• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Study of ρ-ω Mixing in Resonance Chiral Theory?

    2018-05-05 09:13:33YunHuaChen陳云華DeLiangYao姚德良andHanQingZheng鄭漢青
    Communications in Theoretical Physics 2018年1期
    關(guān)鍵詞:陳云

    Yun-Hua Chen(陳云華) De-Liang Yao(姚德良) and Han-Qing Zheng(鄭漢青)§

    1School of Mathematics and Physics,University of Science and Technology Beijing,Beijing 100083,China

    2Instituto de F′?sica Corpuscular(Centro Mixto CSIC-UV),Institutos de Investigaci′on de Paterna,Apartado 22085,46071,Valencia,Spain

    3Department of Physics and State Key Laboratory of Nuclear Physics and Technology,Peking University,Beijing 100871,China

    4Collaborative Innovation Center of Quantum Matter,Beijing 100871,China

    1 Introduction

    The study ofρ-ωmixing is a very interesting subject in hadron physics both theoretically and experimentally.The inclusion ofρ-ωmixing effect is crucial for a good description of the pion vector form factor ine+e?→π+π?process,which quanti fies the hadronic vacuum polarization contribution to the anomalous magnetic moment of the muon.On the experimental side,several experimental collaborations,such as KLOE[1?2]and BESIII,[3]have recently launched measurements of thee+e?→π+π?with high statistics and high precision.

    Theρ-ωmixing amplitude was assumed to be a constant or momentum-independent in the early stage of previous studies.[4?5]The authors of Ref.[6]suspected the validity of the constant assumption and,based on a quark loop mechanism ofρ-ωmixing,they found that the mixing amplitude is signi ficantly momentum-dependent.Since then,the use of various loop mechanisms forρ-ωmixing is triggered in different models such as extended Nambu-Jona-Lasinio(NJL)model,[7]the global color model,[8]the hidden local symmetry model,[9?11]and the chiral constituent quark model.[12?13]

    In this work,we aim at studyingρ-ωmixing in a model independent way by invoking Resonance Chiral Theory(RχT).[14]It provides a reliable tool to study physics in the intermediate energy region.[15?20]The tree-level calculation ofρ-ωmixing in the framework of RχT has been given in Refs.[21–22],however,the tree-level mixing amplitude turns out to be momentum-independent.In order to implement the momentum dependence,here we will calculate the one-loop contributions as shown in Fig.1.Theρ-ωmixing can be induced either by strong isospinviolating or by electromagnetic effects.The former is proportional to the mass difference bewteen theu,dquarks,i.e.,?ud=mu?mdand the latter is accompanied by the fine structure constantα.In the present study,only the mixing effects linear in ?udorαare under our consideration.Apart from the overall factors ?udorα,the large-NCcounting rule proposed in Ref.[23]is imposed to truncate our perturbative calculation.Speci fically,our calculations are truncated at next-to-leading order in the 1/NCexpansion for the strong and electromagnetic contributions.The ultraviolet(UV)divergence from the loops is cancelled by introducing counterterms with sufficient derivatives and the involved couplings are assumed to be beyond the leading order in 1/NCexpansion as claimed in Ref.[24].

    We assess the impact of momentum-dependentρ-ωmixing amplitude on the pion vector form factor by fitting to the experimental data extracted from thee+e?→π+π?process andτ→ντ2πdecay in the energy region of(650–850)MeV.Besides,the decay width ofω→π+π?is implemented as a constraint in the fit.It is known that,provided isospin invariance holds,the isovector part of the pion form factor in thee+e?annihilation is related to the one inτdecays theoretically,via the conserved vector current assumption.[25?26]Different effects of isospin breaking have been studied to describe thee+e?annihilation data andτdecays data simultaneously,[26?34]such as the short distance and long distance corrections in theτpartial decay width to two pions,charged and neutralρmass and width difference,andρ-ωmixing.In our study we will take into account all the above isospin breaking effects.Our fit result shows that theρ-ωmixing amplitude is signi ficantly momentum-dependent and its imaginary part is much smaller than real part.Based on the fitted values of the parameters,we also analyze the decay width ofω→π+π?by including the effect of theρ-ωmixing.It is found that the decay width is dominated by theρ-ωmixing effect while the contribution from the direct coupling ofωI→π+π?is negligible.

    This paper is organized as follows.In Sec.2,we introduce the description ofρ-ωmixing.In Sec.3,we present the theoretical framework and elaborate on the calculation of the tree-level and loop contribution ofρ-ωmixing.In Sec.4,the fit result is shown and the related phenomenology is dicussed.A summary is given in Sec.5.

