蔣敏敏,陳桂香
?
基于應力路徑試驗的小麥糧堆力學特性和應力應變關系模型
蔣敏敏1,2,陳桂香1,2
(1. 河南工業(yè)大學土木建筑學院,鄭州 450001;2. 糧食儲運國家工程實驗室,鄭州 450001)
糧倉中糧堆在裝卸時存在著復雜的應力路徑,為了得出復雜應力路徑對糧堆模量和臨界狀態(tài)特性的影響規(guī)律,以及糧堆應力應變關系模型,該文在側(cè)向應力50~300 kPa下,進行了常規(guī)三軸壓縮(conventional triaxial compression,CTC)、等壓縮(constant mean normal stress compression,CMS)、三軸主動壓縮(reduced triaxial compression,RTC)三軸應力路徑試驗,分析了應力路徑和側(cè)向壓力對模量的影響和糧堆臨界狀態(tài)特性;修正巖土體三次曲線模型,建立了適于描述倉內(nèi)小麥糧堆應力應變的模型,并通過應力路徑試驗結(jié)果和文獻試驗結(jié)果對模型的適用性進行驗證。研究結(jié)果表明:各應力路徑下初始模量、割線模量50均隨著側(cè)向應力呈冪函數(shù)增長;CTC、CMS試驗的割線模量50比初始模量發(fā)生較大的降低,而RTC試驗沒有明顯降低。在參考壓力(大氣壓力)下,對于初始模量,CTC試驗的結(jié)果最大,RTC試驗的結(jié)果最??;對于割線模量50,CTC試驗的結(jié)果最小,RTC試驗的結(jié)果最大。CTC試驗的初始模量、割線模量均隨著側(cè)向應力增長最慢,而RTC試驗的結(jié)果均隨著側(cè)向應力增長最快。不同應力路徑和側(cè)向應力下,試驗的破壞點均落于同一臨界狀態(tài)線上,小麥糧堆臨界狀態(tài)應力比為0.976。修正三次曲線模型反映了糧堆強度、峰度系數(shù)和峰值應變等特性,并通過8個參數(shù)進行計算;通過應力路徑試驗結(jié)果和文獻試驗結(jié)果對該模型進行了驗證。研究結(jié)果可為糧倉裝卸料壓力、變形的計算提供更符合實際應力路徑條件的參量,建立的修正三次曲線模型可用于糧堆應力和變形的數(shù)值模擬,為糧倉的設計提供參考。
應力;應變;模型;小麥糧堆;應力路徑三軸試驗
糧倉是重要的基礎設施,中國各地糧倉中糧食儲藏總量達2億t,保障糧食安全是農(nóng)業(yè)現(xiàn)代化的重要任務。中轉(zhuǎn)倉、儲備倉等各類糧倉在儲藏周期結(jié)束后均需要進行裝卸糧,此時糧倉中不同位置糧堆的豎向和側(cè)向應力將發(fā)生復雜的變化,并會進一步作用在倉壁上,引起倉體結(jié)構(gòu)的開裂、破壞、失穩(wěn)等問題[1-5]。因此不同加卸載路徑下糧堆的力學特性對糧倉極為重要[6-7]。
糧倉內(nèi)糧堆是由糧食籽粒堆聚而成的散粒體,不少研究者對糧堆的力學特性和參數(shù)進行了研究,Moya等[8]、Afzalinia等[9]利用直剪、壓縮試驗,得出不同品種糧堆的單向壓縮、直剪抗剪強度等性質(zhì)。曾長女等[10-11]利用三軸試驗,得出了小麥糧堆孔隙率、含水率對抗剪強度的影響規(guī)律。許啟鏗等[12]將小麥糧堆的三軸應力應變曲線分為4個階段,得出彈性模量的變化規(guī)律。陳家豪等[13]根據(jù)三軸試驗提出小麥糧堆模量的計算式,得出各階段模量的特性。Stasiak等[14]利用聲波法測得谷物、油菜籽的彈性模量,并得出了彈性模量隨著壓力的增長規(guī)律。程緒鐸等[15-19]通過三軸等試驗得出小麥、玉米、稻谷、大豆等糧堆的密度、彈性模量、體變模量,并分析了含水率、圍壓等因素對各力學指標的影響。蔣敏敏等[20]研究小麥糧堆直剪強度和剪脹特性,得出強度參數(shù)和剪脹角的分布范圍,提出剪脹發(fā)展規(guī)律,得出最大剪縮體變、最大剪脹體變的變化范圍。Nielsen[21]提出糧倉內(nèi)糧堆應力應變模型對糧倉壓力的計算極為重要。研究者還提出利用巖土本構(gòu)理論反映糧堆的力學性質(zhì)。姜勇等[22]采用了Duncan-Chang模型研究了筒倉內(nèi)糧堆應力,但該模型不能反映周圍壓力降低的情況和剪脹性。Ayuga等[6,23]在筒倉卸料數(shù)值研究中,提出采用Drucker-Prager模型模擬糧堆力學性質(zhì)。
