• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      廢棄物能量回收技術(shù)用于城市固廢高效管理的綜述(下)

      2018-03-16 06:40:44AtulKumarSamadder翻譯張本民
      西部皮革 2018年3期
      關(guān)鍵詞:填埋場(chǎng)甲烷廢棄物

      Atul Kumar,S.R.Samadder(翻譯:張本民 )

      (1.Departmentof Environmental Science&Engineering,Indian Instituteof Technology(Indian School of Mines),Dhanbad 826004,India;2.惠州市質(zhì)量計(jì)量監(jiān)督檢測(cè)所,廣東惠州516003)

      (上接2018年1月第1期)

      4.2 生物轉(zhuǎn)換技術(shù)

      生物轉(zhuǎn)換技術(shù)基于微生物對(duì)MSW中的有機(jī)成分降解。許多研究者報(bào)道過(guò)這種技術(shù)當(dāng)環(huán)境合適時(shí)用于廢棄物能量回收(Pant et al.,2010)。通常廢棄物中有機(jī)生物可降解物質(zhì)含量高(易腐敗的)、濕度大時(shí),是一種首選處理方法。生物轉(zhuǎn)換技術(shù)用于能量回收有兩種方式,分別為厭氧消化和生物產(chǎn)甲烷。

      4.2.1 厭氧消化

      厭氧消化(或生物產(chǎn)甲烷)是一種含氧條件下微生物降解有機(jī)可降解物質(zhì)的過(guò)程,可產(chǎn)生物氣和穩(wěn)定的污泥。所產(chǎn)生物氣的質(zhì)量取決于處理?xiàng)l件和底物組成;通常,生物氣由 50% ~75% 的 CH4,25% ~50%CO2和1%~15%其它氣體(如水蒸汽、NH3、H2S 等)(Surendra et al.,2014)。所產(chǎn)污泥可以用于土壤調(diào)節(jié)劑或作為農(nóng)業(yè)領(lǐng)域上一種有機(jī)修護(hù)劑 (Pivato et al.,2016;Tam boneet al.,2009)。厭氧消化常被用來(lái)從可降解廢棄物中回收營(yíng)養(yǎng)和能量。據(jù)Aliet al.(2016)報(bào)道,厭氧消化的固體產(chǎn)物質(zhì)量(作為一種肥料)主要跟廢棄物原料的質(zhì)量有關(guān)(廢棄物中蛋白質(zhì)、礦物質(zhì)和維生素含量)。據(jù)Brow ne et al.(2014)報(bào)道,歐盟法規(guī)禁止將厭氧消化的固體產(chǎn)物作為肥料使用,因?yàn)閺U棄物原料中存在不理想物質(zhì)。厭氧消化時(shí),可降解MSW中有機(jī)物便會(huì)降解,通過(guò)一系列階段轉(zhuǎn)化為甲烷。最初的階段稱為水解,在此階段MSW中復(fù)雜的有機(jī)化合物如碳水化合物、蛋白質(zhì)和脂肪轉(zhuǎn)化為可溶解有機(jī)物如糖類、氨基酸和脂肪酸。厭氧消化過(guò)程下一階段為發(fā)酵,有機(jī)分子分解為乙酸、H2和CO2。最后階段是產(chǎn)甲烷,在此階段甲烷開(kāi)始生成。有機(jī)物質(zhì)轉(zhuǎn)化為甲烷的詳細(xì)流程如圖4。厭氧消化過(guò)程主要分主兩種類型,“濕消化”(干基含量10%~15%)和“干消化”(干基含量24%~40%)過(guò)程(Luning et al.,2003)。濕消化過(guò)程產(chǎn)生更多液態(tài)廢棄物和較少固態(tài)產(chǎn)品。濕消化處理對(duì)反應(yīng)器的體積要求不如干消化處理高。反應(yīng)器的類型(單階段和多階段)、處理過(guò)程(干或濕處理)和甲烷產(chǎn)量取決于地區(qū)、廢棄物原料質(zhì)量和產(chǎn)物要求。

      據(jù)估計(jì),每噸MSW經(jīng)厭氧消化在三周內(nèi)甲烷的產(chǎn)量比填埋處理6~7年回收的甲烷量高出2~4倍(Ahsan,1999;Saxena et al.,2009)。據(jù) M urphyet al.(2004)報(bào)道,以轉(zhuǎn)化效率35%計(jì)算算,厭氧消化處理產(chǎn)生1m3生物氣可以發(fā)電2.04kW h。若考慮MSW含60%有機(jī)物和40%水分,則每噸MSW可產(chǎn)甲烷150kg(Scarlat et al.,2015)。然而,處理過(guò)程中主要的問(wèn)題是微生物反應(yīng)周期太長(zhǎng)(一般20~40天)(Pham et al.,2015)。有時(shí),廢棄物中存在含氮豐富的組分和陽(yáng)離子(如鈉、鉀、鈣)會(huì)增加氨和鹽濃度,從而使產(chǎn)甲烷過(guò)程中出現(xiàn)有毒物。一些研究(Gom ez et al.,2006;Cristancho 和 Are llano,2006)建議,廢棄物氮含量低的MSW、污水污泥、食物廢棄物采用混合消化以降低氨濃度,增加處理過(guò)程中生物氣的產(chǎn)量。表6總結(jié)了MSW有機(jī)組分在許多研究者報(bào)道過(guò)的不同操作條件下的甲烷產(chǎn)量。大多數(shù)研究者使用食物垃圾加入合適的培養(yǎng)液,進(jìn)行氣體最大化回收。使用厭氧消化技術(shù)所產(chǎn)生物氣的質(zhì)量可以通過(guò)移除CO2和其它微量氣體改善,進(jìn)而用作運(yùn)輸燃料,稱為生物甲烷。這種生物氣可以替代天然氣在許多家庭和企業(yè)上應(yīng)用 (Kasturirangan,2014;Appels et al.,2008)。早期,厭氧消化用于生活污水、工作廢棄物、有機(jī)廢棄物和動(dòng)物糞便的處理,但現(xiàn)在廣泛用于MSW能量回收,尤其在發(fā)展中國(guó)家,因其廢棄物濕度比較大 (Yap and Nixon,2015)。Abbas et al.(2017)和 Aliet al.(2013a,b)評(píng)價(jià)了生物氣回收的可行性,發(fā)現(xiàn)通過(guò)厭氧消化技術(shù)回收生物氣經(jīng)濟(jì)、環(huán)境上具有可持續(xù)性。