    2 Generic Description of ρ-ω Mixing

    In the isospin basis|I,I3>,we de fine|ρI>≡|1,0>and|ωI>≡|0,0>for convenience.The mixing between the isospin states of|ρI>and|ωI>can be implemented by considering the self-energy matrix

    In above the vector-current conservation has been used to eliminate the longitudinal part proportional topμ.Furthermore,we have also neglected terms ofsince they correspond to contributions at two-loop order and are beyond our accuracy.mρa(bǔ)ndmωare bare masses of theρa(bǔ)ndωmesons,respectively.

    Theρ-ωmixing,i.e.,mixing between the physical states ofρ0andω,is obtainable by introducing the following relation

    with?being the mixing parameter.The matrix of dressed propagators corresponding to physical states is diagonal.Moreover,it can be connected to the matrixDI(s)in Eq.(2)through

    The two mixing parameters should be just different with each other slightly,see Ref.[35]for more details.

    3 Calculations in Resonance Chiral Theory

    In this section we will calculate the mixing amplitude Πρω(s)using RχT so as to study its momentum dependence.The information ofρ-ωmixing is encoded in the o ff-diagonal element of the self-energy matrix,which can be decomposed as

    where?ud=mu?mdis the mass difference betweenu,dquarks,andαdenotes the fine-structure constant.In above,Sρω(s)andEρω(s)stand for the structure functions of strong and electromagnetic interactions,respectively.In the present work,the diagrams in Fig.1 are needed for a calculation in RχT up to NLO in 1/NCexpansion.As will be seen below,the LO contributions ofSρω(s)andEρω(s)are different:the former starts atwhile the latter does atTherefore,their corresponding NLO contributions are ofand,respectively.In what follows,all the diagrams in Fig.1 will be calculated by using effective Lagrangians constructed in the framework of RχT.

    3.1 Resonance Chiral Theory and Tree-Level Amplitudes

    In RχT,the vector resonances are described in terms of antisymmetry tensor fields with the normalization

    with?μbeing the polarization vector.The kinetic Lagrangian of vector resonances takes the form[14]

    ?Without loss of generality,here we use the Proca formalism for the vector fields andTμνis the transverse projector.In the antisymmetric tensor formalism,the corresponding transverse projector is

    whereMVis the mass of the vector resonances in the chiral limit.Here the vector mesons are collected in a 2×2 matrix

    Hereare field strength tensors composed of the left and right external sourceslμandrμ,andFV,GVare real couplings.

    The LO isospin-breaking effect is introduced by the Lagrangian

    Fig.1 Feynman diagrams contributing to ρ-ω mixing.

    3.2 Loop Contributions

    The relevant loop diagrams contributing up to our accuracy are shown in the second and third lines of Fig.1.Diagrams(c)and(d)contribute to the strong correction at,which are next-to-leading order compared to diagram(a).Likewise,with respect to diagram(b),diagrams(e)–(h)lead to electromagnetic corrections at nextto-leading order,i.e..In our calculation below,the necessary isospin-breaking vertices are constructed based on the basic chiral building blocks taken fromχPT[36]and RχT.[14]

    (i)Diagram(c):ππ Loop

    The vertex ofρI→π+π?can be read from the Lagrangian in Eq.(13).For the isospin-violating vertex ofωI→π+π?,we construct the following Lagrangian

    For convenience,we de fine the combinationTheππ-loop contribution can be obtained by calculating the integral

    wherepandkdenote the momenta of the external vector meson and either of the exchanged pions,respectively.After integrating,the structure function can be extracted,which reads

    (ii)Diagram(d):π-Tadpole Loop

    According to the Lorentz,PandCinvariances,the Lagrangian corresponding to the interaction ofωIρIππcan be written down as follows:

    Note that thev8?VμνVμνχ+>term,which contributes to the contact interaction ofρ-ωmixing,also yieldsωIρIππvertex.Though in Eq.(21)there are many terms with a large number of free couplings,the final result only depends on combinations of these couplings.For simplicity,the following two combinations are necessary,i.e.,

    Furthermore,one can neglect the mass difference between the charged and neutral pions in the internal lines of loops,since the resultant difference is of higher orders beyond our consideration.As a result,the expanded form of Lagrangian(21)can be reduced simply to

    With the above Lagrangian,theπ-tadpole contribution to theρ-ωmixing can be derived:

    Eventually,the explicit expression of the strong structure function has the form of

    (iii)Diagrams(e)–(h):π0γLoops

    In the loop diagrams(e)–(h),there are two types of vertices.The coupling of vector meson(V)as well as vector external source(J)to pseudoscalar(P)is labeled by VJP vertex for short.The interaction of two vector mesons and one pseudoscalar is called VVP vertex.The operators of VJP type are given in Ref.[37]:

    The involved couplings or their combinations can be estimated by matching the leading operator product expansion of?VVP>Green function to the result calculted within RχT.Such a procedure leads to high energy constraints on the resonance couplings as follows:[37]

    The mass of vectors in the chiral limit,MV,can be estimated by the mass ofρ(770)meson.[38]

    The loops diagrams(e)–(h)can be calculated simultanously if the effective vertices ofandω?are used,where a “?” stands for an o ff-shell particle.The explicit expression forreads

    It should be stressed that there are two terms in each effective vertex.One corresponds to the case that the virtual photon is coupled to the VP system directly,while the other to the case that it is interacted through an intermediate vector meson.Note also that,throughout this work we only account for the corrections proportional either to?udor 4πα,which implies the calculation of electromagnetic contribution can be carried out in the isospin limit,i.e.,mu=md.

