• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      基于16S rDNA高通量測(cè)序技術(shù)研究轉(zhuǎn)基因作物對(duì)根際細(xì)菌群落結(jié)構(gòu)的影響

      2018-04-13 00:46:04梁晉剛劉鵬程張秀杰
      江蘇農(nóng)業(yè)科學(xué) 2018年6期
      關(guān)鍵詞:高通量根際轉(zhuǎn)基因

      梁晉剛, 劉鵬程, 張秀杰

      (農(nóng)業(yè)部科技發(fā)展中心,北京 100176)

      幾十年來,轉(zhuǎn)基因作物釋放對(duì)生態(tài)環(huán)境的影響一直是社會(huì)公眾關(guān)注的一個(gè)重要問題,包括對(duì)土壤生態(tài)環(huán)境的影響[1-4]。土壤細(xì)菌是土壤中數(shù)量最豐富、分布最廣泛的微生物類群,廣泛參與有機(jī)物質(zhì)分解、養(yǎng)分釋放和能量轉(zhuǎn)移等過程,其多樣性和活性是保持土壤生態(tài)系統(tǒng)穩(wěn)定的基礎(chǔ)之一。根際細(xì)菌對(duì)外界干擾比較敏感,不僅受到植物基因型影響,也受土壤類型、農(nóng)業(yè)耕作管理、季節(jié)變化等影響[5-9]。準(zhǔn)確檢測(cè)轉(zhuǎn)基因作物對(duì)根際細(xì)菌群落組成和結(jié)構(gòu)的影響,是評(píng)估轉(zhuǎn)基因作物釋放后土壤生態(tài)風(fēng)險(xiǎn)的重要基礎(chǔ)[10-11]。

      近年來,分子生物學(xué)的不斷發(fā)展為根際細(xì)菌群落結(jié)構(gòu)的研究提供了新思路,其中,以編碼rRNA的rDNA基因?yàn)榛A(chǔ)的高通量測(cè)序技術(shù)尤受青睞,該技術(shù)準(zhǔn)確、靈敏,具有較高的通量,已經(jīng)被廣泛應(yīng)用于土壤微生物遺傳多樣性的研究領(lǐng)域中[12-15]。目前,市面上常用的用于研究環(huán)境微生物的高通量測(cè)序平臺(tái)有Illumina MiSeq、Roche 454。針對(duì)細(xì)菌的16S rDNA基因序列分析,MiSeq憑借其測(cè)序讀段長、測(cè)序周期短、通量大等特點(diǎn),成為使用最為普遍的測(cè)序平臺(tái)[16]。

      16S核糖體RNA(16S ribosomal RNA,簡稱16S rRNA)是原核生物的核糖體中30S亞基的組成部分。由于不同種的真細(xì)菌與古細(xì)菌之間的16S rRNA編碼基因16S rDNA是高度保守的,且16S rDNA序列長度適中(1 540 bp),包括9個(gè)高可變區(qū)(hypervariable region)和8個(gè)保守區(qū)(constant region),因此,常被用于對(duì)各種生物進(jìn)行系統(tǒng)發(fā)生學(xué)方面的研究[17]。利用16S rDNA的通用引物進(jìn)行PCR擴(kuò)增,獲得絕大部分微生物16S rDNA高可變區(qū)的擴(kuò)增產(chǎn)物,構(gòu)建擴(kuò)增產(chǎn)物的文庫,運(yùn)用Illumina MiSeq平臺(tái)或Roche 454平臺(tái)進(jìn)行高通量測(cè)序,然后比較分析測(cè)序數(shù)據(jù),對(duì)土壤微生物群落的多樣性進(jìn)行研究[18-20]。

      目前,已有研究者利用16S rDNA測(cè)序技術(shù)來研究各種環(huán)境樣品中微生物的多樣性[21-30]。迄今為止,大部分的研究結(jié)果均表明,轉(zhuǎn)基因作物的釋放對(duì)土壤微生物沒有影響或有很小的影響,且影響是短暫的[31-42]。