      4.3 填埋法

      衛(wèi)生填埋是指為了減少環(huán)境負(fù)面影響,通過(guò)生物氣回收和瀝出液管理的方式在陸地上有控制的處理廢棄物(圖5)。然而,非衛(wèi)生填埋提供了一種更簡(jiǎn)單更廉價(jià)處理大量增加廢棄物的方式,在發(fā)展中國(guó)家是最常見(jiàn)的處理方法,將為對(duì)環(huán)境產(chǎn)生很嚴(yán)重的危害(W ang and Geng,2015)。前人的研究表明,與其它廢棄物管理方法相比填埋產(chǎn)生的環(huán)境影響最大(Cherubiniet al.,2009;Em ery et al.,2007;M archettini et al.,2007;ISWA,2012)。據(jù)報(bào)道,大部分發(fā)展中國(guó)家城市,在城市郊外的低洼區(qū)域處理廢棄物 (Talyan et al.,2008;Kum ar and Chakrabarti,2010)。當(dāng)考慮到如環(huán)境影響、健康影響、土地退化、地下水污染的因素時(shí),填埋法將成為最糟糕的選擇。然而,發(fā)達(dá)國(guó)家已經(jīng)開(kāi)始通過(guò)立法、減排、循環(huán)利用抵制廢棄物填埋處理。填埋產(chǎn)生的瀝液(一種成分復(fù)雜,含有難降解化合物的深色廢水,)是一種從填埋物或垃圾儲(chǔ)存站釋放的主要污染物 (Müller et al.,2015),會(huì)污染周圍地表河道和地下含水層。據(jù)專家介紹,僅總廢棄物的10%~15%應(yīng)該采用填埋法,而且應(yīng)是土地有限的城市最后的選擇。

      表6 MSW厭氧消化甲烷產(chǎn)量

      4.3.1 填埋產(chǎn)氣模擬

      填埋場(chǎng)沉積物中殘留的有機(jī)物質(zhì)經(jīng)歷了復(fù)雜的生物和化學(xué)降解,結(jié)果有填埋氣體(LFG)產(chǎn)生。有機(jī)物質(zhì)降解產(chǎn)生LFG發(fā)生在5個(gè)不同階段(Noor et al.,2013)。第一階段是水解/好氧消化,在此階段好氧菌將復(fù)雜有機(jī)物分解為CO2和H2O,第二階段是水解和發(fā)酵,在兼性細(xì)菌存在下,水溶性有機(jī)成分分解為CO2、H2、NH3和有機(jī)酸。第三階段是酸化/乙酸化,第二階段產(chǎn)生的有機(jī)酸通過(guò)厭氧菌轉(zhuǎn)化為乙酸、甲酸、乙醇、H2和CO2。在第四階段(甲烷生成),產(chǎn)甲烷菌消耗第三階段產(chǎn)物,并且主要產(chǎn)生CH4、CO2,以及少量其他微量氣體。最后階段是氧化,本階段在需氧條件下CH4轉(zhuǎn)化為CO2和H2O。填埋場(chǎng)內(nèi)部LFG產(chǎn)率受許多因素影響,如填埋場(chǎng)類型、廢棄物組成、氣候條件(溫度和降水)、含水量和廢棄物存放時(shí)間(Scarlat et al.,2015)。LFG中含50%~60%甲烷(Unnikrishnan and Singh,2010)并且被認(rèn)為是人工產(chǎn)甲烷的主要來(lái)源之一。據(jù)估計(jì),每年從垃圾填埋場(chǎng)產(chǎn)生甲烷氣體為3000~7000萬(wàn)噸(Johariet al.,2012)。因此,從填埋場(chǎng)回收甲烷用于發(fā)電或其它用途可以幫助減排。有時(shí)LFG回收技術(shù)上不可行,因?yàn)槟欠N情況LFG當(dāng)場(chǎng)就已被燃燒。但是,在這種情況下有必要對(duì)填埋場(chǎng)內(nèi)部LFG預(yù)測(cè)。推薦的方法涉及到LFG生成模擬。有許多可以使用的模型預(yù)測(cè)填埋場(chǎng)甲烷的釋放。表7描述一些廣泛使用的模型(七種)。然而,由于不同國(guó)家的廢棄物組成不同,對(duì)同一種填埋場(chǎng)來(lái)說(shuō)不同的模型會(huì)得出不同結(jié)果,這些模型已經(jīng)被開(kāi)發(fā)可為該地區(qū)提供準(zhǔn)確的結(jié)果。在這七種模型中,六種基于歐盟情況,一種基于美國(guó)情況。這些模型減少了冗長(zhǎng)的測(cè)量技術(shù),通常應(yīng)用于垃圾填埋場(chǎng)甲烷含量預(yù)測(cè)。盡管TNO模型根據(jù)荷蘭廢棄物特點(diǎn)而建立,但這種模型也可以用于其他國(guó)家LFG預(yù)測(cè),因?yàn)樵谟^測(cè)值和計(jì)算值之間它的相對(duì)誤差很低(22%)。在一項(xiàng)研究中,據(jù)估計(jì),1噸MSW產(chǎn)生80m 3LFG,到2020年時(shí),僅中國(guó)或許就能為全球LFG排放貢獻(xiàn)100億m3(Qu et al.,2009)。

      5 W T E技術(shù)能量回收潛力和經(jīng)濟(jì)情況

      目前,中國(guó)每年廢棄物產(chǎn)量3億噸(W orld Energy Resources,2016),廢棄物中包含較多低熱值食物垃圾,以及與其他發(fā)展中國(guó)家類似的高濕度組分。所以,發(fā)達(dá)國(guó)家使用的傳統(tǒng)焚燒廠在此條件下處理效果不佳。因而,中國(guó)已經(jīng)在焚燒廠基礎(chǔ)上發(fā)展了循環(huán)流化床應(yīng)對(duì)這種問(wèn)題,目前28套此種設(shè)備每天處理800噸MSW成功發(fā)電(W orld Energy Resources,2016;Zhao et al.,2016)。據(jù) Cheng et al.(2007)報(bào)道,基于循環(huán)流化床焚燒器的壁爐更適用于高濕度低能量的MSW。在埃塞俄比亞一種容量50MW的廢棄物焚燒廠(非洲撒哈拉以南第一個(gè)WTE設(shè)備)預(yù)計(jì)2017年投入使用,每年可以處理35萬(wàn)噸廢棄物。然而,由于許多問(wèn)題存在,如MSW熱值低,缺乏當(dāng)?shù)貙I(yè)技術(shù)以及能量?jī)r(jià)格低,該廠或許運(yùn)營(yíng)成本不足(W orld Energy Resources,2016)。據(jù) Perkoulidis et al.(2010)報(bào)道,在希臘中部一套WTE設(shè)備凈轉(zhuǎn)化率為22.5%時(shí)預(yù)計(jì)每噸MSW產(chǎn)電0.55MW。按照估計(jì),到2020年馬來(lái)西亞預(yù)計(jì)僅從LFG中可產(chǎn)電2.63×109kW h,將為馬來(lái)西亞產(chǎn)生26200萬(wàn)美元的稅收(Noor et al.,2013)。希臘直轄市五所厭氧消化廠的產(chǎn)能潛力為695kW h/噸,平均操作成本為85MYM/噸(Karagiannidis和Perkoulidis,2009)。巴西僅MSW填埋廠的產(chǎn)能潛力約為每天660MW電力。本研究綜述了100多篇2010~2017年發(fā)表,關(guān)于W TE技術(shù)的文獻(xiàn),其中一些針對(duì)不同國(guó)家WTE技術(shù)選擇的重要點(diǎn)評(píng)文獻(xiàn)總結(jié)如表8。大多數(shù)表8所列研究中,WTE選擇被認(rèn)為是一種對(duì)環(huán)境影響最小的潛力技術(shù)。