目前在糧堆強度、模量等參量的研究,利用巖土本構(gòu)模型計算糧堆的應力應變,均有相當多的研究成果。然而糧倉在裝卸料等過程中,糧堆中的應力路徑發(fā)生復雜變化,裝糧時豎向加載,卸糧時豎向卸載,常規(guī)三軸和直剪試驗難以反映糧倉中復雜應力路徑的影響。現(xiàn)有的巖土模型是否完全適用于描述糧堆的力學特性,仍有待驗證。
應力路徑試驗通常用來研究復雜堆載、開挖卸荷時地基和結(jié)構(gòu)的應力變形[24-27]。模量是糧堆應力變形計算的關鍵參量,臨界狀態(tài)特性反映了裝卸糧時破壞面力學特性。本文通過應力路徑三軸試驗,模擬糧倉中不同深度以及不同加卸載應力路徑條件,得出各應力路徑下模量規(guī)律和臨界狀態(tài)特性,分析糧堆強度、應力應變參數(shù)規(guī)律,修正土石料應力應變的三次曲線模型,提出適于模擬各種應力路徑下糧堆應力應變關系的模型。為糧倉裝卸料荷載、變形的計算提供了更符合實際應力路徑條件的參量結(jié)果;應力應變模型應用于糧倉數(shù)值計算中,得出更符合實際的應力和變形規(guī)律,可為糧倉的設計計算提供理論基礎。
本研究采用的試驗材料為鄭州產(chǎn)小麥,品種是鄭麥113。根據(jù)散體材料三軸試驗的規(guī)定[28],試驗中試樣為圓柱形,直徑為61.8 mm,高度為125 mm,密度為0.85 g/cm3,質(zhì)量含水率為10.9%,小麥籽粒平均直徑為4.5 mm。試樣直徑與籽粒平均直徑的比值為13.7,符合三軸試驗關于試樣直徑與顆粒直徑之比不小于10的要求[28]。試驗在全自動三軸儀中進行,將制成的圓柱形小麥糧堆試樣放入三軸壓力室中,施加側(cè)向壓力和軸向壓力,側(cè)向壓力和軸向壓力分別獨立作用于試樣上。
首先對糧堆試樣施加各向相等的壓縮應力,模擬糧倉內(nèi)糧堆受到的初始周圍壓力,再通過獨立控制軸向應力和側(cè)向應力,實現(xiàn)對糧堆試樣施加不同應力路徑的作用。應力路徑包括常規(guī)三軸壓縮(conventional triaxial compression,CTC)、等壓縮(constant mean normal stress compression,CMS)、三軸主動壓縮(reduced triaxial compression,RTC)3種。常規(guī)三軸壓縮試驗中,保持側(cè)向應力不變,增加軸向應力;等壓縮試驗中,降低側(cè)向應力,同時增加軸向應力,并保持平均法向應力為常數(shù);三軸主動壓縮試驗中,保持軸向應力不變,降低側(cè)向應力。在-平面上,試驗應力路徑如圖1所示。根據(jù)大型糧倉中糧堆的壓力范圍,各類應力路徑試驗的初始側(cè)向應力設定為6個等級:50、100、150、200、250、300 kPa。試樣剪切直至達到臨界狀態(tài),即隨著應變的增大,偏應力為常數(shù)(偏應力達到30%)[29]。各組試驗均重復3次,因模量、強度的變異系數(shù)均小于2%,本文試驗結(jié)果取3次結(jié)果的平均值。
圖1 小麥糧堆三軸應力路徑試驗示意圖
2.1.1 模量特性
各類應力路徑和不同側(cè)向應力下小麥糧堆的應力應變曲線如圖2所示。根據(jù)圖2分析各試驗的峰值偏應力(應力應變曲線最高值)和殘余偏應力(軸向應變大于15%后的穩(wěn)定值)結(jié)果,側(cè)向應力介于50至300 kPa時,CTC試驗的峰值偏應力介于98.3至400.4 kPa,殘余偏應力介于92.7至373.5 kPa,CMS試驗的峰值偏應力介于51.2至244.4 kPa,殘余偏應力介于43至232.5 kPa,RTC試驗的峰值偏應力介于23.9至136 kPa,殘余偏應力介于15.2至60.8 kPa。相同側(cè)向應力下,CTC試驗的偏應力最大,RTC試驗的偏應力最??;CTC試驗應力應變曲線總體呈應變硬化型,RTC試驗結(jié)果總體呈應變軟化型[29]。CTC試驗的側(cè)向應力不變,軸向應力不斷增大,側(cè)向應力的約束能增大糧堆的剛度,糧堆表現(xiàn)出硬質(zhì)材料的特性,因此偏應力大,材料呈應變硬化[29]。RTC試驗的側(cè)向應力不斷減小,軸向應力不變,側(cè)向的約束效應最小,糧堆表現(xiàn)出軟質(zhì)材料的特性,因此偏應力小,材料呈應變軟化。
圖2 不同側(cè)向應力下小麥糧堆應力路徑三軸試驗的偏應力與軸向應變關系