      1 轉(zhuǎn)基因大豆對(duì)根際細(xì)菌群落結(jié)構(gòu)的影響

      Liang等通過收集高產(chǎn)高蛋氨酸轉(zhuǎn)基因大豆ZD91和其對(duì)應(yīng)的非轉(zhuǎn)基因大豆ZD在鼓粒期時(shí)的根際土壤樣品,采用Roche 454焦磷酸測(cè)序技術(shù)對(duì)大豆根際土壤細(xì)菌16S rDNA V4區(qū)序列擴(kuò)增子進(jìn)行高通量測(cè)序及分析,發(fā)現(xiàn)在這種轉(zhuǎn)基因大豆和其親本的根際土壤中,均存在酸桿菌門(Acidobacteria)、變形菌門(Proteobacteria)、擬桿菌門(Bacteroidetes)、放線菌門(Actinobacteria)、厚壁菌門(Firmicutes)等細(xì)菌類群,但兩者的細(xì)菌群落結(jié)構(gòu)無顯著性差異[43]。Lu等采用Illumina MiSeq平臺(tái)對(duì)16S rDNA V4區(qū)序列擴(kuò)增子進(jìn)行高通量測(cè)序,發(fā)現(xiàn)抗草甘膦除草劑轉(zhuǎn)基因大豆ZUTS31在鼓粒期對(duì)根際細(xì)菌群落的α、β多樣性無顯著性影響[44]。Lu等利用同樣的方法,發(fā)現(xiàn)抗除草劑轉(zhuǎn)基因大豆NZL06-698對(duì)土壤微生物群落,特別是對(duì)固氮菌群產(chǎn)生的影響,表現(xiàn)為微生物物種豐度和多樣性降低,固氮菌群豐度降低[45]。

      2 轉(zhuǎn)基因玉米對(duì)根際細(xì)菌群落結(jié)構(gòu)的影響

      Barriuso等連續(xù)4年收集根際土壤樣品,并采用Roche 454焦磷酸測(cè)序技術(shù)對(duì)根際土壤細(xì)菌16S rDNA V6區(qū)序列擴(kuò)增子進(jìn)行高通量測(cè)序及分析,發(fā)現(xiàn)抗蟲玉米MON810與對(duì)照玉米品種相比,抗蟲玉米MON810對(duì)根際細(xì)菌群落結(jié)構(gòu)無顯著性影響[46]。Barriuso等采用相同的方法,連續(xù)3年監(jiān)測(cè)噴施草甘膦對(duì)耐除草劑玉米NK603根際細(xì)菌群落結(jié)構(gòu)的影響。結(jié)果表明,草甘膦對(duì)玉米NK603根際細(xì)菌群落結(jié)構(gòu)無顯著性影響[47]。Dohrmann等利用Roche 454焦磷酸測(cè)序技術(shù)測(cè)定了細(xì)菌16S rDNA V7+V8區(qū)序列,發(fā)現(xiàn)抗蟲玉米MON 89034×MON 88017對(duì)根際細(xì)菌群落結(jié)構(gòu)無顯著性影響[48]。

      3 其他轉(zhuǎn)基因植物對(duì)根際細(xì)菌群落結(jié)構(gòu)的影響

      Sohn等應(yīng)用454平臺(tái)測(cè)序測(cè)定16S rRNA基因V3-V4變異區(qū)序列,發(fā)現(xiàn)白藜蘆醇強(qiáng)化轉(zhuǎn)基因水稻RS526對(duì)根際土壤細(xì)菌群落結(jié)構(gòu)無顯著性影響[49]。Zhu等利用Illumina MiSeq平臺(tái)測(cè)定16S rRNA基因V4區(qū)序列,分析了種植8年轉(zhuǎn)基因白楊樹D520、D521后的根際土壤細(xì)菌結(jié)構(gòu),發(fā)現(xiàn)轉(zhuǎn)基因白楊樹對(duì)細(xì)菌多樣性和群落結(jié)構(gòu)無顯著性影響[50]。Debruyn等利用Illumina MiSeq平臺(tái)測(cè)定16S rRNA基因V4區(qū),發(fā)現(xiàn)木質(zhì)素含量降低的轉(zhuǎn)基因柳枝稷對(duì)根際細(xì)菌多樣性、豐富度和群落組成均無顯著性影響[51]。

