安全高效的運(yùn)行和列車自動(dòng)駕駛,用于替代司機(jī)完成列車牽引和制動(dòng)過程[3],自動(dòng)實(shí)現(xiàn)列車的啟動(dòng)加速、勻速、惰行和制動(dòng)等基本功能,ATO系統(tǒng)結(jié)構(gòu)如圖1所示。

      列車制動(dòng)系統(tǒng)的主要功能是實(shí)現(xiàn)特性一致的制動(dòng)性能,由制動(dòng)控制器進(jìn)行管理。制動(dòng)控制系統(tǒng)通過反饋調(diào)節(jié)實(shí)現(xiàn)對(duì)目標(biāo)控車加速度的跟蹤??紤]電氣和機(jī)械裝置的傳輸延時(shí),此動(dòng)態(tài)過程可以近似為具有延時(shí)環(huán)節(jié)的一階慣性系統(tǒng)來描述,為典型工業(yè)過程中一階滯后純延時(shí)環(huán)節(jié)[4],可用式(1)來表述。

      式中: ac(t)為控制加速度,它是由列車制動(dòng)控制器的作用而產(chǎn)生的加速度; at(t)為目標(biāo)加速度,它是由ATO指令而產(chǎn)生的期望加速度;τ為系統(tǒng)響應(yīng)時(shí)間常數(shù);σ為傳輸延時(shí)時(shí)間。

      在實(shí)際運(yùn)行過程中,列車會(huì)受到不同環(huán)境所形成阻力的影響,如彎道、坡道等,從而產(chǎn)生附加加速度d(t)。實(shí)際加速度a(t)由控制加速度ac(t)和附加加速度 d(t)組成,實(shí)際加速度大小影響列車實(shí)際運(yùn)行速度。

      設(shè)定列車制動(dòng)控制運(yùn)行為無極制動(dòng)模式,列車制動(dòng)模型框圖如圖2所示。

      圖1 ATO系統(tǒng)結(jié)構(gòu)Fig. 1 ATO system structure

      圖2 制動(dòng)模型框圖Fig. 2 Block diagram of brake model

      圖2 中,目標(biāo)加速度at(t)為列車控制器的輸入指令,是通過ATO作用控制指令uc(t)產(chǎn)生,之間滿足一定的靜態(tài)函數(shù)關(guān)系,如式(5)所示。

      為了便于簡(jiǎn)化控制器設(shè)計(jì),將式(1)中的傳輸延時(shí)相采用pade方法來近似

      式中:λ是與σ相關(guān)的常數(shù),一般取為2/σ。

      列車制動(dòng)運(yùn)行過程如圖3所示,當(dāng)列車通過制動(dòng)位置點(diǎn),由正常行駛狀態(tài)轉(zhuǎn)為制動(dòng)停車模式,列車將沿著目標(biāo)制動(dòng)曲線運(yùn)行。在控制精確停車的過程中,難點(diǎn)就是要求確定的位置,對(duì)應(yīng)設(shè)定確定的速度。由于是無極制動(dòng)模式,為達(dá)到停車過程舒適性,對(duì)應(yīng)加速度設(shè)置為恒定值。

      圖3 列車制動(dòng)運(yùn)行過程Fig. 3 Train brake operation process

      進(jìn)入停車制動(dòng)過程,首先,由于制動(dòng)系統(tǒng)響應(yīng)的延遲性,開始對(duì)目標(biāo)曲線跟蹤有一定時(shí)間上的滯后;其次,整個(gè)停車運(yùn)行過程可能會(huì)有彎道、坡道等外界擾動(dòng)的影響。設(shè)計(jì)控制器的目的便是使制動(dòng)系統(tǒng)盡快響應(yīng)和克服外界環(huán)境擾動(dòng)的影響,保證列車最優(yōu)的跟蹤目標(biāo)運(yùn)行曲線。

      2 控制器設(shè)計(jì)