三軸試驗割線模量=/(MPa)(ε為軸向應變,%)。初始模量E表示小應變(本文取軸向應變0.05%)時的割線模量,散粒體材料在極小的應變下即會產(chǎn)生塑性應變,初始模量近似為糧堆應力應變曲線的彈性模量,是應力應變曲線中模量的最大值[30-31]。50表示偏應力為q/2(q為三軸剪切破壞的偏應力,kPa)時的割線模量。各參量的計算方法如圖3所示。
注:qf為三軸剪切破壞的偏應力,kPa,Ei為初始模量,MPa,E50為割線模量,MPa。
各側(cè)向壓力和應力路徑下初始模量和割線模量的結(jié)果,如圖4所示,圖4縱橫坐標均為對數(shù)坐標。由圖4可知,側(cè)向應力為50至300 kPa時,CTC試驗的初始模量介于14.6和51.4 MPa之間,CMS試驗的初始模量介于8和34.6 MPa之間,RTC試驗的初始模量介于4.1和34.8 MPa之間。側(cè)向應力越大,初始模量越大;相同側(cè)向應力下,CTC試驗的初始模量最大,RTC試驗的初始模量最小。圖4結(jié)果表明,在雙對數(shù)坐標圖中,各應力路徑試驗初始模量均隨著側(cè)向應力呈線性增長;即初始模量隨著側(cè)向應力呈冪函數(shù)增長,表示為:
式中p為參考壓力(大氣壓力常數(shù)),100 kPa;3為側(cè)向應力,kPa;K和n為模型參數(shù),其中K為參考壓力下初始模量,n為雙對數(shù)坐標中初始模量隨著側(cè)向應力的增長速率,是圖4雙對數(shù)坐標軸中直線的斜率。各應力路徑試驗模型參數(shù)K和n結(jié)果如表1所示。對于參數(shù)K,CTC試驗最大,為240.5,RTC試驗最小,為79.2,該參數(shù)是初始模量E與參考壓力p的比值,表示參考壓力(大氣壓100 kPa)下CTC試驗的初始模量為24.1 MPa,RTC試驗的初始模量為7.9 MPa;參考壓力下CTC試驗初始模量最大,RTC試驗初始模量最小。對于參數(shù)n,CTC試驗最小,為0.639;RTC試驗最大,為1.184;即RTC試驗初始模量隨著側(cè)向應力增長最快,CTC試驗初始模量隨著側(cè)向應力增長最慢。
從圖4試驗結(jié)果可見,CTC試驗和CMS試驗的割線模量50比初始模量發(fā)生較大的降低,而RTC試驗割線模量50與初始模量較接近。在雙對數(shù)坐標圖中,各應力路徑下割線模量50也隨著側(cè)向應力呈線性增長;即割線模量50隨著側(cè)向應力也呈冪函數(shù)增長,表示為:
式中K50和n50為模型參數(shù),K50反映了參考壓力100 kPa下的割線模量,n50反映了在雙對數(shù)坐標中割線模量隨著側(cè)向應力的增長速率。各應力路徑試驗模型參數(shù)K50和n50的結(jié)果見表1。對于參數(shù)K50,CTC試驗最小,為77.3,RTC試驗最大,為90.3,該參數(shù)是初始模量E50與參考壓力pa的比值,表示參考壓力(大氣壓100 kPa)下CTC試驗的初始模量為7.7 MPa,RTC試驗的初始模量為9 MPa;參考壓力下CTC試驗割線模量E50最小,RTC試驗割線模量E50最大。對于參數(shù)n50,CTC試驗最小,為0.719,RTC試驗最大,為1.096;即RTC試驗割線模量隨著側(cè)向應力增長最快,CTC試驗割線模量隨著側(cè)向應力增長最慢。
表1 小麥糧堆模量模型參數(shù)
注:系數(shù)K為參考壓力下初始模量,無量綱;系數(shù)50為參考壓力下割線模量,無量綱;系數(shù)n為雙對數(shù)坐標中初始模量隨著側(cè)向應力的增長速率,無量綱;系數(shù)50為雙對數(shù)坐標中割線模量隨著側(cè)向應力的增長速率,無量綱。
Note: parameterKis initial modulus under reference pressure, dimensionless; parameter50is secant modulus under reference pressure, dimensionless; parameternis increasing rate of initial modulus under logarithmic scale, dimensionless; parameter50is increasing rate of secant modulus under logarithmic scale, dimensionless.