    With the help of the effective vertices,theπγloop contribution,i.e.,the sum of the loops diagrams(e)–(h),can be expressed as:

    The further calculation is straightforward but the result of the extracted electromagnetic structure functionis too lengthy to be shown here.It is worthy noting that in our numerical computation we will use the high energy constraints in Eq.(28)together with the fitted parameters given in Ref.[18],therefore,all the parameters involved inare known.

    (iv)Counterterms and Renormalized Amplitude

    Up to now,the total contribution ofρ-ωmixing can be expressed as

    which is still unrenormalized.The resonance chiral theory is unrenormalizable in the sense that the amplitude has to be renormalized order by order with increasing number of counterterms when the accuracy of the calculation is improved.In our case,the tree amplitudes,can only absorb the ultraviolet divergence proportional top0.In order to cancel thestemming from the loop contributionSadditional counterterms are needed.For this purpose,we construct

    where a bar indicates the divergences are subtracted.As discussed in Ref.[35],there is an important constraint on the mixing amplitude,namely,it should vanish asp2→0.Thus the final expression of the renormalized mixing amplitude should be

    where an additional finite shift is imposed so as to guarantee that the constraint Πρω(0)=0 is satis fied.

    In our numerical computation,the scaleμwill be set toMρa(bǔ)nd we use(mu?md)=?2.49 MeV provided by particle data group(PDG).[39]Furthermore,we can de fine

    and in principle the unknown parameters in Eq.(35)area,

    4 The Effect of ρ-ω Mixing on Pion Vector Form Factor

    The mass and width ofρmeson are conventionally determined by fitting to the data ofe+e?→π+π?andwhere various mechanisms are introduced to describe theρ-ωmixing effect.To avoid intervening by theirρ-ωmixing mechanisms,we do not employ their extracted values for the mass and width,rather,we set the massMρ,the relevant couplingsGρa(bǔ)ndFρto be free parameters in our fit.As for the width,an energy-dependent form will be imposed,which is supposed to be dominated by the twoπdecay channel:[40]

    and get138 MeV.With the decay widths given above,sρa(bǔ)ndsωin Eq.(3)now can be rewritten as

    The experimental data considered in this work are the pion form factorof theprocess[1?3,41?45]anddecay[25,46]in the energy region of(650–850)MeV,and the decay width of

    The Feynman amplitude for the processproceeding via virtual intermediate hadrons,i.e.,ρ,ωand their mixing,is described by[35]

    Here the fourth term corresponds to higher-order contribution of isospin breaking,e.g.,proportional to(mu?md)2,which is beyond our accuracy and hence can be neglected.Including the contribution from the direct coupling of photon to the pion pair,the pion form-factor ine+e?annihilation reads

    which is irrelevant toρ-ωmixing effect.To take into account the isospin breaking effects,one way is to multi-by the factor of,whereSEW=1.0233 corresponding to the short distance correction.[26]Furthermore,GEM(s)is responsible for the long distance radiative correction whose expression is provided in Ref.[47].To be speci fic,in our fit we make the following substitution

    Our best- fitted parameters and the correspondingχ2/d.o.f.are compiled in Table 1.Our determination of the mass ofρmeson is in good agreement with the value reported in PDG.[39]The fit results are plotted in the Fig.2.One can see that the experimental data of pion form factor,especially the kink around the mass ofωin theprocess,is well described.

    Fig.2 (Color online)Fit results for the pion form factor in the e+e? → π+π? process(a)and τ→ ντ2π process(b).The data of e+e? annihilation are taken from the OLYA and CMD,[41]CMD2,[42?43]DM1,[44]SND,[45]KLOE,[1?2]BESIII[3]collaborations.The τ decay data are taken from the ALEPH[46]and CLEO[25]collaborations.The solid lines are our theoretical predictions.

    Table 1 The fit results of the parameters.

    In Fig.3,contributions at different orders to the real and imaginary parts of the pion form factorare displayed.The leading-order contribution(mixing-effect irrelevant)includes the contact interaction and theρmediated mechanism,namely the first two terms on the right side of Eq.(41).The next-to-leading-order contribution includes theρ-ωmixing term and the directωIππcoupling,namely the third term plus the forth term on the right side of Eq.(41).As expected,the isospin-breaking effects mainly affects the energy region around the masses ofρa(bǔ)ndω.It is found that the dominant contribution is from the imaginary part in that region.The isospinbreaking effects increase the absolute value of imaginary part around theρpeak,and accounts for that thee+e?data are higher than theτdata in that region as shown in Fig.2.Similar behavior has also been observed in Ref.[11]where theρ-ωmixing was treated in hidden local symmetry model.