      前人發(fā)表的文獻(xiàn)分析了不同WTE技術(shù)的成本 (Ouda et al.,2016;Yap和Nixon,2015;Tolis et al.,2010),如表9。資本成本是首要投資成本如土地征收、設(shè)備采購(gòu)、原材料需求;間接成本包括計(jì)劃成本、合同支持和發(fā)展階段的技術(shù)金融服務(wù)。操作成本是日常運(yùn)行成本如勞務(wù)和維護(hù)成本。一家WTE廠的資本成本與需要處理的廢棄物質(zhì)量、采用的技術(shù)和廠的位置有關(guān)。一套WTE設(shè)備的平均壽命一般認(rèn)為30年。表9為所需的成本范圍,對(duì)發(fā)達(dá)和發(fā)展中國(guó)家均有效。一系列成本范圍中低值代表發(fā)展中國(guó)家(如印度)所需成本,高值代表在發(fā)達(dá)國(guó)家的成本(如英國(guó))(Yap and Nixon,2015)。表9顯示的成本為估算成本,因?yàn)閷?shí)際成本還與許多其它因素關(guān),如政府激勵(lì)、原材料和熟練工人的可用性。(Ouda et al.,2016)。

      6 環(huán)境和健康影響

      MSW焚燒或許導(dǎo)致空氣污染(由于SOX、NOX、COX、二噁英和呋喃的排放),土壤和水污染(由于飛灰和底灰中存在重金屬)。但是,用于焚燒的污染控制技術(shù)和能量回收系統(tǒng)已經(jīng)大大發(fā)展,使其成為一種有吸引力的MSWM選擇(Dam gaard et al.,2010)。焚燒廠使用的空氣污染設(shè)備主要捕獲顆粒物、氧化氮、二噁英和呋喃,對(duì)環(huán)境的影響比傳統(tǒng)火力發(fā)電廠還小(Liam sanguan和Gheew ala,2007)。

      大量研究報(bào)道了廢棄物焚燒場(chǎng)所能感知到的健康風(fēng)險(xiǎn)。甚至發(fā)達(dá)國(guó)家(如英國(guó))也正面對(duì)公共抵制,因?yàn)榉贌龔S的排放物帶來(lái)了可感知的健康危害(Nixon et al.,2013a,b)。盡管焚燒器潛在排放大量污染物,但主要關(guān)注的已經(jīng)是稱為“二噁英”類的有機(jī)化合物,如多氯代二苯并二惡英、多氯代二苯并呋喃和多氯聯(lián)苯,均由不完全燃燒產(chǎn)生。國(guó)際癌癥研究機(jī)構(gòu)通過(guò)實(shí)驗(yàn)室動(dòng)物實(shí)驗(yàn)和對(duì)生活在工業(yè)區(qū)的群體研究認(rèn)為二噁英為高度致癌物(Giusti,2009)。然而,關(guān)于焚燒場(chǎng)對(duì)公共健康的影響許多研究報(bào)道了不全面和無(wú)說(shuō)服力的結(jié)果 (W orld Energy Resources,2016)。一種開(kāi)發(fā)和控制良好的系統(tǒng)對(duì)廢棄物焚燒項(xiàng)目成功有效進(jìn)行是非常重要的。

      7 對(duì)氣候變化的影響

      關(guān)于WTE廠和其它MSWN選擇對(duì)氣候變化影響的研究大都基于發(fā)達(dá)國(guó)家(UNEP,2010)。氣候變化是一個(gè)全球性問(wèn)題需要各國(guó)共同努力解決。實(shí)施技術(shù)減少溫室氣體排放是非常重要的,緩解以傳統(tǒng)方式產(chǎn)能耗能帶來(lái)的氣候變化(IPCC,2007)。MSW已經(jīng)被認(rèn)為是環(huán)境中第三大人工甲烷來(lái)源,占全球人工溫室氣體排放的3%~4%(Annepu,2012;IPCC,2006),總廢棄物部分將有18%的全球甲烷氣體排放 (Aleluia and Ferro,2016)。目前,還沒(méi)有完全建立的方法直接測(cè)量填埋場(chǎng)甲烷排放量,所以基于大量假設(shè)的理論模型被使用(UNEP,2010)。甲烷含能高,需要一種模式巧妙地捕獲后將其作為能源,從而避免大量潛在溫室氣體排放(比CO2強(qiáng)21倍)。廢棄物最少化以及循環(huán)利用可有效減少溫室氣體排放 (Aliet al.,2013a,b)。據(jù)Aracil et al.(2017)報(bào)道,MSW(非循環(huán))所產(chǎn)生物燃料將對(duì)氣候變化帶來(lái)積極影響。W TE技術(shù)的全球變暖潛力如表10。W ilson et al.(2010)估計(jì)使用3Rs(減排、重用、循環(huán))原則綜合管理固體廢棄物可以減少15%~15%全爾溫室氣體排放。

      表7 甲烷生成潛力的模型描述

      8 結(jié)論

      本文對(duì)用于能量回收的不同WTE技術(shù)進(jìn)行了全面綜述。嘗試總結(jié)了目前全球WTE部門(mén)的案例。如果采用WTE技術(shù),MSW可被認(rèn)為最有潛力的可再生能源之一,不僅可以減少對(duì)傳統(tǒng)能源的依賴,滿足不斷增加的能源需求,也可以減少M(fèi)SWM的問(wèn)題。綜述了所有可用WTE技術(shù)后,可以看出在發(fā)展中國(guó)家最可行的MSWN方法是厭氧消化有機(jī)廢棄物,焚燒混合MSW(除了可生物降解廢棄物),熱解和煤氣化特定類型廢棄物(塑料、輪胎、電子設(shè)備、電子廢棄物、食物廢棄物等),以及填埋惰性廢棄物。然而MSW的特性和組成在選擇合適的W TE技術(shù)時(shí)具有重要作用。

      表8 可用WTE選擇案例研究的點(diǎn)評(píng)

      表9 WTE技術(shù)成本比較

      表10 不同廢棄物處理選擇的全球變暖潛力

      通過(guò)改進(jìn)WTE技術(shù)用于MSWM可以大大減少溫室氣體排放。在發(fā)達(dá)國(guó)家WTE技術(shù)已廣泛用于高效管理MSW。然而,在大多數(shù)發(fā)展中國(guó)家WTE設(shè)備缺少合適的基礎(chǔ)設(shè)施、污染控制系統(tǒng)和維護(hù)技術(shù)。本研究發(fā)現(xiàn)在多數(shù)發(fā)達(dá)國(guó)家WTE部門(mén)已完善并優(yōu)先使用,技術(shù)成熟。發(fā)達(dá)國(guó)家更加注重處理效率、循環(huán)/回收和污染控制策略。在發(fā)展中國(guó)家,根據(jù)國(guó)家法規(guī)和需求開(kāi)發(fā)WTE設(shè)備很重要。WTE廠在一些發(fā)展中國(guó)家已經(jīng)建立,只是很小規(guī)模。

      政府政策和法規(guī),金融支持,改善技術(shù)將加強(qiáng)發(fā)展中國(guó)家WTE設(shè)備的投產(chǎn)使用。本文將幫助發(fā)達(dá)和發(fā)展中國(guó)家讀者和戰(zhàn)略決策者識(shí)別最佳W TE技術(shù)。

      (作者感謝丹巴德印度理工學(xué)院<印度礦業(yè)學(xué)院>,環(huán)境科學(xué)與工程系給予科研工作支持。)

      [1]Abbas,T.,Ali,G.,Adil,S.A.,Bashir,M.K.,Kam ran,M.A.,2017.Econom ic analysis of biogas adoption technology by rural farmers:the case of Faisalabad district in Pakistan.Renew.Energy 107,431-439.