2.1.2 臨界狀態(tài)特性
不同應力路徑和側(cè)向應力下,剪切過程中小麥糧堆的偏應力-平均法向應力路徑結(jié)果如圖5所示。由圖5可知,本文應力路徑試驗的軸線應變均達到30%,遠大于破壞應變。CTC試驗的應力路徑沿著偏應力增量與平均法向應力增量比值D/D=3升高至最大偏應力,側(cè)向應力300 kPa時最大偏應力為400.4 kPa;CMS試驗的應力路徑沿著平均法向應力增量D=0升高至最大偏應力,后隨著平均法向應力的微降,偏應力略有降低,側(cè)向應力300 kPa時最大偏應力為244.4 kPa,后略降至232.5 kPa;RTC試驗的應力路徑沿著D/D=-3/2升高至最大偏應力,后隨著平均法向應力的降低,偏應力有較大的降低,側(cè)向應力300 kPa時最大偏應力為136 kPa,后降至60.8 kPa。
圖5 剪切過程中偏應力-平均法向應力路徑
各應力路徑下偏應力達到峰值后均會有一定的降低,峰值偏應力后不能繼續(xù)承載,為破壞點,如圖5所示。在破壞點之前,偏應力不斷增大,在破壞點之后,偏應力不斷減小,糧堆中的偏應力不會高于破壞點;在偏應力-平均法向應力(-)平面上糧堆中的應力狀態(tài)始終位于破壞點之下。
在-平面上,由圖5提取不同應力路徑(包含CTC、CMS和RTC)和側(cè)向應力(50~300 kPa范圍)條件下的破壞點,如圖6所示。由圖6可見,在不同應力路徑和側(cè)向應力條件下,破壞點均落于同一直線上,該直線為小麥糧堆的臨界狀態(tài)線[29],小麥糧堆臨界狀態(tài)線的斜率為0.976,表明不同條件下破壞點的偏應力與平均法向應力呈正比。在各類應力路徑和不同側(cè)向應力下,小麥糧堆在-平面上應力狀態(tài)均位于臨界狀態(tài)線以內(nèi),當達到臨界狀態(tài)線時試樣破壞。
圖6 q-p平面上小麥糧堆臨界狀態(tài)線
2.2.1 峰值強度和殘余強度
式中為表觀黏聚力,kPa;為內(nèi)摩擦角,(°);下標表示峰值強度對應的結(jié)果。根據(jù)公式(3)和圖7a得出小麥糧堆在不同應力路徑下的表觀黏聚力和內(nèi)摩擦角結(jié)果如表2所示,3種應力路徑表觀黏聚力介于7~34.2 kPa之間,內(nèi)摩擦角介于34°~47.7°之間。
圖2結(jié)果顯示,在較大軸向應變下,小麥糧堆偏應力趨于一個較低的穩(wěn)定值,稱為殘余強度[29]。本文研究表明,小麥糧堆的殘余強度也符合莫爾-庫倫破壞準則[35],如圖7b所示,表示為:
式中為殘余偏應力,kPa;為相應的平均應力,kPa;cr為殘余表觀黏聚力,kPa;φr為殘余內(nèi)摩擦角,(°);下標r表示殘余強度對應的結(jié)果。根據(jù)公式(4)和圖7b得出不同應力路徑下小麥糧堆的殘余表觀黏聚力和殘余內(nèi)摩擦角結(jié)果如表2所示,3種應力路徑殘余表觀黏聚力介于11.6~29.4 kPa之間,殘余內(nèi)摩擦角介于29.1°~44.7°之間。
表2 小麥糧堆三次曲線模型參數(shù)
2.2.2 峰度系數(shù)
式中a和k為參數(shù),結(jié)果如表2所示。
2.2.3 峰值軸向應變
式中b和m為參數(shù),結(jié)果如表2所示;pa為大氣壓力常數(shù),100 kPa。
2.3.1 修正三次曲線模型
由于巖土體材料的種類繁多,其應力應變特性和破壞規(guī)律也較復雜,有多種用于模擬應力應變關系的本構(gòu)模型[37]。沈珠江三次曲線模型是一種能反映應變軟化和塑性破壞等多重特征的模型[36],且參數(shù)易于獲取,便于在大型復雜工程中進行數(shù)值計算。該模型的應力應變關系為:
2.3.2 應力應變關系的模擬
本文進行了常規(guī)三軸壓縮、等壓縮和三軸主動壓縮3種應力路徑試驗,試驗側(cè)向應力為50、100、150、200、250、300 kPa,覆蓋糧堆通常的應力范圍[38]。應用本文提出的修正三次曲線模型計算小麥糧堆偏應力應變結(jié)果,并與圖2中試驗結(jié)果進行對比,如圖10a~10c所示。應用本文計算模型和參數(shù),模擬Zhang等[39]的小麥常規(guī)三軸壓縮試驗結(jié)果,如圖10d所示。
CTC試驗和CMS試驗實測值與計算值的相關系數(shù)2通常大于0.95,具有較好的相關性。RTC試驗實測值與計算值的相關系數(shù)2通常大于0.8,圖10c中,側(cè)向應力較大的三軸主動壓縮試驗結(jié)果與模型計算結(jié)果存在一定的偏差。分析原因如下:三軸主動壓縮路徑下應力應變曲線的應變軟化現(xiàn)象明顯(偏應力達到峰值后下降),尤其是側(cè)向應力為300 kPa時,偏應力在峰值后急劇降低,剪切面上顆粒錯動和顆粒位置變化更難均勻地調(diào)整,受到兩端端部和橡皮膜的約束,試樣更不易產(chǎn)生均勻的變形,形成鼓脹變形,導致偏應力在軸向應變約4%(偏應力急劇下降點)后,略有上升后,再出現(xiàn)降低,引起模型計算結(jié)果與試驗結(jié)果在峰值偏應力后產(chǎn)生差異[40]。
由圖10可知修正三次曲線模型具有如下特點:模型計算結(jié)果總體可較好地反映糧堆不同應力路徑的應力應變關系;該模型可較好地反映小麥糧堆的應變硬化和應變軟化力學特性;能較準確地模擬各應力路徑下糧堆的峰值強度和殘余強度。
注:圖中點為試驗結(jié)果,線為模型計算結(jié)果。