      4 總結(jié)與展望

      16S rDNA相對(duì)分子量大小適中,突變率小,基于16S rDNA的高通量測(cè)序技術(shù)已被廣泛應(yīng)用于微生物系統(tǒng)進(jìn)化、分類及多樣性分析研究中。在16S rDNA高可變區(qū)的選擇方面還存在一定爭(zhēng)議,由于目前二代高通量測(cè)序的讀長限制,僅能針對(duì)16S rDNA的某一段可變區(qū)進(jìn)行測(cè)序,有的選擇測(cè)單可變區(qū)(V3、V4、V5、V6、V7),有的選擇對(duì)連續(xù)可變區(qū)(V1-V2、V1-V3、V3-V4、V3-V5、V4-V5、V4-V6、V5-V6、V6-V7、V5-V8、V6-V8、V7-V8、V1-V8、V5-V9、V6-V9、nearly full-length)進(jìn)行16S rDNA測(cè)序[52-65]。Sun等研究比較了16S不同區(qū)域的測(cè)序結(jié)果,發(fā)現(xiàn)V4-V5區(qū)(515F/907R 或515F/926R)是最佳的測(cè)序區(qū)域,造成的基因組內(nèi)異質(zhì)性最小,該區(qū)域是Roche 454測(cè)序時(shí)代最常用的區(qū)域[66]。在Illumina時(shí)代,由于平臺(tái)測(cè)序長度的限制,V4單區(qū)測(cè)序(515F/806R)被更為廣泛地使用,同時(shí)這對(duì)引物也是地球微生物組計(jì)劃(Earth Microbiome Project,簡稱EMP)中推薦使用的引物序列,它們將是16S測(cè)序的主力[67]。

      16S rDNA高通量測(cè)序技術(shù)對(duì)土壤微生物物種多樣性、結(jié)構(gòu)多樣性、功能多樣性和遺傳多樣性研究的迅猛發(fā)展起到了重要作用[68]。然而,這種方法對(duì)于轉(zhuǎn)基因的研究來說,存在著不能檢測(cè)受體、轉(zhuǎn)化體、噴灑除草劑轉(zhuǎn)化體對(duì)各類土壤微生物功能(包括氮循環(huán)、磷循環(huán)、碳循環(huán)等)的各類基因豐度等影響的缺點(diǎn)[16]。同樣地,16S rDNA擴(kuò)增子高通量測(cè)序本身也常受到一些條件的影響,如PCR擴(kuò)增體系對(duì)高通量測(cè)序的影響,PCR擴(kuò)增偏好性對(duì)測(cè)序的影響,PCR擴(kuò)增循環(huán)數(shù)對(duì)原始物種相對(duì)豐度的影響等[69]。在未來的研究中,16S rDNA高通量測(cè)序技術(shù)在轉(zhuǎn)基因作物對(duì)土壤細(xì)菌影響的研究中的運(yùn)用會(huì)越來越普及,隨著測(cè)序成本明顯下降,土壤宏基因組測(cè)序?yàn)檠芯课⑸锶郝浣Y(jié)構(gòu)與功能等提供了一種新的選擇,相比16S rDNA高通量測(cè)序,該測(cè)序方法能夠更全面地分析微生物的物種及基因等方面的多樣性。由于土壤微生物群落組成復(fù)雜,在實(shí)際應(yīng)用中,應(yīng)該綜合考慮各研究方法的優(yōu)缺點(diǎn),取長補(bǔ)短,以便在土壤微生物多樣性研究中獲得更為全面且準(zhǔn)確的信息,盡快建立對(duì)土壤生態(tài)系統(tǒng)安全的評(píng)價(jià)技術(shù)體系,并對(duì)轉(zhuǎn)基因作物的環(huán)境安全性作出全面、科學(xué)、客觀的評(píng)價(jià)[70-72]。

      致謝:感謝南京大學(xué)生命科學(xué)學(xué)院陸桂華副研究員、南京農(nóng)業(yè)大學(xué)植物保護(hù)學(xué)院顧沁博士在論文寫作過程中給予的指導(dǎo)和幫助。

      參考文獻(xiàn):

      [1]Hilbeck A,Binimelis R,Defarge N,et al. No scientific consensus on GMO safety[J]. Environmental Sciences Europe,2015,27:4.

      [2]國際農(nóng)業(yè)生物技術(shù)應(yīng)用服務(wù)組織.2016年全球生物技術(shù)/轉(zhuǎn)基因作物商業(yè)化發(fā)展態(tài)勢(shì)[J]. 中國生物工程雜志,2017,37(4):1-8.