      [2]Abila,N.,2014.Managing municipal wastes for energy generation in N igeria.Renew.Sustain.Energy Rev.37,182-190.

      [3]Abu-Qudais,M.D.,Abu-Qdais,H.A.,2000.Energy content of municipal solid waste in Jordan and its potential utilization.Energy Convers.M anage.41(9),983-991.

      [4]Achillas,C.,Vlachokostas,C.,M oussiopoulos,N.,Banias,G.,Kafetzopoulos,G.,Karagiannidis,A.,2011.Social acceptance for the development of a waste-to-energy plant in an urban area.Resour.Conserv.Recycl.55(9),857-863.

      [5]Ahsan,N.,1999.Solid waste management plan for Indian megacities.Indian J.Environ.Prot.19,90-95.

      [6]Aleluia,J.,Ferr?o,P.,2016.Characterization of urban waste management practices in developing Asian countries:a new analytical framework based on waste characteristicsand urban dimension.W aste M anage.58,415-429.

      [7]Ali,G.,Bashir,M.K.,Ali,H.,Bashir,M.H.,2016.U tilization of rice husk and poultry wastes for renewable energy potential in Pakistan:an economic perspective.Renew.Sustain.Energy Rev.61,25-29.

      [8]Ali,G.,Abbas,S.,Qamer,F.M.,2013a.How effectively low carbon society development modelscontribute to climate change m itigation and adaptation action plans in Asia.Renew.Sustain.Energy Rev.26,632-638.

      [9]Ali,G.,Abbas,S.,Tanikawa,H.,Ahmed,S.,M ollah,N.A.,Qamer,F.M.,2013b.Comparative cost analysisof waste recycling for best energy alternative.J.Biodivers.Environ.Sci.3(8),111-120.

      [10]Ali,G.,N itivattananon,V.,Abbas,S.,Sabir,M.,2012.Green waste to biogas:Renewableenergy possibili ties for Thailand’s green markets.Renew.Sustain.Energy Rev.16(7),5423-5429.

      [11]Ali,G.,N itivattananon,V.,Molla,N.,Hussain,A.,2010.Selection of appropriate technology for solid waste management:a case of Thammasat hospital,Thailand.W orld Acad.Sci.Eng.Technol.40,251-254.

      [12]Allegrini,E.,Maresca,A.,O lsson,M.E.,Holtze,M.S.,Boldrin,A.,Astrup,T.F.,2014.Quantification of the resource recovery potential of municipal solid waste incineration bottom ashes.W aste Manage.34(9),1627-1636.

      [13]American Society of Mechanical Engineers(ASME),2008.Waste-to-Energy:A Renewable Energy Source from Municipal Solid W aste;W hite Paper Subm itted to Congress;New York,NY.

      [14]Annepu,R.K.,2012.Sustainable solid waste management in I ndia.Columbia University,New York.

      [15]Appels,L.,Baeyens,J.,Degrève,J.,Dew il,R.,2008.Principlesand potential of the anaerobic digestion of waste-activated sludge.Prog.Energy Combust.Sci.34(6),755-781.

      [16]Appels,L.,Lauwers,J.,Degrève,J.,Helsen,L.,Lievens,B.,W illems,K.,Dew il,R.,2011.

      [17]Anaerobic digestion in global bio-energy production:potential and research challenges.Renew.Sustain.Energy Rev.15(9),4295-4301.

      [18]Aracil,C.,Haro,P.,Giuntoli,J.,O llero,P.,2017.Proving the climate benefit in the production of biofuels from municipal solid waste refuse in Europe.J.Clean.Prod.142,2887-2900.

      [19]Arafat,H.A.,Jijakli,K.,Ahsan,A.,2015.Environmental performance and energy recovery potential of five processes for municipal solid waste treatment.J.Clean.Prod.105,233-240.

      [20]Arafat,H.A.,Jijakli,K.,2013.Modeling and comparative assessment of municipal solid waste gasification for energy production.W aste M anage.33(8),1704-1713.

      [21]Baggio,P.,Baratieri,M.,Gasparella,A.,Longo,G.A.,2008.Energy and environmental analysisof an inno vative system based on municipal solid waste(MSW)pyrolysisand combined cycle.Appl.Therm.Eng.28,136-144.

      [22]Bajic′,B.Z.,Dodic′,S.N.,Vuc ˇurovic′,D.G.,Dodic′,J.M.,Grahovac,J.A.,2015.W aste-to-energy status in Serbia.Renew.Sustain.Energy Rev.50,1437-1444.

      [23]Baran,B.,M am is,M.S.,Alagoz,B.B.,2016.U tilization of energy from waste potential in Turkey as distributed secondary renewable energy source.Renew.Energy 90,493-500.

      [24]Branchini,L.,2015.W aste-to-Energy:Advanced Cycles and New Design Concepts for Efficient Power Plants.Springer,Italy.

      [25]Browne,J.D.,Allen,E.,Murphy,J.D.,2014.Assessing the variability in biomethane production from the organic fraction of municipal solid waste in batch and continuous operation.Appl.Energy 128,307-314.

      [26]Brunner,P.H.,Rechberger,H.,2015.W aste to energy-key element for sustainable waste management.W aste Manage.37,3-12.

      [27]Charters,W.W.S.,2001.Developing markets for renewable energy technologies.Renew.Energy 22(1),217-222.

      [28]Chen,D.,Christensen,T.H.,2010.Life-cycleassessment(EASEWASTE)of two municipal solid waste incineration technologies in China.W aste Manage.Res.28(6),508-519.

      [29]Chen,Y.,Cheng,J.J.,Creamer,K.S.,2008.Inhibition of anaerobic digestion process:a review.Biores.Technol.99(10),4044-4064.

      [30]Cheng,H.,Hu,Y.,2010.Municipal solid waste(MSW)as a renewable source of energy:Current and future practices in China.Biores.Technol.101(11),3816-3824.

      [31]Cheng,H.,Zhang,Y.,M eng,A.,Li,Q.,2007.M unicipal solid waste fuelled power generation in China:a case study of waste-to-energy in Changchun city.Environ.Sci.Technol.41(21),7509-7515.

      [32]Cherubini,F.,Bargigli,S.,U lgiati,S.,2009.Life cycle assessment(LCA)of waste management strategies:landfilling,sorting plant and incineration.Energy 34(12),2116-2123.