本文針對糧倉裝卸糧過程中存在的復雜應力路徑問題,利用三軸應力路徑試驗,研究了不同路徑、側(cè)向應力下糧堆的模量規(guī)律和臨界狀態(tài)特性,建立了新的小麥糧堆應力應變關系模型,并通過應力路徑三軸試驗和文獻試驗結(jié)果,對模型進行了驗證,得到以下主要結(jié)論:
1)相同側(cè)向應力下,CTC試驗的初始模量最大,RTC試驗的初始模量最小。各應力路徑下初始模量、割線模量50均隨著側(cè)向應力呈冪函數(shù)增長。CTC、CMS試驗的割線模量50與初始模量相比發(fā)生較大的降低,而RTC試驗割線模量50與初始模量相比沒有明顯降低。參考壓力(大氣壓力)下,CTC試驗初始模量最大,為24.1 MPa,RTC試驗結(jié)果最小,為7.9 MPa;CTC試驗初始模量隨著側(cè)向應力增長最慢,RTC試驗結(jié)果增長最快。參考壓力下CTC試驗割線模量50最小,為7.7 MPa,RTC試驗結(jié)果最大,為9 MPa;CTC試驗割線模量隨著側(cè)向應力增長最慢,RTC試驗結(jié)果增長最快。
2)不同應力路徑和側(cè)向應力條件下,糧堆三軸應力路徑試驗在破壞前的應力狀態(tài)位于臨界狀態(tài)線以內(nèi);破壞點均落于同一臨界狀態(tài)線上。小麥糧堆臨界狀態(tài)線為直線,本文試驗臨界狀態(tài)應力比為0.976。
3)修正巖土體應力應變關系的三次曲線模型,提出適用于小麥糧堆強度、峰度系數(shù)和峰值軸向應變的新計算方法,得出了適用于模擬糧倉內(nèi)小麥糧堆應力應變關系的新模型。模型包括表觀黏聚力、內(nèi)摩擦角、殘余表觀黏聚力、殘余內(nèi)摩擦角、、、、共8個參數(shù),并可通過三軸試驗得出。
4)通過修正的三次曲線模型計算糧倉內(nèi)壓力范圍內(nèi)的應力路徑結(jié)果,并與試驗結(jié)果和文獻試驗結(jié)果進行對比,表明計算模型可模擬復雜應力路徑下糧堆應變硬化和軟化、強度特性、偏應力應變關系等力學特性。
[1] Dogangun A, Karaca Z. Cause of damage and failures in silo structures[J]. Journal of Performance of Constructed Facilities, ASCE, 2015, 23(2): 65-71.
[2] Song C Y, Teng J G. Buckling of circular steel silos subject to code-specified eccentric discharge pressures[J]. Engineering Structures, 2003, 25(11): 1397-1417.
[3] Rotter J M, Sadowski A J. Cylindrical shell bending theory for orthotropic shells under general axisymmetric pressure distributions[J]. Engineering Structures, 2012, 42(12): 258-265.
[4] Sadowski A J, Rotter J M. Study of buckling in steel silos under eccentric discharge flows of stored solids[J]. Journal of Engineering Mechanics, ASCE, 2010, 136(6): 769-776.
[5] Sadowski A J, Rotter J M. Buckling in eccentrically discharged silos and the assumed pressure distribution[J]. Journal of Engineering Mechanics, ASCE, 2013, 139(7): 858-867.
[6] Ayuga F, Guaita M, Aguado P J, Couto A. Discharge and the eccentricity of the hopper influence on the silo wall pressures[J]. Journal of Engineering Mechanics, ASCE, 2001, 127(10): 1067-1074.
[7] 程緒鐸. 筒倉中糧食卸載動壓力的研究與進展[J]. 糧食儲藏,2008,37(5):20-24. Cheng Xuduo. Research and advance of dynamic pressure in silo during discharge[J]. Grain storage, 2008, 37(5): 20-24. (in Chinese with English abstract)
[8] Moya M, Ayuga F, Guaita M, et al. Mechanical properties of granular agricultural materials [J]. Transactions of the Asae, 2002, 45(5): 1569-1577.
[9] Afzalinia S, Roberge M. Physical and mechanical properties of selected forage materials [J]. Canadian Biosystems Engineering, 2007, 49(2): 23-27.