      [3]Tsatsakis A M,Nawaz M A,Kouretas D,et al. Environmental impacts of genetically modified plants:a review[J]. Environmental Research,2017,156(8):818-833.

      [4]Tsatsakis A M,Nawaz M A,Tutelyan V A,et al. Impact on environment,ecosystem,diversity and health from culturing and using GMOs as feed and food[J]. Food and Chemical Toxicology,2017,107(A):108-121.

      [5]Berg G,Smalla K. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere[J]. FEMS Microbiology Ecology,2009,68(1):1-13.

      [6]Aira M,Gomez-Brandon M,Lazcano C,et al. Plant genotype strongly modifies the structure and growth of maize rhizosphere microbial communities[J]. Soil Biology & Biochemistry,2010,42(12):2276-2281.

      [8]Peiffer J A,Spor A,Koren O,et al. Diversity and heritability of the maize rhizosphere microbiome under field conditions[J]. Proceedings of the National Academy of Sciences of the United States of America,2013,110(16):6548-6553.

      [9]Edwards J,Johnson C,Santos-Medellin C A,et al. Structure,variation,and assembly of the root-associated microbiomes of rice[J]. Proceedings of the National Academy of Sciences of the United States of America,2015,112(8):911-920.

      [10]Filion M. Do transgenic plants affect rhizobacteria populations?[J]. Microbial Biotechnology,2008,1(6):463-475.

      [11]Wu J R,Yu M Z,Xu J H,et al. Impact of transgenic wheat with wheat yellow mosaic virus resistance on microbial community diversity and enzyme activity in rhizosphere soil[J]. PLoS One,2014,9(6):e98394.

      [12]Barriuso J,Marin S,Mellado R P. Effect of the herbicide glyphosate on glyphosate-tolerant maize rhizobacterial communities:a comparison with pre-emergency applied herbicide consisting of a combination of acetochlor and terbuthylazine[J]. Environmental Microbiology,2010,12(4):1021-1030.

      [13]Singh A K,Dubey S K. Current trends inBtcrops and their fate on associated microbial community dynamics:a review[J]. Protoplasma,2016,253(3):663-681.

      [14]Qin J,Li R,Raes J,et al. A human gut microbial gene catalogue established by metagenomic sequencing[J]. Nature,2010,464(7285):59-65.

      [15]Singh A K,Dubey S. Transgenic plants and soil microbes[M]//Dubey S K,Pandey A,Sangwan R S. Current developments in biotechnology and bioengineering:crop modification,nutrition,and food production. Amsterdam:Elsevier,2017:163-185.

      [16]朱銀玲. 轉(zhuǎn)EPSPS基因抗除草劑大豆對(duì)土壤原核微生物群落生態(tài)影響的研究[D]. 南京:南京大學(xué),2015.

      [17]楊永華,陸桂華,戚金亮,等. 基于16S rDNA深度測(cè)序檢測(cè)不同大豆根際土壤原核微生物的方法:105525025 A[P]. 2016-02-17.

      [18]Coenye T,Vandamme P. Intragenomic heterogeneity between multiple 16S ribosomal RNA operons in sequenced bacterial genomes[J]. FEMS Microbiology Letters,2003,228(1):45-49.

      [19]Weisburg W G,Barns S M,Pelletier D A,et al. 16S ribosomal DNA amplification for phylogenetic study[J]. Journal of Bacteriology,1991,173(2):697-703.

      [20]Woese C R,F(xiàn)ox G E. Phylogenetic structure of the prokaryotic domain:the primary kingdoms[J]. Proceedings of the National Academy of Sciences of the United States of America,1977,74(11):5088-5090.

      [21]Chen W,Liu F,Ling Z,et al. Human intestinal lumen and mucosa-associated microbiota in patients with colorectal cancer[J]. PLoS One,2012,7(6):e39743.

      [22]Hirsch J,Strohmeier S,Pfannkuchen M A. Assessment of bacterial endosymbiont diversity inOtiorhynchusspp. (Coleoptera:Curculionidae) larvae using a multitag 454 pyrosequencing approach[J]. BMC Microbiology,2012,12(S1):S6.

      [24]Lee O O,Wang Y,Yang J K,et al. Pyrosequencing reveals highly diverse and species-specific microbial communities in sponges from the Red Sea[J]. ISME Journal,2011,5(4):650-664.