      由于外界的擾動(dòng),如彎道、坡道等,不是一個(gè)瞬態(tài)值,要持續(xù)一定時(shí)間,這將導(dǎo)致控制誤差在一定時(shí)間內(nèi)持續(xù)存在,使得控制精度不高??刂破鞯淖饔檬鞘沟幂敵鲋稻_地跟蹤期望值,對(duì)于持續(xù)一定時(shí)間的擾動(dòng)量,將產(chǎn)生的誤差,通過輸入uc(t)與at(t)的靜態(tài)關(guān)系 F(·)-1反饋給ATO輸入指令,通過在線調(diào)整uc輸入,使得整個(gè)系統(tǒng)輸出實(shí)際加速度a保持不變的目的。系統(tǒng)總控制結(jié)構(gòu)框圖如圖4所示,下文針對(duì)控制器部分進(jìn)行設(shè)計(jì)。

      圖4 系統(tǒng)總控制結(jié)構(gòu)框圖Fig. 4 Total control block diagram of the system

      2.1 滑模變結(jié)構(gòu)控制

      滑模變結(jié)構(gòu)控制本質(zhì)上是一類特殊非線性控制,非線性表現(xiàn)為控制的不連續(xù)性?;瑒?dòng)模態(tài)的設(shè)計(jì)與對(duì)象參數(shù)及擾動(dòng)無關(guān),這便使得其具有快速響應(yīng)、對(duì)參數(shù)變化及擾動(dòng)不靈敏、無需系統(tǒng)在線辨識(shí),物理實(shí)現(xiàn)簡(jiǎn)單等優(yōu)點(diǎn)。缺點(diǎn)是當(dāng)狀態(tài)軌跡到達(dá)滑動(dòng)模態(tài)后,在滑模面兩側(cè)來回穿越地趨近平衡點(diǎn),從而產(chǎn)生抖振。

      對(duì)于連續(xù)滑??刂苹締栴},控制系統(tǒng)模型設(shè)為

      只需確定切換函數(shù)

      求得控制函數(shù)

      其中: u+( x) ≠ u-(x),使其滿足存在及可達(dá)穩(wěn)定性的要求。

      滑??刂评碚撝饕轻槍?duì)連續(xù)系統(tǒng)模型,因?yàn)橹挥欣硐氲倪B續(xù)滑模變結(jié)構(gòu)控制,才具有切換邏輯變結(jié)構(gòu)控制產(chǎn)生等效控制 u;而在實(shí)際工程中,計(jì)算機(jī)實(shí)時(shí)控制均為離散系統(tǒng),對(duì)于離散系統(tǒng),其滑??刂撇荒墚a(chǎn)生理想的滑動(dòng)模態(tài),只能產(chǎn)生準(zhǔn)滑模控制??紤]到計(jì)算機(jī)實(shí)時(shí)控制和實(shí)際的需求,本文應(yīng)用離散滑模變結(jié)構(gòu)控制[10]來設(shè)計(jì)控制器。

      2.2 準(zhǔn)滑模變結(jié)構(gòu)控制器設(shè)計(jì)

      設(shè)二階離散系統(tǒng)狀態(tài)方程為

      其中: x (k ) =[x1( k ) ; x2(k)],d(k)為干擾信號(hào)。

      制動(dòng)控制系統(tǒng)通過反饋調(diào)節(jié)實(shí)現(xiàn)對(duì)目標(biāo)控車加速度的跟蹤,設(shè)輸入目標(biāo)指令為 r(k),則其變化率為 dr(k)=[r(k)-r(k-1)]/t′,取 R(k)=[r(k), dr(k)]T,則R(k+1)=[r(k+1), dr(k+1)]T。其中r(k+1)及dr(k+1)值采用線性外推的方法進(jìn)行預(yù)測(cè),即

      設(shè)切換函數(shù)為

      其中:Ce=[c 1]。則

      得到控制率為

      式(10)中:s(k+1)為與趨近律相關(guān)項(xiàng),對(duì)其進(jìn)行分析及設(shè)計(jì)。

      趨近律的概念首先由高為炳院士提出,列舉了諸如等速趨近律、冪次趨近律、指數(shù)趨近律直到一般趨近律,得出6點(diǎn)結(jié)論,具體見參見文獻(xiàn)[11]。

      定義切換區(qū)為:

      在連續(xù)滑模變結(jié)構(gòu)控制中,通常選取指數(shù)趨近律[12]為

      對(duì)應(yīng)離散系統(tǒng)指數(shù)趨近律為

      其中:ε>0,q>0,1-t′q>0,t′為采樣周期。

      對(duì)于指數(shù)趨近律,由式(11)可知,

      當(dāng) s(k)=0+時(shí),s(k+1)=-t′ε;

      當(dāng) s(k)=0-時(shí),s(k+1)=t′ε,表明切換帶為不過原點(diǎn)的寬度為 2Δ=2t′ε的帶狀,穩(wěn)態(tài)時(shí),在這個(gè)帶狀間來回切換,若不考慮其他因素造成的抖振,則符號(hào)函數(shù)系數(shù)值ε直接決定了抖振的幅度。

      圖5 趨近律相軌跡圖Fig. 5 Reaching law phase trajectories

      由連續(xù)系統(tǒng)可知,指數(shù)趨近率能以較大的速度趨近滑動(dòng)模態(tài),尤其適合解決具有較大階躍的響應(yīng)控制問題;然而指數(shù)趨近律有它自身的缺點(diǎn),由圖5(a)也可以看出,即切換帶為帶狀,當(dāng)系統(tǒng)在切換帶中趨向穩(wěn)定原點(diǎn)時(shí),到達(dá)后是一個(gè)在原點(diǎn)附近的抖動(dòng)帶,而不能較準(zhǔn)確的達(dá)到穩(wěn)定原點(diǎn)。這種抖動(dòng)帶可能會(huì)激勵(lì)系統(tǒng)中存在的未建模高頻成分,從而增加控制器的負(fù)擔(dān)。

      在連續(xù)系統(tǒng)中,滑??刂谱兯仝吔蒣13]為

      將此變速趨近律應(yīng)用到離散系統(tǒng)中,相應(yīng)的離散形式為其中:ε>0,t′為采樣周期。

      對(duì)于變速趨近律,由式(14)可知,當(dāng)s(k)=0+時(shí),s(k +1) = -t′ε φ(k),當(dāng)s(k)=0-時(shí),s(k+1)=t′ε φ(k ) 。

      以上2式說明在二階系統(tǒng)中,變速趨近律的切換帶是經(jīng)過原點(diǎn)的2條射線組成,其中s=0夾在中間。對(duì)應(yīng)k時(shí)刻的帶寬可表示為

      變速趨近律的滑??刂葡嘬壽E,由圖5(b)所示,從切換帶趨向穩(wěn)定原點(diǎn)過程隨著誤差的減小,抖振也越來越小,最后當(dāng)系統(tǒng)穩(wěn)定后,可穩(wěn)定于原點(diǎn),具有良好的穩(wěn)態(tài)性能。但開始進(jìn)入滑模面時(shí),由于φ(k)較大,從而帶寬較大,抖振較大,這是變速趨近律的不足之處。

      本文綜合2種趨近律控制的優(yōu)點(diǎn),即在滑模運(yùn)動(dòng)前期,采用指數(shù)趨近律的控制率,以較快的速度趨近滑模面,振幅也不至于較大;在滑模運(yùn)動(dòng)的后期和穩(wěn)定段,采用變速趨近律的控制率,有效的降低了穩(wěn)態(tài)時(shí)的抖振,具有良好的穩(wěn)態(tài)性能。

      通過選取一個(gè)誤差參數(shù) ζ(ζ>0),當(dāng) φ(k)>ζ時(shí),采用指數(shù)趨近律;當(dāng) φ(k)≤ζ時(shí),采用變速趨近律。設(shè)計(jì)過程中ζ值的大小必須選取適當(dāng),太大或太小則起不到預(yù)想的效果,具體控制率轉(zhuǎn)折點(diǎn)ζ值的選取,可根據(jù)實(shí)際情況調(diào)定。

      將式(12)和(14)分別代入式(10)可得本文組合趨近律準(zhǔn)滑模控制率為:

      其中:

      式中:用 sat(s(k))來代替理想滑動(dòng)模態(tài)中的符號(hào)函數(shù) sgn(s(k))。其目的是在邊界層之間切換時(shí),采用線性化對(duì)其反饋,而非階躍反饋,減小在滑動(dòng)模態(tài)快速切換時(shí)產(chǎn)生的抖振。