      [33]Cristancho,D.E.,Arellano,A.V.,2006.Study of the operational conditions for anaerobic digestion of urban solid wastes.W aste M anage.26(5),546-556.

      [34]Curry,N.,Pillay,P.,2012.Biogasprediction and design of a food waste to energy system for the urban environment.Renew.Energy 41,200-209.

      [35]Damgaard,A.,Riber,C.,Fruergaard,T.,Hulgaard,T.,Christensen,T.H.,2010.Life-cycle-assessment of the historical development of air pollution control and energy recovery in waste incineration.W aste Manage.30(7),1244-1250.

      [36]Defra,2013.Incineration of M unicipal Solid W aste.Department for Environment,Food and Rural Affairs.(accessed 20.01.2017).

      [37]Eddine,B.T.,Salah,M.M.,2012.Solid waste as renew able sourceof energy:current and future possibility in Algeria.Int.J.Energy Environ.Eng.3(1),1-12.

      [38]Emery,A.,Davies,A.,Griffiths,A.,W illiams,K.,2007.Environmental and econom ic modelling:a case study of municipal solid waste management scenarios in W ales.Resour.Conserv.Recycl.49(3),244-263.

      [39]ERC,2014.The 2014 ERC Directory of W aste-To-Energy Facilities. (accessed 05.03.2016).

      [40]FAO Statistics,2013.Food and Agriculture Organi sation of the United Nations.(accessed 19.08.2016).

      [41]Fazeli,A.,Bakhtvar,F.,Jahanshaloo,L.,Sidik,N.A.C.,Bayat,A.E.,2016.Malaysia’s stand on municipal solid waste conversion to energy:a review.Renew.Sustain.Energy Rev.58,1007-1016.

      [42]Fountoulakis,M.S.,Drakopoulou,S.,Terzakis,S.,Georgaki,E.,Manios,T.,2008.Potential for methane production from typical Mediterranean agro-industrial by-products.Biomass Bioenerg.32(2),155-161.

      [43]Fruergaard,T.,Astrup,T.,2011.Optimal utilization of waste-to-energy in an LCA perspective.W aste M anage.31(3),572-582.

      [44]Giusti,L.,2009.A review of waste management practices and their impact on human health.W aste M anage.29(8),2227-2239.

      [45]Gohlke,O.,M artin,J.,2007.Drivers for innovation in waste-to-energy technology.W aste Manage.Res.25(3),214-219.

      [46]Gomez,X.,Cuetos,M.J.,Cara,J.,Moran,A.,Garcia,A.I.,2006.Anaerobic co-digestion of primary sludge and the fruit and vegetable fraction of the municipal solid wastes:conditions for m ixing and evaluation of the organic loading rate.Renew.Energy 31(12),2017-2024.

      [47]González,J.F.,Encinar,J.M.,Canito,J.L.,Rodr?′guez,J.J.,2001.Pyrolysis of automobile tyre waste.Influence of operating variablesand kineticsstudy.J.Anal.Appl.Pyrol.58,667-683.

      [48]Gregory,R.G.,Attenborough,G.M.,Hall,D.H.,Deed,C.,2003.The validation and development of an integrated landfill gas risk assessment model GasSim.Sardinia Proc.

      [49]Haider,M.R.,Yousaf,S.,M alik,R.N.,Visvanathan,C.,2015.Effect of m ixing ratio of food waste and rice husk co-digestion and substrate to inoculum ratio on biogas production.Biores.Technol.190,451-457.

      [50]H la,S.S.,Roberts,D.,2015.Characterisa tion of chem ical composition and energy content of green waste and municipal solid waste from Greater Brisbane,Australia.W aste Manage.41,12-19.

      [51]Hoornweg,D.,Bhada-Tata,P.,2012.W hat a W aste:A Global Review of Solid W aste Management.U rban Development Series Know ledge Papers,W orld Bank,W ashington DC.

      [52]Hossain,H.Z.,Hossain,Q.H.,Monir,M.M.U.,Ahmed,M.T.,2014.M unicipal solid waste(MSW)as a source of renewable energy in Bangladesh:revisit ed.Renew.Sustain.Energy Rev.39,35-41.

      [53]Intergovernmental Panel on Climate Change(IPCC),2006.2006 IPCC Guidelines for National Greenhouse Gas Inventories.Japan,IGES.

      [54]Intergovernmental Panel on Climate Change(IPPC),2007.Climate Change 2007:Synthesis Report.UNEP,WMO:2007.(accessed 20.12.2016).

      [55]International Renewable Energy Agency(IRENA),2016.Renewable Energy Statistics. (accessed 21.03.2017).

      [56]Ionescu,G.,Rada,E.C.,Ragazzi,M.,M a?rculescu,C.,Badea,A.,Apostol,T.,2013.Integrated municipal solid waste scenario model using advanced pre-treatment and waste to energy processes.Energy Con vers.Manage.76,1083-1092.

      [57]ISWA,2012.W aste-to-energy State-of-the-art-report.International Solid W aste Association,p.2012.Jamasb,T.,Nepal,R.,2010.Issues and options in waste management:a social cost-benefit analysis of waste-to-energy in the UK.Resour.Conserv.Recycl.54 (12),1341-1352.

      [58]Jeswani,H.K.,Azapagic,A.,2016.Assessing the envi ronmental sustainability of energy recovery from municipal solid waste in the UK.W aste M anage.50,346-363.

      [59]Johari,A.,Ahmed,S.I.,Hashim,H.,Alkali,H.,Ram li,M.,2012.Econom ic and environmental benefits of landfill gas from municipal solid waste in M alaysia.Renew.Sustain.Energy Rev.16(5),2907-2912.

      [60]Kalyani,K.A.,Pandey,K.K.,2014.W aste to energy statusin India:ashort review.Renew.Sustain.Energy Rev.31,113-120.

      [61]Karagiannidis,A.,Perkoulidis,G.,2009.A multi-cri teria ranking of different technologies for the anaerobic digestion for energy recovery of the organic fraction of municipal solid wastes.Biores.Technol.100(8),2355-2360.

      [62]Kasturirangan,K.,2014.Report of the Task Force on W aste to Energy,vol.I.(accessed 17.03.2016).

      [63]Kathiravale,S.,Yunus,M.N.M.,Sopian,K.,Samsuddin,A.H.,Rahman,R.A.,2003.M odeling the heating value of municipal solid waste.Fuel 82(9),1119-1125.

      [64]Kathirvale,S.,Yunus,M.N.M.,Sopian,K.,Samsuddin,A.H.,2004.Energy potential from municipal solid waste in M alaysia.Renew.Energy 29(4),559-567.

      [65]Khan,D.,Kumar,A.,Samadder,S.R.,2016.Impact of socioeconom ic status on municipal solid waste generation rate.W aste M anage.49,15-25.

      [66]Kikuchi,R.,Gerardo,R.,2009.More than a decade of conflict between hazardous waste management and public resistance:a case study of NIMBY syndrome in Souselas(Portugal).J.Hazard.Mater.172(2),1681-1685.