    Fig.3 (Color online)The real and imaginary parts of the fitted form factor Feeπ(s).The black solid and red dashed lines represent our best results of the real and imaginary parts,respectively.The blue dotted and cyan dash-dot-dotted lines correspond to the leading order and the second order contributions of the real parts,respectively.The magenta dash-dotted and green short dashdash-dotted lines denote the leading order and second order contributions of the imaginary parts.

    In Fig.4,we plot the real and imaginary parts of the mixing amplitude Πρω(s).It is found that the real part is dominant almost in all the region and its momentumdependence is signi ficant.Compared to the real part,the imaginary part is rather small.For the imaginary part,the contributions fromππl(wèi)oop andπγloop are of the same order,but with opposite sign.Note that theπ-tadpole is real ands-independent as can be seen from Eq.(25).The smallness of the imaginary part is consistent with the observation in Refs.[5,48],though therein the effect of directωI→π+π?was not taken into account and even in Ref.[5]the isospin breaking is considered to be purely electromagnetic origin.We also note that larger imaginary part is obtained in Refs.[8,13]by using global color model and a chiral constituent quark model,respectively.

    However,our finding is more reliable in the sense that it is based on a model-independent description of theρ-ωmixing and,moreover,constraint from experimental data is imposed by means of fitting.

    The values of Πρωat physical masses ofρorωare interesting since they are related to the mixing parameters given in Eq.(6).To that end,we obtain:MeV2,and?2=0.21;MeV2and?1=0.24.As expected,?1and?2come out to be almost the same.Note that,in the numerical calculation of?i,we have neglected the small imaginary part of the mixing amplitude as well as the widths of theρa(bǔ)ndωresonances.This leads to a real number of?iand hence a probability interpretation can be assigned.

    Fig.4(Color online)The real part(a)and imaginary part(b)of the mixing amplitude Πphysicalρω(s).The black solid lines represent our best fitted results.For the imaginary part,the red dashed and blue dotted lines correspond to the contribution of ππ loop and πγ loop,respectively.

    Using the central values of the fitted parameters in Table 1,we calculate the decay width of

    From Eq.(44),we can find that the first term due to the directis less than the second term due to theρ-ωmixing by two orders.In other words,the directcoupling only affects the decay width less than one percent.Within 1σuncertainties,our theoretical value of the branching fraction is(1.53±0.10)×10?2,which agrees with the values given in PDG[39]and by the recent dispersive analysis.[49]

    5 Summary

    We have analyzed theρ-ωmixing within the framework of resonance chiral theory.Based on the effective Lagrangians constructed under the guidance of various symmetries,we calculate theρ-ωmixing amplitude up to next-to-leading order in large 1/NCexpansion.Importantly,the momentum-dependent effect is implemented due to the inclusion of loops in our calculation.The values of the resonance couplings are determined by fitting to the data of the pion vector form factor extracted from theprocess anddecay.The decay width ofis served an additional constraint in the fit as well.It is found that the imaginary part of the pion form factoris enhanced largely around theρpeak.Theρ-ωmixing amplitude is dominated by its real part almost in all the region,which is signi ficantly momentum-dependent.On the contrary,its imaginary part is relatively small.We also find thatρ-ωmixing plays a major role in the decay width of,and its contribution is two orders of magnitude larger than that from the directωIππcoupling.

    We would like to thank A.Hosaka and J.J.Sanz-Cillero for helpful discussions.

    [1]KLOE Collaboration,F.Ambrosino,et al.,Phys.Lett.B700(2011)102.

    [2]KLOE Collaboration,D.Babusci,et al.,Phys.Lett.B720(2013)336.

    [3]BESIII Collaboration,M.Ablikim,et al.,Phys.Lett.B753(2016)629.

    [4]S.L.Glashow,Phys.Rev.Lett.7(1961)469.

    [5]F.M.Renard,Springer Tracts in Modern Physics,6398-120,Springer-Verlag,Berlin(1972).

    [6]T.Goldman,J.A.Henderson,and A.W.Thomas,Few Body Systems12(1992)123.

    [7]C.M.Shakin and W.D.Sun,Phys.Rev.D55(1997)2874.

    [8]K.L.Mitchell and P.C.Tandy,Phys.Rev.C55(1997)1477.

    [9]M.Benayoun,et al.,Eur.Phys.J.C17(2000)303.

    [10]M.Benayoun,et al.,Eur.Phys.J.C22(2001)503.

    [11]M.Benayoun,et al.,Eur.Phys.J.C55(2008)199.