[10] 曾長女,馮偉娜. 小麥強度特性的三軸試驗研究[J]. 中國糧油學報,2015,30(5):96-101. Zeng Changnü, Feng Weina. Strength properties of wheat in triaxial tests[J]. Journal of the Chinese Cereals and Oils Association, 2015, 30(5): 96-101. (in Chinese with English abstract)
[11] 曾長女,于航. 基于線性接觸模型的小麥三軸試驗細觀模擬[J]. 河南工業(yè)大學學報,2015,36(2):66-70. Zeng Changnü, Yu Hang. Meso-simulation of triaxial test of wheat based on linear contact model[J]. Journal of Henan University of Technology, 2015, 36(2): 66-70. (in Chinese with English abstract)
[12] 許啟鏗,陳家豪,王錄民. 小麥力學參數(shù)的三軸壓縮試驗研究[J]. 河南工業(yè)大學學報,2015,36(5):101-105. Xu Qikeng, Chen Jiahao, Wang Lumin. Mechanical properties of wheat in triaxial compression tests[J]. Journal of Henan University of Technology, 2015, 36(5): 101-105. (in Chinese with English abstract)
[13] 陳家豪,韓陽,任杰,等. 小麥堆壓縮模量的三軸試驗研究[J]. 河南工業(yè)大學學報,2016,37(1):23-28. Chen Jiahao, Han Yang, Ren Jie, et al. Research on triaxial tests on compression modulus of wheat piles[J]. Journal of Henan University of Technology, 2016, 37(1): 23-28. (in Chinese with English abstract)
[14] Stasiak M, Molenda M, Horabik J. Determination of modulus of elasticity of cereals and rapeseeds using acoustic method [J]. Journal of Food Engineering, 2007, 82(1): 51-57.
[15] 程緒鐸,高夢瑤,馮家暢,等. 預測平房倉中小麥密度分布與儲藏質(zhì)量的模型[J]. 中國糧油學報,2017,32(3):96-102. Cheng Xuduo, Gao Mengyao, Feng Jiachang, et al. Model of density distribution and storage quality of wheat in a horizontal warehouse[J]. Journal of the Chinese Cereals and Oils Association, 2017, 32(3): 96-102. (in Chinese with English abstract)
[16] 馮家暢,程緒鐸,杜小翠,等. 大豆堆壓縮密度與體變模量研究[J]. 中國糧油學報,2016,31(12):112-117. Feng Jiachang, Cheng Xuduo, Du Xiaocui, et al. Compressive density and bulk modulus of soybean [J]. Journal of the Chinese Cereals and Oils Association, 2016, 31(12): 112-117. (in Chinese with English abstract)
[17] 程緒鐸,杜小翠,高夢瑤,等. 玉米堆壓縮特性的實驗研究[J]. 糧食儲藏,2015,44(4):10-15. Cheng Xuduo, Du Xiaocui, Gao Mengyao, et al. Study on compression properties of corn heap [J]. Grain Storage, 2015, 44(4): 10-15. (in Chinese with English abstract)
[18] 程緒鐸,嚴曉婕,徐鑫. 稻谷堆的壓縮密度與體變模量的測定與分析[J]. 中國糧油學報,2014,29(8):101-105. Cheng Xuduo, Yan Xiaojie, Xu Xin. The measurement and analysis on compressive density and bulk stain modulus of paddy pile [J]. Journal of the Chinese Cereals and Oils Association, 2014, 29(8): 101-105. (in Chinese with English abstract)
[19] Cheng X, Zhang Q, Yan X, et al. Compressibility and equivalent bulk modulus of shelled corn [J]. Biosystems Engineering, 2015, 140: 91-97.
[20] 蔣敏敏,郭祝輝. 豎向壓力和剪切速率對小麥直剪強度及剪脹特性的影響[J]. 農(nóng)業(yè)工程學報,2017,33(6):275-280. Jiang Minmin, Guo Zhuhui. Effects of vertical pressure and shear velocity on direct shear strength and dilatancy properties of wheat heap element [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(6): 275-280. (in Chinese with English abstract)
[21] Nielsen J. Pressures from flowing granular solid in silos[J]. Philosophical Transactions Mathematical Physical & Engineering Sciences. 1998, 356(1747): 2667-2684.
[22] 姜勇. 利用Duncan-Chang模型分析鋼板倉壁靜壓力[J]. 青島大學學報,2001,16(3):28-32. Jiang Yong. Analysis of static pressures on steel silo walls by the Duncan-Chang’s nonlinear elastic model[J]. Journal of Qingdao University, 2001, 16(3): 28-32. (in Chinese with English abstract)
[23] Ayuga F, Guaita M, Aguado P J. Static and dynamic silo loads using finite element models. Journal of Agricultural Engineering Research, 2001, 127(10): 1067-1074.