      [25]Nacke H,Thürmer A,Wollherr A,et al. Pyrosequencing-based assessment of bacterial community structure along different management types in German forest and grassland soils[J]. PLoS One,2011,6(2):e17000.

      [26]Qiu M H,Zhang R F,Xue C,et al. Application of bio-organic fertilizer can controlFusariumwilt of cucumber plants by regulating microbial community of rhizosphere soil[J]. Biology and Fertility of Soils,2012,48(7):807-816.

      [27]Yu K,Zhang T. Metagenomic and metatranscriptomic analysis of microbial community structure and gene expression of activated sludge[J]. PLoS One,2012,7(5):e38183.

      [28]Zhang C,Zhang M,Wang S,et al. Interactions between gut microbiota,host genetics and diet relevant to development of metabolic syndromes in mice[J]. ISME Journal,2010,4(2):232-241.

      [29]Zhang T,Zhang X X,Ye L. Plasmid metagenome reveals high levels of antibiotic resistance genes and mobile genetic elements in activated sludge[J]. PLoS One,2011,6(10):e26041.

      [30]Zhou H W,Li D F,Tam N F,et al. BIPES,a cost-effective high-throughput method for assessing microbial diversity[J]. ISME Journal,2011,5(4):741-749.

      [31]Demaneche S,Sanguin H,Poté J,et al. Antibiotic-resistant soil bacteria in transgenic plant fields[J]. Proceedings of the National Academy of Sciences of the United States of America,2008,105(10):3957-3962.

      [32]Di Giovanni G D,Watrud L S,Seidler R J,et al. Comparison of parental and transgenic alfalfa rhizosphere bacterial communities using Biolog GN metabolic fingerprinting and enterobacterial repetitive intergenic consensus sequence-PCR (ERIC-PCR)[J]. Microbial Ecology,1999,37(2):129-139.

      [33]Duc C,Nentwig W,Lindfeld A. No adverse effect of genetically modified antifungal wheat on decomposition dynamics and the soil fauna community :a field study[J]. PLoS One,2011,6(10):e25014.

      [34]Duke S O,Lydon J,Koskinen W C,et al. Glyphosate effects on plant mineral nutrition,crop rhizosphere microbiota,and plant disease in glyphosate-resistant crops[J]. Journal of Agricultural and Food Chemistry,2012,60(42):10375-10397.

      [35]Hannula S E,De Boer W,Van Veen J. A 3-year study reveals that plant growth stage,season and field site affect soil fungal communities while cultivar and GM-trait have minor effects[J]. PLoS One,2012,7(4):e33819.

      [36]Heuer H,Kroppenstedt R M,Lottmann J,et al. Effects of T4 lysozyme release from transgenic potato roots on bacterial rhizosphere communities are negligible relative to natural factors[J]. Appl Environ Microbiol,2002,68(3):1325-1335.

      [37]Hur M,Kim Y,Song H R,et al. Effect of genetically modified poplars on soil microbial communities during the phytoremediation of waste mine tailings[J]. Applied and Environmental Microbiology,2011,77(21):7611-7619.

      [38]Li X G,Zhang T L,Wang X X,et al. The composition of root exudates from two different resistant peanut cultivars and their effects on the growth of soil-borne pathogen[J]. International Journal of Biological Sciences,2013,9(2):164-173.

      [39]Liu B,Zeng Q,Yan F M,et al. Effects of transgenic plants on soil microorganisms[J]. Plant and Soil,2005,271(1/2):1-13.

      [40]Meyer J B,Song-Wilson Y,F(xiàn)oetzki A A,et al. Does wheat genetically modified for disease resistance affect root-colonizing pseudomonads and arbuscular mycorrhizal fungi?[J]. PLoS One,2013,8(1):e53825.

      [41]Milling A,Smalla K,Maidl F X,et al. Effects of transgenic potatoes with an altered starch composition on the diversity of soil and rhizosphere bacteria and fungi[J]. Plant and Soil,2004,266(1/2):23-39.

      [42]Rasche F,Hodl V,Poll C,et al. Rhizosphere bacteria affected by transgenic potatoes with antibacterial activities compared with the effects of soil,wild-type potatoes,vegetation stage and pathogen exposure[J]. FEMS Microbiology Ecology,2006,56(2):219-235.