    [12]D.N.Gao and M.L.Yan,Eur.Phys.J.A3(1998)293.

    [13]X.J.Wang and M.L.Yan,Phys.Rev.D62(2000)094013.

    [14]G.Ecker,J.Gasser,A.Pich,and E.de Rafael,Nucl.Phys.B321(1989)311.

    [15]Z.H.Guo and J.A.Oller,Phys.Rev.D84(2011)034005.

    [16]M.Jamin,A.Pich,and J.Portoles,Phys.Lett.B640(2006)176.

    [17]P.Roig and J.J.Sanz-Cillero,Phys.Lett.B733(2014)158.

    [18]Y.H.Chen,Z.H.Guo,and H.Q.Zheng,Phys.Rev.D85(2012)054018.

    [19]Y.H.Chen,Z.H.Guo,and H.Q.Zheng,Phys.Rev.D90(2014)034013.

    [20]Y.H.Chen,Z.H.Guo,and B.S.Zou,Phys.Rev.D91(2015)014010.

    [21]Res Urech,Phys.Lett.B355(1995)308.

    [22]A.Kucukarslan and Ulf-G.Mei?ner,Mod.Rev.Lett.A21(2006)1423.

    [23]G.t’Hooft,Nucl.Phys.B72(1974);ibid.75(1974)461.

    [24]I.Rosell,J.J.Sanz-Cillero,and A.Pich,JHEP0408(2004)042.

    [25]CLEO Collaboration,S.Anderson,et al.,Phys.Rev.D61(2000)112002.

    [26]M.Davier,et al.,Eur.Phys.J.C27(2003)497.

    [27]R.Alemany,et al.,Eur.Phys.J.C2(1998)123.

    [28]J.A.Oller,E.Oset and J.E.Palomar,Phys.Rev.D63(2001)114009.

    [29]V.Cirigliano,et al.,Phys.Lett.B513(2001)361.

    [30]V.Cirigliano,et al.,Eur.Phys.J.C23(2002)121.

    [31]S.Ghozzi and F.Jegerlehner,Phys.Lett.B583(2004)222.

    [32]K.Maltman and C.E.Wolfe,Phys.Rev.D73(2006)013004.

    [33]L.Y.Dai,J.Portoles,and O.Shekhovtsova,Phys.Rev.D88(2013)056001.

    [34]D.Djukanovic,J.Gegelia,A.Keller,S.Scherer,and L.Tiator,Phys.Lett.B742(2015)55.

    [35]H.B.O’Connell,B.C.Pearce,A.W.Thomas,and A.G.Williams,Prog.Nucl.Part.Phys.39(1997)201.

    [36]J.Gasser and H.Leutwyler,Annals Phys.158(1984)142;J.Gasser and H.Leutwyler,Nucl.Phys.B250(1985)465.

    [37]P.D.Ruiz-Femenia,A.Pich,and J.Portoles,JHEP0307(2003)003.

    [38]V.Mateu and J.Portoles,Eur.Phys.J.C52(2007)325.

    [39]C.Patrignani,et al.,[Particle Data Group Collaboration],Chin.Phys.C40(2016)100001.

    [40]D.Gomez-Dumm,A.Pich,and J.Portoles,Phys.Rev.D62(2000)054014.

    [41]L.M.Barkov,et al.,Nucl.Phys.B256(1985)365.

    [42]CMD-2 Collaboration,R.R.Akhmetshin,et al.,Phys.Lett.B578(2004)285.

    [43]CMD-2 Collaboration,R.R.Akhmetshin,et al.,JETP Lett.84(2006)413.

    [44]A.Quenzer,et al.,Phys.Lett.B76(1978)512.

    [45]M.N.‘Achasov,et al.,J.Exp.Theor.Phys.103(2006)380.

    [46]ALEPH Collaboration,S.Schael,et al.,Phys.Rep.421(2005)191.

    [47]F.Flores-Baez,et al.,Phys.Rev.D74(2006)071301.

    [48]S.Gardner and H.B.O’Connell,Phys.Rev.D57(1998)2716.

    [49]C.Hanhart,S.Holz,B.Kubis,et al.,Eur.Phys.J.C77(2017)98.