[24] 何世秀,韓高升,莊心善,等. 基坑開挖卸荷土體變形的試驗研究[J]. 巖土力學,2003,24(1):17-20. He Shixiu, Han Gaosheng, Zhuang Xinshan, et al. Experimental researches on unloading deformation of clay in excavation of foundation pit [J]. Rock and Soil Mechanics, 2003, 24(1): 17-20. (in Chinese with English abstract)
[25] 應宏偉,李晶,謝新宇,等. 考慮主應力軸旋轉(zhuǎn)的基坑開挖應力路徑研究[J]. 巖土力學,2012,33(4):1013-1017. Ying Hongwei, Li Jing, Xie Xinyu, et al. Research on stress path during excavation considering rotation of principal stress axis [J]. Rock and Soil Mechanics, 2012, 33(4): 1013-1017. (in Chinese with English abstract)
[26] 張文慧,王保田,張福海. 應力路徑對基坑工程變形的影響[J]. 巖土力學,2004,25(6):964-966.Zhang Wenhui, Wang Baotian, Zhang Fuhai. Influence of stress paths and consolidation stress ratios on soil’s deformation characteristics [J]. Rock and Soil Mechanics, 2004, 25(6): 964-966. (in Chinese with English abstract)
[27] 周葆春. 應力路徑對重塑黏土有效抗剪強度參數(shù)的影響[J]. 華中科技大學學報,2007,35(12):83-86. Zhou Baochun. Influence of stress path on effective shear strength parameters of reshaped clay[J]. Journal of Huazhong University of science and technology, 2007, 35(12): 83-86. (in Chinese with English abstract)
[28] GB/T 50123-1999,土工試驗方法標準[S]. GB/T 50123-1999,Stand for soil test method[S].
[29] 殷宗澤.土工原理[M].北京:中國水利水電出版社,2007.
[30] Yasuhara K, Murakami S, Song B W, et al. Postcyclic degradation of strength and stiffness for low plasticity silt [J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2003, 129(8): 756-769.
[31] Lee J, Salgado R, Carraro J A H. Stiffness degradation and shear strength of silty sands [J]. Canadian Geotechnical Journal, 2004, 41(5): 831-843.
[32] 龔曉南. 軟黏土地基土體抗剪強度若干問題[J]. 巖土工程學報,2011,33(10):1596-1600. Gong Xiaonan. Some problems concerning shear strength of soil in soft clay ground [J]. Chinese Journal of Geotechnical Engineering, 2011, 33(10): 1596-1600. (in Chinese with English abstract)
[33] 孔綱強,劉璐,劉漢龍,等. 玻璃砂透明土與標準砂土強度特性對比三軸試驗[J]. 建筑材料學報,2014,17(2):250-255. Kong Gangqiang, Liu Lu, Liu Hanlong, et al. Comparative analysis of the strength characteristics of transparent glass sand and standard sand [J]. Journal of Building Materials, 2014, 17(2): 250-255. (in Chinese with English abstract)
[34] 劉萌成,高玉峰,劉漢龍. 應力路徑條件下堆石料剪切特性大型三軸試驗研究[J]. 巖石力學與工程學報,2008,27(1):176-186. Liu Mengcheng, Gao Yufeng, Liu Hanlong. Study on shear behaviors of rockfill in large-scale triaxial tests under different stress paths[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(1): 176-186. (in Chinese with English abstract)
[35] 王順,項偉,崔德山,等. 不同環(huán)剪方式下滑帶土殘余強度試驗研究[J]. 巖土力學,2012,33(10):2967-2972. Wang Shun, Xiang Wei, Cui Deshan, et al. Study of residual strength of slide zone soil under different ring-shear tests [J]. Rock and Soil Mechanics, 2012, 33(10): 2967-2972. (in Chinese with English abstract)
[36] 沈珠江. 考慮剪脹性的土和石料的非線性應力應變模式[J]. 水利水運科學研究,1986(4):1-14. Shen Zhujiang. A nonlinear dilatant stress-strain model for soils and rock materials [J]. Hydro-Science and Engineering, 1986(4): 1-14. (in Chinese with English abstract)
[37] 王麗琴,鹿忠剛,邵生俊. 巖土體復合冪-指數(shù)非線性模型[J]. 巖石力學與工程學報,2017,36(5):1269-1278. Wang Liqin, Lu Zhonggang, Shao Shengjun. A composite power exponential nonlinear model of rock and soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(5): 1269-1278. (in Chinese with English abstract)
[38] Cheng X, Zhang Q, Shi C, et al. Model for the prediction of grain density and pressure distribution in hopper-bottom silos [J]. Biosystems Engineering, 2017, 163: 159-166.
[39] Zhang Q, Puri V M, Manbeck H B. Determination of Elastoplastic Constitutive Parameters for Wheat En Masse[J]. Transactions of the ASAE, 1986, 29(6): 1739-1746.