      選取Lyapunov函數(shù)為

      由連續(xù)系統(tǒng) Lyapunov第二穩(wěn)定性定理可知,若V˙負(fù)定、半負(fù)定,則系統(tǒng)的平衡位置是漸進(jìn)穩(wěn)定、穩(wěn)定的。對(duì)于離散系統(tǒng),對(duì)式(16)求導(dǎo)

      故只需判斷 s (k + 1 )2- s (k)2< 0 ,s(k) ≠ 0 即可,s(k) = 0 是全局漸進(jìn)穩(wěn)定的平衡面,任意初始位置的狀態(tài)都會(huì)趨向這個(gè)面。

      采樣時(shí)間 t′很小時(shí),離散滑模的存在和達(dá)到條件[14]為

      當(dāng) φ(k)>ζ時(shí),由式(12)可知

      當(dāng)采樣時(shí)間 t′很小時(shí),s(k+1)=s(k)-t′εsgn(s(k))-t′qs(k)≈0,則 s(k)≈t′εsgn(s(k))+t′qs(k),對(duì)應(yīng)符號(hào)一致性得|s(k)|≈t′ε+t′q|s(k)|,那么

      因此,當(dāng) φ(k)>ζ時(shí),式(15)滿足式(17)的存在和達(dá)到條件。

      同理,當(dāng) φ(k)≤ζ時(shí),由式(14)知

      由于 φ(k)≤ζ時(shí),誤差已經(jīng)很小,且在向s(k) = 0 趨近,則

      那么

      因此,當(dāng) φ(k)≤ζ時(shí),式(15)也滿足式(17)的存在和達(dá)到條件。

      綜上,組合趨近律準(zhǔn)滑??刂坡适?15)滿足離散滑動(dòng)模態(tài)的存在性和可達(dá)性條件,故所設(shè)計(jì)的控制器是穩(wěn)定的。

      3 仿真驗(yàn)證

      為了驗(yàn)證本文設(shè)計(jì)算法在列車停車控制器上的有效性,對(duì)控制器算法在 MATLAB環(huán)境下進(jìn)行仿真分析。考慮舒適性的要求,設(shè)理想恒定制動(dòng)減速度為-0.65 m/s2,制動(dòng)初始參考位置為0 m,制動(dòng)初始速度為19.8 m/s,最大制動(dòng)減速度為-1 m/s2,在參考線路100~200 m之間設(shè)置擾動(dòng)加速度,具體相關(guān)仿真參數(shù)如表 1,控制器相關(guān)參數(shù)設(shè)定如表 2所示。

      表1 列車運(yùn)行相關(guān)參數(shù)Table 1 Train operation related parameters

      表2 控制器參數(shù)Table 2 Controller parameters

      列車停車過程為了達(dá)到較高舒適性要求,需要平穩(wěn)的操縱序列。通過與PID控制仿真對(duì)比,由圖6也可直觀的看出,組合趨近律準(zhǔn)滑??刂扑惴▽?duì)于停車過程響應(yīng)時(shí)間快,超調(diào)量小,能在較高實(shí)時(shí)性下達(dá)到穩(wěn)態(tài)。

      圖6 PID控制與組合趨近律準(zhǔn)滑??刂茖?duì)比Fig.6 PID control compared with the combined reaching law sliding mode control

      由于系統(tǒng)本身響應(yīng)滯后特性,在開始階段具有一定的超調(diào)誤差,本控制算法在很短的時(shí)間內(nèi)跟蹤到目標(biāo)曲線,具有較高的實(shí)時(shí)性和舒適性特點(diǎn),且完成高精度停車要求。相對(duì)應(yīng)位移-速度曲線如圖7所示,虛線表示理想目標(biāo)位移-速度曲線,實(shí)線表示本文設(shè)計(jì)算法跟蹤曲線。

      圖7 組合趨近律準(zhǔn)滑??刂频奈灰?速度曲線Fig. 7 Combined reaching law sliding mode control of displacement-speed curves