    猜你喜歡
    陳云
    加快構(gòu)建旅游產(chǎn)業(yè)創(chuàng)新生態(tài)系統(tǒng)
    Biased random walk with restart for essential proteins prediction
    Noncollinear phase-matching geometries in ultra-broadband quasi-parametric amplification
    基于大數(shù)據(jù)分析與審計(jì)的關(guān)系研究
    My plan for new term
    向陳云學(xué)習(xí)錘煉“筆力”
    陳云:我黨干部的楷模
    陳云貴:你是泥土你是光
    海峽姐妹(2016年2期)2016-02-27 15:15:59
    TransitivityandCharacterization:AnalysisonDickinTenderisTheNight
    略論陳云執(zhí)政黨黨風(fēng)建設(shè)的思想
    美女福利国产在线| 女人高潮潮喷娇喘18禁视频| 五月开心婷婷网| 超色免费av| 中国三级夫妇交换| 日日摸夜夜添夜夜爱| 国产片特级美女逼逼视频| 九九爱精品视频在线观看| a级片在线免费高清观看视频| 永久免费av网站大全| 视频区图区小说| 综合色丁香网| 欧美日韩亚洲高清精品| 亚洲男人天堂网一区| 亚洲国产欧美一区二区综合| 视频区图区小说| 激情五月婷婷亚洲| 夫妻午夜视频| 久久久精品免费免费高清| 99国产精品免费福利视频| 国产精品久久久久久人妻精品电影 | 天天影视国产精品| 国产精品麻豆人妻色哟哟久久| 久久国产精品男人的天堂亚洲| 欧美变态另类bdsm刘玥| 大香蕉久久网| 日本黄色日本黄色录像| 国产免费现黄频在线看| 99精国产麻豆久久婷婷| 大话2 男鬼变身卡| 日韩av在线免费看完整版不卡| 日韩大码丰满熟妇| 青草久久国产| 街头女战士在线观看网站| 91国产中文字幕| 一区在线观看完整版| 观看av在线不卡| 色婷婷av一区二区三区视频| 欧美日韩亚洲国产一区二区在线观看 | 精品一品国产午夜福利视频| 交换朋友夫妻互换小说| 国产一区二区 视频在线| 韩国av在线不卡| 国产av一区二区精品久久| 纵有疾风起免费观看全集完整版| 久久久精品94久久精品| 建设人人有责人人尽责人人享有的| 考比视频在线观看| 亚洲精品自拍成人| 看免费av毛片| 国产欧美日韩一区二区三区在线| 久久久久久久久久久免费av| 亚洲av成人精品一二三区| 日本爱情动作片www.在线观看| 妹子高潮喷水视频| 欧美激情 高清一区二区三区| 波野结衣二区三区在线| 成年女人毛片免费观看观看9 | 日韩 亚洲 欧美在线| 少妇精品久久久久久久| 中文天堂在线官网| 国产片内射在线| 久热爱精品视频在线9| 午夜福利乱码中文字幕| 日韩av在线免费看完整版不卡| av一本久久久久| 日韩 亚洲 欧美在线| 国产精品国产av在线观看| 天天添夜夜摸| 大片电影免费在线观看免费| 天堂俺去俺来也www色官网| a级片在线免费高清观看视频| 91国产中文字幕| 国产日韩一区二区三区精品不卡| 在线亚洲精品国产二区图片欧美| 国产成人精品在线电影| 日韩中文字幕视频在线看片| 久热爱精品视频在线9| 国产又色又爽无遮挡免| 男人操女人黄网站| 女人爽到高潮嗷嗷叫在线视频| 国产亚洲精品第一综合不卡| 国产精品 国内视频| 菩萨蛮人人尽说江南好唐韦庄| av在线播放精品| 欧美成人精品欧美一级黄| 国产精品.久久久| 亚洲美女视频黄频| 超碰成人久久| 在线观看免费视频网站a站| 国产精品久久久久久人妻精品电影 | 伊人久久国产一区二区| 国产女主播在线喷水免费视频网站| 大片电影免费在线观看免费| 狂野欧美激情性bbbbbb| 国产一卡二卡三卡精品 | a 毛片基地| 午夜福利一区二区在线看| 天堂中文最新版在线下载| 大码成人一级视频| 男人爽女人下面视频在线观看| h视频一区二区三区| 日韩一本色道免费dvd| 久久午夜综合久久蜜桃| 国产成人欧美| 天堂中文最新版在线下载| www.