[40] 陸曉平,孫明輝,陳浩鋒,等. 粗粒土三軸試樣端部約束影響研究[J]. 巖土工程學報,2017,39(增刊1):236-240. Lu Xiaoping, Sun Minghui, Chen Haofeng, et al. Effects of end restraint in triaxial tests on coarse-grained soil [J]. Chinese Journal of Geotechnical Engineering, 2017, 39(S1): 236-240. (in Chinese with English abstract)
Mechanical properties and stress strain model for bulk wheat based on stress path test
Jiang Minmin1,2, Chen Guixiang1,2
(1.450001,; 2.450001,)
Total amount of stored grain in China is about 200 million tons, which is of great importance to ensure the quality and safety of grain during storage period, and to modernization of agriculture engineering. When a storage cycle is ended, grain will be discharged from bins, and then loaded in for another storage cycle. Vertical stress increases in loading process, while decreases in discharging process, and different stress path will be generated in the bulk grain, resulting in complicated pressure and frictional force on bin wall, which will cause crack, failure or even overturn of bin structures. It is vital to study stress strain relation and strength properties of bulk grain under different stress paths. Geotechnical constitutive models have been used in grain bin simulation, however, the feasibility of these models for bulk grain has not been validated. In this study, stress path triaxial test was utilized to simulate complicated load path in grain bins. Wheat purchased from grain depot in Zhengzhou City, Henan Province was used in this study. Specimen had water content of 10.9%, bulk density of 0.85 g/cm3, diameter of 61.8 mm and height of 125 mm, the average axial length of wheat kernel was 4.5 mm, and the ratio of specimen diameter to kernel axial length was 13.7, which was larger than the minimum specified ratio for triaxial test. Three types of stress paths were investigated in this study: conventional triaxial compression (CTC), constant mean normal stress compression (CMS), and reduced triaxial compression (RTC). In CTC test, radial stress was set as constant, while axial stress increased simultaneously; in CMS test, radial stress decreased, while axial stress increased simultaneously to keep mean normal stress constant; in RTC test, axial stress was set as constant, and radial stress decreased simultaneously. Stress path triaxial test procedure was as follows: After bulk wheat specimen was mounted on triaxial apparatus, isotropic stress was applied from 0 to prescribed value (50, 100, 150, 200, 250, 300 kPa); then CTC, CMS or RTC stress path was applied on specimen, and stress strain result was recorded until axial strain reached 30%. Initial modulus, secant modulus and critical state properties were determined from stress strain curve, strength and stress strain parameters were determined, and finally new model was proposed to depict stress strain relation for bulk wheat under different stress paths. Test results show that, under the same radial stress, CTC test has the largest initial modulus, and RTC test has the lowest value. Under all stress paths, initial modulus and secant modulus are found to be in a power function growth with the ascent of radial stress. In CTC test and CMS test, secant modulus is significantly lower than initial modulus; while in RTC test, secant modulus is not significantly reduced compared with initial modulus. Under reference pressure (atmospheric pressure), CTC test has the largest initial modulus of 24.1 MPa, and RTC test has the lowest value of 7.9 MPa; while initial modulus of RTC test has the largest increasing rate, CTC test has the lowest increasing rate. Under reference pressure, CTC test has the lowest secant modulus of 7.7 MPa, and RTC test has the largest value of 9 MPa; secant modulus of RTC test has the largest increasing rate, and CTC test has the lowest increasing rate. Deviator stress increased during shearing process, and specimen failed at the peak point on-(deviator stress - mean normal stress) plane. Under all stress path and radial stress situations, failure point fell on the same critical state line. Critical state line for bulk wheat has straight line form, and critical state stress ratio is 0.976. New modified cubic curve model for bulk wheat grain under different stress path conditions was proposed. In the model, strength conforms to Mohr-Coulomb failure criterion; crest reduction coefficient has linear relation with residual strength ratio; peak axial strain has linear relation with radial stress. Model parameters comprised apparent cohesion, internal friction angle, residual apparent cohesion, residual internal friction angle, parameterandfor crest reduction coefficient, and parameterandfor peak axial strain. Calculated results show that the proposed model can simulate the results of all stress paths under different confining stress levels. The model can reflect strain softening and strain hardening properties of bulk wheat; peak shear strength and residual shear strength can be determined; and the simulated stress and strain curve coincide well with the test results. The result of this paper provides more accurate parameters for grain bin load calculation considering the stress path conditions, and the new model can be used to estimate stress and deformation of bulk wheat, and to improve the designing method of grain bins.
stress; strain; models; bulk wheat; stress path triaxial test
蔣敏敏,陳桂香. 基于應力路徑試驗的小麥糧堆力學特性和應力應變關系模型[J]. 農(nóng)業(yè)工程學報,2018,34(7):280-287. doi:10.11975/j.issn.1002-6819.2018.07.036 http://www.tcsae.org
Jiang Minmin, Chen Guixiang. Mechanical properties and stress strain model for bulk wheat based on stress path test[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(7): 280-287. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.07.036 http://www.tcsae.org
2017-11-06
2018-02-22
國家自然科學基金項目(51408197);糧食公益性行業(yè)科研專項(201513001);河南省科技攻關項目(162102210188);河南省屬高?;究蒲袠I(yè)務費專項資金(2015RCJH16)
蔣敏敏,男,江蘇鹽城人,博士,副教授,主要從事糧食倉儲結(jié)構(gòu)研究。Email:jiangmmhaut@126.com
10.11975/j.issn.1002-6819.2018.07.036
TS210
A
1002-6819(2018)-07-0280-08