      對(duì)于設(shè)定此參數(shù)的列車系統(tǒng),列車運(yùn)行過程中當(dāng)給系統(tǒng)附加相對(duì)于目標(biāo)加速度值-2.3%~2.3%之間的外界隨機(jī)干擾時(shí),相對(duì)應(yīng)列車運(yùn)行的位移誤差最大絕對(duì)值滿足在0.30 m之內(nèi)的要求,如圖8所示。

      圖8 隨機(jī)擾動(dòng)下的位移誤差Fig. 8 With random disturbance’s displacement errors

      列車運(yùn)行周期主要影響的參數(shù)因子為 σ,σ的變化從而導(dǎo)致數(shù)學(xué)模型的變化;該仿真試驗(yàn)是在參數(shù)τ保持不變,σ在1.05~1.35 s之間變化時(shí)進(jìn)行,仿真結(jié)果如表3所示。

      表3 主要影響參數(shù)σ變化時(shí)的位移誤差Table 3 Displacement errors of main influencing parameter σ changes

      綜上,組合趨近律準(zhǔn)滑??刂圃谝欢ǚ秶S機(jī)擾動(dòng)條件和運(yùn)行過程主要影響參數(shù)σ一定范圍內(nèi)變化時(shí),停車位移誤差均滿足精確停車的要求,且對(duì)于列車停車制動(dòng)過程具有較強(qiáng)魯棒性。

      4 結(jié)論

      1) 該控制算法保證了列車停車精度,對(duì)于列車停車控制是有效的。

      2) 該控制算法能消除一般指數(shù)趨近律達(dá)到穩(wěn)態(tài)時(shí)的抖振問題,物理結(jié)構(gòu)實(shí)現(xiàn)簡(jiǎn)單。

      3) 相比PID控制算法,該控制器算法響應(yīng)快,完成精確停車同時(shí)對(duì)外界擾動(dòng)具有較強(qiáng)的魯棒性。

      [1] 禹宏鵬. 城軌列車停車位置不精確的原因及對(duì)策[J].城市軌道交通研究, 2008, 11(9): 28-30.YU Hongpeng. Analysis on the stop inaccuracy of urban rail train[J]. Urban Mass Transit, 2008, 11(9): 28-30.

      [2] 唐濤, 黃良驥. 列車自動(dòng)駕駛系統(tǒng)控制算法綜述[J].鐵道學(xué)報(bào), 2003, 25(2): 98-102.TANG Tao, HUANG Liangji. A survey of control algorithm for automatic train operation[J]. Journal of the China Railway Society, 2003, 25(2): 98-102.

      [3] 許伶俐, 劉煒, 廖鈞, 等. 城市軌道交通列車牽引和制動(dòng)能耗實(shí)測(cè)分析[J]. 鐵道科學(xué)與工程學(xué)報(bào), 2016, 13(9):1818-1824.XU Lingli, LIU Wei, LIAO Jun, et al. The analysis on the measured traction energy consumption and braking energy consumption of urban rail transit[J]. Journal of Railway Science and Engineering, 2016, 13(9):1818-1824.

      [4] 于振宇, 陳德旺. 城軌列車制動(dòng)模型及參數(shù)辨識(shí)[J].鐵道學(xué)報(bào), 2011, 33(10): 37-40.YU Zhenyu, CHEN Dewang. Modeling and system identification of the braking system of urban rail vehicles[J]. Journal of the China Railway Society, 2011,33(10): 37-40.

      [5] 楊艷飛, 崔科, 呂新軍. 列車自動(dòng)駕駛系統(tǒng)的滑模PID 組合控制[J]. 鐵道學(xué)報(bào), 2014, 36(6): 61-67.YANG Yanfei, CUI Ke, Lü Xinjun. Combined sliding mode and PID control of automatic train operation system[J]. Journal of the China Railway Society, 2014,36(6): 61-67.

      [6] MO X, TANG T, DONG C, et al. A realization and simulation of ATO speed control module—predictive fuzzy control algorithm[C]// Intelligent Rail Transportation (ICIRT), 2013 IEEE International Conference on. IEEE, 2013: 263-267.