精华液| 久久久久国产精品人妻一区二区| 19禁男女啪啪无遮挡网站| 久久久精品国产亚洲av高清涩受| 女性被躁到高潮视频| 午夜免费观看性视频| 又大又爽又粗| 亚洲色图综合在线观看| 国产一区有黄有色的免费视频| 制服丝袜香蕉在线| 男女高潮啪啪啪动态图| 18禁动态无遮挡网站| 亚洲成色77777| 亚洲免费av在线视频| av卡一久久| 久久久精品区二区三区| 中文字幕精品免费在线观看视频| 91国产中文字幕| 国产极品天堂在线| 国产精品 国内视频| 精品一区二区三区四区五区乱码 | 久热这里只有精品99| 成年人免费黄色播放视频| 国产精品久久久久久人妻精品电影 | 汤姆久久久久久久影院中文字幕| 99热网站在线观看| 91精品国产国语对白视频| 建设人人有责人人尽责人人享有的| 午夜福利一区二区在线看| 国产女主播在线喷水免费视频网站| 七月丁香在线播放| 国产成人免费无遮挡视频| 777久久人妻少妇嫩草av网站| 欧美精品高潮呻吟av久久| 人体艺术视频欧美日本| 久久久久精品久久久久真实原创| 精品一区二区三区av网在线观看 | 好男人视频免费观看在线| 老司机在亚洲福利影院| 老汉色∧v一级毛片| 欧美97在线视频| 黄色视频不卡| 十八禁人妻一区二区| 少妇人妻 视频| 国产日韩一区二区三区精品不卡| 夜夜骑夜夜射夜夜干| 国产片特级美女逼逼视频| 丰满饥渴人妻一区二区三| 日本91视频免费播放| 中文字幕人妻丝袜一区二区 | 国产在视频线精品| 亚洲精品国产区一区二| 精品亚洲成a人片在线观看| 亚洲人成网站在线观看播放| 色网站视频免费| 国产欧美日韩综合在线一区二区| 国产免费一区二区三区四区乱码| 亚洲精品一二三| 国产国语露脸激情在线看| 不卡av一区二区三区| 国产又色又爽无遮挡免| 少妇的丰满在线观看| 最近的中文字幕免费完整| 91精品三级在线观看| 精品久久久久久电影网| 久久久精品区二区三区| 国产熟女欧美一区二区| 天堂8中文在线网| 高清在线视频一区二区三区| 丝袜人妻中文字幕| 久久精品国产综合久久久| 欧美黑人精品巨大| 日本wwww免费看| 9热在线视频观看99| 国产又色又爽无遮挡免| 日韩熟女老妇一区二区性免费视频| 亚洲精品成人av观看孕妇| 亚洲国产精品成人久久小说| 三上悠亚av全集在线观看| 午夜福利视频在线观看免费| 亚洲在久久综合| 中文天堂在线官网| 一本—道久久a久久精品蜜桃钙片| 精品少妇久久久久久888优播| 在线免费观看不下载黄p国产| 天天躁狠狠躁夜夜躁狠狠躁| 欧美黄色片欧美黄色片| 纵有疾风起免费观看全集完整版| 又大又黄又爽视频免费| 9色porny在线观看| 少妇 在线观看| 国产免费又黄又爽又色| 90打野战视频偷拍视频| 18禁动态无遮挡网站| 日本91视频免费播放| 午夜福利在线免费观看网站| av天堂久久9| 日韩制服丝袜自拍偷拍| 日韩大码丰满熟妇| 亚洲欧美一区二区三区久久| 十八禁网站网址无遮挡| 亚洲成国产人片在线观看| 国产日韩欧美视频二区| 亚洲av电影在线进入| 欧美中文综合在线视频| 成年av动漫网址| 一级片免费观看大全| av在线播放精品| 久久狼人影院| 日本vs欧美在线观看视频| 国产乱来视频区| 欧美激情高清一区二区三区 | 久久久国产欧美日韩av| 欧美日韩一级在线毛片| 亚洲一区中文字幕在线| 亚洲精品久久成人aⅴ小说| 人人妻人人澡人人爽人人夜夜| 国产欧美日韩综合在线一区二区| 国产精品女同一区二区软件| 悠悠久久av| av.在线天堂| 夫妻午夜视频| 国产欧美日韩一区二区三区在线| 捣出白浆h1v1| 婷婷色综合大香蕉| 黑人猛操日本美女一级片| 女性被躁到高潮视频| 国产亚洲精品第一综合不卡| av视频免费观看在线观看| 天堂中文最新版在线下载| 国产成人欧美在线观看 | 一边亲一边摸免费视频| 欧美日韩福利视频一区二区| 精品午夜福利在线看| 欧美国产精品va在线观看不卡| 久热爱精品视频在线9| 女的被弄到高潮叫床怎么办| 男女午夜视频在线观看| 国产成人精品在线电影| 一区二区三区精品91| 一级毛片电影观看| 晚上一个人看的免费电影| 精品国产露脸久久av麻豆| 多毛熟女@视频| 欧美乱码精品一区二区三区| 欧美精品一区二区大全| 黄色视频在线播放观看不卡| 青草久久国产| 国产欧美亚洲国产| 高清在线视频一区二区三区| 国产免费又黄又爽又色| 蜜桃在线观看..