      [43]Liang J A,Sun S,Ji J,et al. Comparison of the rhizosphere bacterial communities of zigongdongdou soybean and a high-methionine transgenic line of this cultivar[J]. PLoS One,2014,9(7):e103343.

      [44]Lu G H,Hua X M,Cheng J,et al. Impact of glyphosate on the rhizosphere microbial communities of an EPSPS-transgenic soybean line ZUTS31 by metagenome sequencing[J]. Current Genomics,2018,19(1):36-49.

      [45]Lu G H,Zhu Y L,Kong L R,et al. Impact of a glyphosate-tolerant soybean line on the rhizobacteria,revealed by illumina MiSeq[J]. Journal of Microbiology and Biotechnology,2017,27(3):561-572.

      [46]Barriuso J,Valverde J R,Mellado R P. Effect of cry1Ab protein on rhizobacterial communities of Bt-maize over a four-year cultivation period[J]. PLoS One,2012,7(4):e35481.

      [47]Barriuso J,Marin S,Mellado R P. Potential accumulative effect of the herbicide glyphosate on glyphosate-tolerant maize rhizobacterial communities over a three-year cultivation period[J]. PLoS One,2011,6(11):e27558.

      [48]Dohrmann A B,Kueting M,Juenemann S A,et al. Importance of rare taxa for bacterial diversity in the rhizosphere ofBt- and conventional maize varieties[J]. ISME Journal,2013,7(1):37-49.

      [49]Sohn S I,Oh Y J,Kim B Y,et al. Effect of genetically modified rice producing resveratrol on the soil microbial communities[J]. Journal of the Korean Society for Applied Biological Chemistry,2015,58(6):795-805.

      [50]Zhu W X,Chu Y,Ding C J,et al. Assessing bacterial communities in the rhizosphere of 8-year-old genetically modified poplar (Populusspp.)[J]. Journal of Forestry Research,2016,27(4):939-947.

      [51]Debruyn J M,Bevard D A,Essington M E,et al. Field‐grown transgenic switchgrass(PanicumvirgatumL.)with altered lignin does not affect soil chemistry,microbiology,and carbon storage potential[J]. Global Change Biology Bioenergy,2017,9(6):1100-1109.

      [52]Huse S M,Dethlefsen L,Huber J A,et al. Exploring microbial diversity and taxonomy using SSU rRNA hypervariable tag sequencing[J]. PLoS Genetics,2008,4(11):e1000255.

      [53]Faith J J,Guruge J L,Charbonneau M A,et al. The long-term stability of the human gut microbiota[J]. Science,2013,341(6141):1237439.

      [54]Lazarevic V,Whiteson K,Huse S,et al. Metagenomic study of the oral microbiota by Illumina high-throughput sequencing[J]. Journal of Microbiological Methods,2009,79(3):266-271.

      [55]Sogin M L,Morrison H G,Huber J A,et al. Microbial diversity in the deep sea and the underexplored “rare biosphere”[J]. Proceedings of the National Academy of Sciences of the United States of America,2006,103(32):12115-12120.

      [56]Youssef N,Sheik C S,Krumholz L R,et al. Comparison of species richness estimates obtained using nearly complete fragments and simulated pyrosequencing-generated fragments in 16S rRNA gene-based environmental surveys[J]. Applied and Environmental Microbiology,2009,75(16):5227-5236.

      [57]Zhao L L,Wang G,Siegel P,et al. Quantitative genetic background of the host influences gut microbiomes in chickens[J]. Scientific Reports,2013,3:1163.

      [58]Takahashi S,Tomita J,Nishioka K,et al. Development of a prokaryotic universal primer for simultaneous analysis of bacteria and archaea using next-generation sequencing[J]. PLoS One,2014,9(8):e105592.

      [59]Cai H Y,Jiang H L,Krumholz L R,et al. Bacterial community composition of size-fractioned aggregates within the phycosphere of cyanobacterial blooms in a eutrophic freshwater lake[J]. PLoS One,2014,9(8):e102879.

      [60]Xiong J B,Liu Y Q,Lin X,et al. Geographic distance and pH drive bacterial distribution in alkaline lake sediments across Tibetan Plateau[J]. Environmental Microbiology,2012,14(9):2457-2466.

      [61]He Y,Zhou B J,Deng G H,et al. Comparison of microbial diversity determined with the same variable tag sequence extracted from two different PCR amplicons[J]. BMC Microbiology,2013,13(1):208.