      [67]Komemoto,K.,Lim,Y.G.,Nagao,N.,Onoue,Y.,Niwa,C.,Toda,T.,2009.Effect of temperature on VFA’sand biogasproduction in anaerobic solubilization of food waste.W aste M anage.29(12),2950-2955.

      [68]Komilis,D.,Evangelou,A.,Giannakis,G.,Lymperis,C.,2012.Revisiting the elemental composition and the calorific value of the organic fraction of municipal solid wastes.W aste M anage.32(3),372-381.

      [69]Kom ilis,D.,Kissas,K.,Symeonidis,A.,2014.Effect of organic matter and moisture on the calorific value of solid wastes:an update of the Tanner diagram.W aste M anage.34(2),249-255.

      [70]Korai,M.S.,M ahar,R.B.,Uqaili,M.A.,2016.Optim ization of waste to energy routes through biochem ical and thermochem ical treatment optionsof municipal solid waste in Hyderabad,Pakistan.Energy Convers.Manage.124,333-343.

      [71]Kothari,R.,Tyagi,V.V.,Pathak,A.,2010.W aste-to-energy:A way from renewable energy sourcesto sustainable development.Renew.Sustain.Energy Rev.14(9),3164-3170.

      [72]Kumar,A.,Samadder,S.R.,in press.An empirical model for prediction of household solid waste generation rate-a case study of Dhanbad India.W aste M anage.(in press)

      [73]Kumar,S.,Chakrabarti,T.,2010.Effective Municipal Solid Waste Management in India.INTECH Open Access Publisher.

      [74]Lee,V.K.C.,Kwok,K.C.M.,Cheung,W.H.,M cKay,G.,2007.Operation of a municipal solid waste co-combustion pilot plant.Asia-Pac.J.Chem.Eng.2(6),631-639.

      [75]Leme,M.M.V.,Rocha,M.H.,Lora,E.E.S.,Venturini,O.J.,Lopes,B.M.,Ferreira,C.H.,2014.Techno-eco nom ic analysis and environmental impact assessment of energy recovery from Municipal Solid W aste(MSW)in Brazil.Resour.Conserv.Recycl.87,8-20.

      [76]Li,Y.,Zhao,X.,Li,Y.,Li,X.,2015.W aste incineration industry and development policies in China.W aste M anage.46,234-241.

      [77]Liamsanguan,C.,Gheewala,S.H.,2007.Environmental assessment of energy production from munic ipal solid waste incineration.Int.J.Life Cycle Assess.12(7),529-536.

      [78]Lianghu,S.,Huang,S.,Dongjie,N.,Xiaoli,C.,Yongfeng,N.,Youcai,Z.,2014.M unicipal solid waste management in China.In:Pariatamby,A.,Tanaka,M.(Eds.),Municipal Solid W aste M anagement in Asia and the Pacific Islands:Challengesand Strategic Solutions.Springer-Verlag,Singapore,pp.95-112.

      [79]Liu,Z.,Liu,Z.,Li,X.,2006.Statusand prospect of the application of municipal solid waste incineration in China.Appl.Therm.Eng.26(11),1193-1197.

      [80]Lombardi,L.,Carnevale,E.,Corti,A.,2015.A review of technologiesand performancesof thermal treatment systems for energy recovery from waste.Waste Manage.37,26-44.

      [81]Lu,J.W.,Zhang,S.,Hai,J.,Lei,M.,in press.Status and perspectives of municipal solid waste incineration in China:a comparison w ith developed regions.W aste M anage.(in press)

      [82]Luning,L.,Van Zundert,E.H.M.,Brinkmann,A.J.F.,2003.Comparison of dry and wet digestion for solid waste.W ater Sci.Technol.48(4),15-20.

      [83]Luz,F.C.,Rocha,M.H.,Lora,E.E.S.,Venturini,O.J.,Andrade,R.V.,Leme,M.M.V.,del O lmo,O.A.,2015.Techno-econom ic analysisof municipal solid waste gasification for electricity generation in Brazil.Energy Convers.Manage.103,321-337.

      [84]Ma,J.,Duong,T.H.,Sm its,M.,Verstraete,W.,Carballa,M.,2011.Enhanced biomethanation of kitchen waste by different pre-treatments.Biores.Technol.102(2),592-599.

      [85]Marchettini,N.,Ridolfi,R.,Rustici,M.,2007.An environmental analysis for comparing waste manage ment options and strategies.W aste Manage.27(4),562-571.

      [86]Macias-Corral,M.,Samani,Z.,Hanson,A.,Sm ith,G.,Funk,P.,Yu,H.,Longworth,J.,2008.Anaerobic diges tion of municipal solid waste and agricultural waste and the effect of co-digestion w ith dairy cow manure.Biores.Technol.99(17),8288-8293.

      [87]Medina,M.,1997.Theeffect of incomeon municipal solid waste generation rates for countries of varying levelsof economic development:amodel.J.Solid W aste Technol.M anage.24(3),149-155.

      [88]Melikoglu,M.,2013.Vision 2023:assessing the feasi bility of electricity and biogas production from municipal solid waste in Turkey.Renew.Sustain.Energy Rev.19,52-63.

      [89]Meylan,G.,Spoerri,A.,2014.Eco-efficiency assessment of options for metal recovery from incineration residues:a conceptual framework.W aste M anage.34(1),93-100.

      [90]Mohee,R.,Mudhoo,A.,2012.Energy from Biomass in M auritius:Overview of Research and Applications.In:W aste to Energy.Springer,London,pp.297-321.

      [91]Montejo,C.,Costa,C.,Ramos,P.,del Car men Márquez,M.,2011.Analysis and comparison of municipal solid wasteand reject fraction as fuels for incineration plants.Appl.Therm.Eng.31 (13),2135-2140.

      [92]Morf,L.S.,Gloor,R.,Haag,O.,Haupt,M.,Skutan,S.,Di Lorenzo,F.,B?ni,D.,2013.Precious metals and rare earth elements in municipal solid wastesourcesand fate in a Sw issincineration plant.W aste M anage.33(3),634-644.

      [93]Müller,G.T.,Giacobbo,A.,dos Santos Chiaramonte,E.A.,Rodrigues,M.A.S.,Meneguzzi,A.,Bernardes,A.M.,2015.The effect of sanitary landfill leachateaging on the biological treatment and assessment of photoelectrooxidation as a pre-treatment process.W aste Manage.36,177-183.

      [94]M urphy,J.D.,M cKeogh,E.,2004.Technical,econom ic and environmental analysis of energy produc tion from municipal solid waste.Renew.Energy 29(7),1043-1057.[96]Murphy,J.D.,M cKeogh,E.,Kiely,G.,2004.Technical/econom ic/environmental analysis of biogasutilisation.Appl.Energy 77(4),407-427.

      [95]Ngoc,U.N.,Schnitzer,H.,2009.Sustainable solutions for solid waste management in Southeast Asian countries.W aste Manage.29,1982-1995.

      [96]Nguyen,H.H.,Heaven,S.,Banks,C.,2014.Energy potential from the anaerobic digestion of food waste in municipal solid waste stream of urban areas in Vietnam.Int.J.Energy Environ.Eng.5(4),365-374.