      [7] 吳鵬, 王青元, 梁志成. 等. 基于預(yù)測(cè)控制的列車精確停車算法[J]. 計(jì)算機(jī)應(yīng)用, 2013, 33(12): 3600-3603.WU Peng, WANG Qingyuan, LIANG Zhicheng, et al.Precise train stopping method based on predictive control[J]. Journal of Computer Applications, 2013,33(12): 3600-3603.

      [8] Potapovs A, Levchenkov A, Gorobetz M. Assessment of adaptive algorithms for automatic control of train braking system[C]// Power and Electrical Engineering of Riga Technical University (RTUCON), 2014 55th International Scientific Conference on. IEEE, 2014: 75-78.

      [9] 王青元, 吳鵬, 馮曉云, 等. 基于自適應(yīng)終端滑??刂频某擒壛熊嚲_停車算法[J]. 鐵道學(xué)報(bào), 2016, 38(2):56-63.WANG Qingyuan, WU Peng, FENG Xiaoyun, et al.Precise automatic train stop control algorithm based on adaptive terminal sliding mode control[J]. Journal of the China Railway Society, 2016, 38(2): 56-63.

      [10] Furuta K, Pan Y. Discrete-time variable structure control[M]// Variable Structure Systems: Towards the 21st Century. Springer Berlin Heidelberg, 2002: 57-81.

      [11] GAO W, WANG Y, Homaifa A. Discrete-time variable structure control systems[J]. IEEE transactions on Industrial Electronics, 1995, 42(2): 117-122.

      [12] Sarpturk S Z, Istefanopulos Y, Kaynak O. On the stability of discrete-time sliding mode control systems[J]. IEEE Transactions on Automatic Control, 1987, 32(10):930-932.

      [13] 高存臣, 劉振, 任啟峰. 時(shí)滯離散時(shí)間系統(tǒng)的非線性準(zhǔn)滑模魯棒控制[J]. 控制理論與應(yīng)用, 2013 (1): 123-130.GAO Cunchen, LIU Zhen, REN Qifeng. Nonlinear quasi-sliding-mode robust control for discrete-time systems with time-delay[J]. Control Theory &Applications, 2013, 30(1): 123-130.

      [14] 關(guān)守平, 尤富強(qiáng), 徐林, 等. 計(jì)算機(jī)控制理論與設(shè)計(jì)[M]. 北京: 機(jī)械工業(yè)出版社, 2012: 214-217.GUAN Shouping, YOU Fuqiang, XU Lin, et al.Computer control theory and design[M]. Beijing:Machine Press, 2012: 214-217.

      猜你喜歡
      控制算法滑模加速度
      “鱉”不住了!從26元/斤飆至38元/斤,2022年甲魚能否再跑出“加速度”?
      基于組合滑模控制的絕對(duì)重力儀兩級(jí)主動(dòng)減振設(shè)計(jì)
      天際加速度
      汽車觀察(2018年12期)2018-12-26 01:05:42
      測(cè)控技術(shù)(2018年4期)2018-11-25 09:47:26
      并網(wǎng)逆變器逆系統(tǒng)自學(xué)習(xí)滑模抗擾控制
      創(chuàng)新,動(dòng)能轉(zhuǎn)換的“加速度”
      金橋(2018年4期)2018-09-26 02:24:46
      死亡加速度
      基于ARM+FPGA的模塊化同步控制算法研究
      一種優(yōu)化的基于ARM Cortex-M3電池組均衡控制算法應(yīng)用
      一種非圓旋轉(zhuǎn)工件支撐裝置控制算法
      灵台县| 安平县| 荥经县| 黎城县| 大渡口区| 土默特左旗| 雅江县| 孟村| 芦溪县| 卢氏县| 永济市| 十堰市| 邓州市| 平塘县| 科技| 太谷县| 乐平市| 莱阳市| 手游| 正安县| 柳州市| 平舆县| 宜城市| 广水市| 胶州市| 东阳市| 拜泉县| 桦川县| 土默特左旗| 巴塘县| 孟州市| 鸡东县| 青冈县| 壤塘县| 涪陵区| 山东省| 山东| 湘乡市| 泽库县| 高淳县| 前郭尔|