      [62]Liu X F,F(xiàn)an H L,Ding X B,et al. Analysis of the gut microbiota by high-throughput sequencing of the V5-V6 regions of the 16S rRNA gene in donkey[J]. Current Microbiology,2014,68(5):657-662.

      [63]Eckburg P B,Bik E M,Bernstein C N,et al. Diversity of the human intestinal microbial flora[J]. Science,2005,308(5728):1635-1638.

      [64]Roesch L F,F(xiàn)ulthorpe R R,Riva A,et al. Pyrosequencing enumerates and contrasts soil microbial diversity[J]. ISME Journal,2007,1(4):283-290.

      [65]Sundarakrishnan B,Pushpanathan M A,Rajendhran J,et al. Assessment of microbial richness in pelagic sediment of andaman sea by bacterial tag encoded FLX titanium amplicon pyrosequencing (bTEFAP)[J]. Indian Journal of Microbiology,2012,52(4):544-550.

      [66]Sun D L,Jiang X,Wu Q L,et al. Intragenomic heterogeneity of 16S rRNA genes causes overestimation of prokaryotic diversity[J]. Applied and Environmental Microbiology,2013,79(19):5962-5969.

      [67]Gilbert J A,Jansson J K,Knight R. The earth microbiome project:successes and aspirations[J]. BMC Biology,2014,12(1):69.

      [68]樓駿,柳勇,李延. 高通量測(cè)序技術(shù)在土壤微生物多樣性研究中的研究進(jìn)展[J]. 中國農(nóng)學(xué)通報(bào),2014,30(15):256-260.

      [69]劉馳,李家寶,芮俊鵬,等. 16S rRNA基因在微生物生態(tài)學(xué)中的應(yīng)用[J]. 生態(tài)學(xué)報(bào),2015,35(9):2769-2788.

      [70]梁晉剛,張正光. 轉(zhuǎn)基因作物種植對(duì)土壤生態(tài)系統(tǒng)影響的研究進(jìn)展[J]. 作物雜志,2017(4):1-6.

      [71]梁晉剛,張秀杰. 轉(zhuǎn)基因作物對(duì)土壤微生物多樣性影響的研究策略[J]. 生物技術(shù)通報(bào),2017,33(9):1-6.

      [72]梁晉剛,孟芳,張正光. 轉(zhuǎn)基因高蛋氨酸大豆對(duì)根際土壤主要有機(jī)元素和酶活性的影響[J]. 生物安全學(xué)報(bào),2017,26(4):301-306.

      猜你喜歡
      高通量根際轉(zhuǎn)基因
      高通量衛(wèi)星網(wǎng)絡(luò)及網(wǎng)絡(luò)漫游關(guān)鍵技術(shù)
      國際太空(2023年1期)2023-02-27 09:03:42
      探秘轉(zhuǎn)基因
      轉(zhuǎn)基因,你吃了嗎?
      根際微生物對(duì)植物與土壤交互調(diào)控的研究進(jìn)展
      高通量血液透析臨床研究進(jìn)展
      Ka頻段高通量衛(wèi)星在鐵路通信中的應(yīng)用探討
      黃花蒿葉水提物對(duì)三七根際尖孢鐮刀菌生長的抑制作用
      中國通信衛(wèi)星開啟高通量時(shí)代
      促植物生長根際細(xì)菌HG28-5對(duì)黃瓜苗期生長及根際土壤微生態(tài)的影響
      中國蔬菜(2016年8期)2017-01-15 14:23:38
      天然的轉(zhuǎn)基因天然的轉(zhuǎn)基因“工程師”及其對(duì)轉(zhuǎn)基因食品的意蘊(yùn)
      竹溪县| 从化市| 腾冲县| 普陀区| 紫阳县| 且末县| 靖边县| 若尔盖县| 神木县| 积石山| 宽甸| 修文县| 敦化市| 洪雅县| 玉树县| 思茅市| 祁门县| 石渠县| 任丘市| 光山县| 抚松县| 潼关县| 林口县| 隆化县| 高清| 大名县| 革吉县| 马公市| 噶尔县| 潜江市| 镇沅| 图木舒克市| 罗平县| 疏勒县| 台湾省| 渭南市| 安乡县| 钦州市| 兴文县| 和林格尔县| 鄂托克前旗|