      [97]Nixon,J.D.,Dey,P.K.,Ghosh,S.K.,Davies,P.A.,2013a.Evaluation of options for energy recovery from municipal solid waste in Indiausing thehierarchical analytical network process.Energy 59,215-223.

      [98]Nixon,J.D.,W right,D.G.,Dey,P.K.,Ghosh,S.K.,Davies,P.A.,2013b.A comparative as sessment of waste incinerators in the UK.W aste Manage.33(11),2234-2244.

      [99]Noor,Z.Z.,Yusuf,R.O.,Abba,A.H.,Hassan,M.A.A.,Din,M.F.M.,2013.An overview for energy recovery from municipal solid wastes(MSW)in M alaysia scenario.Renew.Sustain.Energy Rev.20,378-384.

      [100]Oonk,J.,Boom,A.,1995.Landfill Gas Formation,Recovery and Em issions.TNO Inst.of Environmetal and Energy Technology,The Hague,pp.95-203.

      [101]Ouda,O.K.M.,Raza,S.A.,Nizam i,A.S.,Rehan,M.,Al-W aked,R.,Korres,N.E.,2016.W aste to energy potential:a case study of Saudi Arabia.Renew.Sustain.Energy Rev.61,328-340.

      [102]Paleologos,E.K.,Caratelli,P.,El Am rousi,M.,2016.W aste-to-energy:an opportunity for a new industrial typology in Abu Dhabi.Renew.Sustain.Energy Rev.55,1260-1266.

      [103]Panepinto,D.,Tedesco,V.,Brizio,E.,Genon,G.,2014.Environmental performances and energy efficiency for MSW gasification treatment.W aste Biomass Valorizat.6(1),123-135.

      [104]Pant,D.,Van Bogaert,G.,Diels,L.,Vanbroekhoven,K.,2010.A review of the substrates used in m icrobial fuel cells(MFCs)for sustainable energy production.Biores.Technol.101(6),1533-1543.

      [105]Pantaleo,A.,De Gennaro,B.,Shah,N.,2013.Assess ment of optimal size of anaerobic co-digestion plants:an application to cattle farms in the province of Bari(Italy).Renew.Sustain.Energy Rev.20,57-70.

      [106]Patumsawad,S.,Cliffe,K.R.,2002.Experimental study on fluidised bed combustion of high moisture municipal solid waste.Energy Convers.Manage.43(17),2329-2340.

      [107]Perkoulidis,G.,Papageorgiou,A.,Karagiannidis,A.,Kalogirou,S.,2010.Integrated assessment of a new W aste-to-Energy facility in Central Greece in the context of regional perspectives.W aste M anage.30(7),1395-1406.

      [108]Pham,T.P.T.,Kaushik,R.,Parshetti,G.K.,Mahmood,R.,Balasubramanian,R.,2015.Food waste-to-energy conversion technologies:current status and future directions.W aste Manage.38,399-408.

      [109]Pivato,A.,Vanin,S.,Raga,R.,Lavagnolo,M.C.,Barausse,A.,Rieple,A.,Laurent,A.,Cos su,R.,2016.Use of digestate from a decentralized on-farm biogasplant as fertilizer in soils:an ecotoxicological study for future indicatorsin risk and life cycle assessment.Waste Manage.49,378-389.

      [110]Psomopoulos,C.S.,Bourka,A.,Themelis,N.J.,2009.W aste-to-energy:a review of the statusand benefits in USA.W aste M anage.29 (5),1718-1724.

      [111]Qu,X.Y.,Li,Z.S.,Xie,X.Y.,Sui,Y.M.,Yang,L.,Chen,Y.,2009.Survey of composition and generation rate of household wastes in Beijing,China.W aste M anage.29(10),2618-2624.

      [112]Reddy,P.J.,2011.M unicipal Solid W aste M anage ment:Processing,Energy Recovery,Global Examples.CRC Press,Taylor&Francis group,New Jersey.

      [113]Ren,X.,Che,Y.,Yang,K.,Tao,Y.,2016.Risk percep tion and public acceptance toward a highly protested W aste-to-Energy facility.W aste M anage.48,528-539.

      [114]Saxena,R.C.,Adhikari,D.K.,Goyal,H.B.,2009.Biomass-based energy fuel through biochem ical routes:a review.Renew.Sustain.Energy Rev.13(1),167-178.

      [115]Scano,E.A.,Asquer,C.,Pistis,A.,Ortu,L.,Demontis,V.,Cocco,D.,2014.Biogas from anaerobic digestion of fruit and vegetable wastes:experimental results on pilot-scale and prelim inary performan ceevalua tion of a full-scale power plant.Energy Convers.Manage.77,22-30.

      [116]Scarlat,N.,M otola,V.,Dallemand,J.F.,Monforti-Ferrario,F.,M ofor,L.,2015.Evaluation of energy potential of municipal solid waste from African urban areas.Renew.Sustain.Energy Rev.50,1269-1286.

      [117]Scharff,H.,Jacobs,J.,2006.Applying guidance for methane em ission estimation for landfills.W aste M anage.26(4),417-429.

      [118]Shafiee,S.,Topal,E.,2009.W hen w ill fossil fuel reserves be dim inished?Energy Policy 37(1),181-189.

      [119]Shekdar,A.,2009.Sustainable solid waste management:an integrated approach for Asian Countries.W aste M anage.29,1438-1448.

      [120]Shi,H.,Mahinpey,N.,Aqsha,A.,Silbermann,R.,2016.Characterization,thermochem ical conversion studies,and heating value modeling of municipal solid waste.Waste Manage.48,34-47.

      [121]Singh,R.P.,Tyagi,V.V.,Allen,T.,Ibrahim,M.H.,Kothari,R.,2011.An overview for exploring the possibilities of energy generation from municipal solid waste(MSW)in Indian scenario.Renew.Sustain.Energy Rev.15(9),4797-4808.

      [122]Stehlik,P.,2009.Contribution to advances in waste-to-energy technologies.J.Clean.Prod.17(10),919-931.

      [123]Surendra,K.C.,Takara,D.,Hashimoto,A.G.,Khanal,S.K.,2014.Biogas as a sustainable energy source for developing countries:opportunitiesand challenges.Renew.Sustain.Energy Rev.31,846-859.

      [124]Tabasová,A.,Kropác ˇ,J.,Kermes,V.,Nemet,A.,Stehlík,P.,2012.W aste-to-energy technologies:Impact on environment.Energy 44(1),146-155.

      [125]Talyan,V.,Dahiya,R.P.,Sreekrishnan,T.R.,2008.State of municipal solid waste management in Delhi,the capital of India.W aste M anage.28(7),1276-1287.

      [126]Tambone,F.,Genevini,P.,D’Imporzano,G.,Adani,F.,2009.Assessing amendment propertiesof digestate by studying the organic matter composi tion and the degree of biological stability during the anaerobic digestion of the organicfraction of MSW.Biores.Technol.100(12),3140-3142.

      [127]Tan,S.T.,Hashim,H.,Lim,J.S.,Ho,W.S.,Lee,C.T.,Yan,J.,2014.Energy and em issionsbenefitsof renewable energy derived from municipal solid waste:analysis of a low carbon scenario in Malaysia.Appl.Energy 136,797-804.

      [128]Tanaka,M.,2014.Sustainable society and municipal solid waste management.In:Pariatamby,A.,Tanaka,M.(Eds.),M unicipal Solid W aste Management in Asiaand the Pacific Islands:Challenges and Strategic Solutions.Springer-Verlag,Singapore,pp.157-172.

      [129]The W orld Bank,2012.W hat a W aste:A Global Review of Solid W aste M anagement.W ashington,DC.

      [130]Thitame,S.N.,Pondhe,G.M.,Meshram,D.C.,2010.Characterisation and composition of municipal solid waste(MSW)generated in Sangamner City,District Ahmednagar,M aharashtra,India.Environ.M onit.Assess.170(1),1-5.

      [131]Tolis,A.,Rentizelas,A.,Aravossis,K.,Tatsiopoulos,I.,2010.Electricity and combined heat and power from municipal solid waste;theoretically optimal investment decision time and em issions trading implications.W aste M anage.Res.28(11),985-995.

      [132]Troschinetz,A.M.,M ihelcic,J.R.,2009.Sustainable recycling of municipal solid waste in developing countries.W aste M anage.29(2),915-923.

      [133]Turconi,R.,Butera,S.,Boldrin,A.,Grosso,M.,Riga monti,L.,Astrup,T.,2011.Life cycle assessment of waste incineration in Den mark and Italy using two LCA models.W aste M anage.Res.29(10),S78-S90.

      [134]UNEP,2010.W aste and Climate Change:Global trends and strategy framework.United Nations Environmental Programme.(ac cessed 26.06.2017).

      [135]Unnikrishnan,S.,Singh,A.,2010.Energy recovery in solid waste management through CDM in India and other countries.Resour.Conserv.Recycl.54(10),630-640.

      [136]US-EPA (2001).Landfill Volume III.(accessed 23.08.2016).

      [137]Velis,C.,W ilson,D.C.,Rocca,O.,Sm ith,S.R.,M avropoulos,A.,Cheeseman,C.R.,2012.An analytical framework and tool(‘InteRa’)for integrat ing the informal recycling sector in waste and resource management systems in developing countries.Waste Manage.Res.30,43-66.

      [138]W ang,Z.,Geng,L.,2015.Carbon em issions calcula tion from municipal solid waste and the influencing factors analysis in China.J.Clean.Prod.104,177-184.W aste Atlas,2016.D-W aste. (accessed08.08.2016)

      [139]W hiting,A.,Azapagic,A.,2014.Life cycle environmental impacts of generating electricit y and heat from biogasproduced by anaerobic digestion.Energy 70,181-193.

      [140]W ilson,D.C.,Blakey,N.C.,Hansen,J.A.,2010.W aste prevention:its time hascome.W aste M anage.Res.28(3),191-192.

      [141]W orldBank,1999.M unicipalsolidwasteincineration.In:TechnicalGuidanceReport.World Bank,Washington,DC,USA,1999.(accessed24.02.2016).

      [142]W orld Energy Resources,2016.W orld Energy Council,W aste to Energy.(accessed 21.03.2017).

      [143]Yay,A.S.E.,2015.Application of life cycle assessment(LCA)for municipal solid waste management:a case study of Sakarya.J.Clean.Prod.94,284-293.

      [144]Yadav,P.,Samadder,S.R.,2017.A global prospective of income distribution and its effect on life cycle assessment of municipal solid waste management:a review.Environ.Sci.Pollut.Res.10(24),9123-9141.

      [145]Yap,H.Y.,Nixon,J.D.,2015.A multi-criteria analysisof options for energy recovery from municipal solid waste in India and the UK.W aste Manage.46,265-277.

      [146]Yi,S.,Yoo,K.Y.,Hanaki,K.,2011.Characteristicsof MSW and heat energy recovery between residen tial and commercial areas in Seoul.W aste Manage.31(3),595-602.

      [147]Yong,Z.,Dong,Y.,Zhang,X.,Tan,T.,2015.Anaerobic co-digestion of food waste and straw for biogas production.Renew.Energy 78,527-530.

      [148]Zaman,A.U.,2010.Comparative study of municipal solid waste treatment technologies using life cycle assessment method.Int.J.Environ.Sci.Technol.7(2),225-234.

      [149]Zhang,D.Q.,Tan,S.K.,Gersberg,R.M.,2010.M unic ipal solid waste management in China:status,problemsand challenges.J.Environ.Manage.91(8),1623-1633.

      [150]Zhang,R.,El-M ashad,H.M.,Hartman,K.,W ang,F.,Liu,G.,Choate,C.,Gamble,P.,2007.Characterization of food waste as feedstock for anaerobic digestion.Biores.Technol.98(4),929-935.

      [151]Zhao,X.G.,Jiang,G.W.,Li,A.,W ang,L.,2016.Econom ic analysis of waste-to-energy industry in China.W aste Manage.48,604-618.

      [152]Zheng,L.,Song,J.,Li,C.,Gao,Y.,Geng,P.,Qu,B.,Lin,L.,2014.Preferential policiespromote municipal solid waste(MSW)to energy in China:current status and prospects.Renew.Sustain.Energy Rev.36,135-148.

      [153]Zhou,H.,M eng,A.,Long,Y.,Li,Q.,Zhang,Y.,2014.An overview of characteristicsof municipal solid waste fuel in China:physical,chem ical composi tion and heating value.Renew.Sustain.Energy Rev.36,107-122.

      猜你喜歡
      填埋場(chǎng)甲烷廢棄物
      制造了全世界三分之一廢棄物的產(chǎn)業(yè)
      多功能區(qū)固廢填埋場(chǎng)建設(shè)案例分析
      新型醫(yī)療廢棄物焚化艙
      液氧甲烷發(fā)動(dòng)機(jī)
      電子廢棄物
      世界博覽(2020年19期)2020-10-30 10:02:46
      新型GCL復(fù)合垂直防滲技術(shù)及其在填埋場(chǎng)的應(yīng)用
      論煤炭運(yùn)輸之甲烷爆炸
      水上消防(2020年1期)2020-07-24 09:26:02
      Gas from human waste
      “廢棄物”中有孩子的快樂(lè)
      基于VB6.0的紅外甲烷檢測(cè)儀串行通信的實(shí)現(xiàn)
      汶上县| 四子王旗| 时尚| 兴城市| 襄汾县| 泰兴市| 萨嘎县| 藁城市| 太白县| 和硕县| 合川市| 巴塘县| 巨野县| 扶绥县| 乌恰县| 本溪| 搜索| 宜宾县| 贡山| 天门市| 得荣县| 光泽县| 德令哈市| 松桃| 台中市| 涟源市| 五华县| 璧山县| 怀来县| 年辖:市辖区| 永安市| 清新县| 红桥区| 常州市| 建水县| 涟水县| 岱山县| 中西区| 灵丘县| 大石桥市| 蒲城县|