| 午夜福利在线免费观看网站| 国产精品国产三级专区第一集| 一本—道久久a久久精品蜜桃钙片| 亚洲精品av麻豆狂野| 两个人看的免费小视频| 国产国语露脸激情在线看| 中文天堂在线官网| 这个男人来自地球电影免费观看 | 黄频高清免费视频| 亚洲人成77777在线视频| 另类亚洲欧美激情| 久久精品熟女亚洲av麻豆精品| 国产精品久久久人人做人人爽| 久久天堂一区二区三区四区| 男女午夜视频在线观看| 一区福利在线观看| 免费看不卡的av| 午夜福利网站1000一区二区三区| 又大又黄又爽视频免费| 日日摸夜夜添夜夜爱| 精品一品国产午夜福利视频| 久久久久国产一级毛片高清牌| 久久久久久免费高清国产稀缺| 51午夜福利影视在线观看| 一区二区三区四区激情视频| 尾随美女入室| 国产视频首页在线观看| 男人添女人高潮全过程视频| 女人精品久久久久毛片| 国产爽快片一区二区三区| 18在线观看网站| 高清欧美精品videossex| 十八禁网站网址无遮挡| 久久热在线av| h视频一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 丰满饥渴人妻一区二区三| 亚洲欧美一区二区三区黑人| 亚洲欧美一区二区三区久久| 日韩熟女老妇一区二区性免费视频| 伦理电影免费视频| avwww免费| 性少妇av在线| 男人舔女人的私密视频| 观看av在线不卡| 少妇人妻精品综合一区二区| 午夜福利网站1000一区二区三区| 国产精品熟女久久久久浪| 久久久国产精品麻豆| 青春草亚洲视频在线观看| 免费少妇av软件| 亚洲av成人精品一二三区| 建设人人有责人人尽责人人享有的| 国产成人精品久久久久久| 欧美av亚洲av综合av国产av | 亚洲国产毛片av蜜桃av| 少妇人妻久久综合中文| 伊人久久大香线蕉亚洲五| 十八禁人妻一区二区| 热99国产精品久久久久久7| 久久精品人人爽人人爽视色| 国产av国产精品国产| 亚洲视频免费观看视频| 国产亚洲午夜精品一区二区久久| 青春草视频在线免费观看| 日本vs欧美在线观看视频| 国产精品久久久久久久久免| 一区在线观看完整版| 一级a爱视频在线免费观看| 大话2 男鬼变身卡| 亚洲欧美清纯卡通| 欧美日韩综合久久久久久| 看免费av毛片| 久久久久精品人妻al黑| 色视频在线一区二区三区| 国产精品久久久人人做人人爽| 亚洲综合色网址| 十八禁高潮呻吟视频| 欧美人与性动交α欧美精品济南到| 丝袜脚勾引网站| a级片在线免费高清观看视频| 精品一区二区免费观看| 18禁观看日本| av网站免费在线观看视频| 黄色怎么调成土黄色| 国产不卡av网站在线观看| 啦啦啦在线观看免费高清www| 久久久国产欧美日韩av| 七月丁香在线播放| 亚洲国产精品国产精品| 日韩制服骚丝袜av| 国产在线一区二区三区精| 欧美日韩福利视频一区二区| 欧美日韩亚洲高清精品| 国产熟女午夜一区二区三区| 精品国产超薄肉色丝袜足j| 久久免费观看电影| 最近的中文字幕免费完整| 满18在线观看网站| 色婷婷久久久亚洲欧美| 亚洲七黄色美女视频| 日韩欧美精品免费久久| 欧美日韩综合久久久久久| 午夜日韩欧美国产| 天天添夜夜摸| 亚洲欧美一区二区三区久久| 在线天堂最新版资源| 午夜日韩欧美国产| 亚洲成人av在线免费| 少妇猛男粗大的猛烈进出视频| 国产在线视频一区二区| 国产av国产精品国产| 捣出白浆h1v1| 日日摸夜夜添夜夜爱| 黄色视频不卡| 男男h啪啪无遮挡| 成年人免费黄色播放视频| 黄片播放在线免费| 亚洲在久久综合| 久久影院123| 80岁老熟妇乱子伦牲交| 搡老乐熟女国产| 欧美变态另类bdsm刘玥| av天堂久久9| 另类亚洲欧美激情| 久久综合国产亚洲精品| 国产不卡av网站在线观看| 亚洲精品国产色婷婷电影| 久热这里只有精品99| 亚洲精品国产一区二区精华液| 国产色婷婷99| 国产亚洲午夜精品一区二区久久| 国产不卡av网站在线观看| 国产视频首页在线观看| 亚洲久久久国产精品| 黄片播放在线免费| 黄色一级大片看看| av卡一久久| 国产精品.久久久| 丁香六月欧美| 国产av精品麻豆| 女人爽到高潮嗷嗷叫在线视频| 色网站视频免费| 夜夜骑夜夜射夜夜干| 在线天堂最新版资源| 免费在线观看视频国产中文字幕亚洲 | 2021少妇久久久久久久久久久| 精品免费久久久久久久清纯 | 青春草视频在线免费观看| 亚洲精品国产一区二区精华液| 午夜福利乱码中文字幕| 亚洲av电影在线观看一区二区三区| 免费在线观看完整版高清| 国产成人av激情在线播放| 一本一本久久a久久精品综合妖精| 精品第一国产精品| 日本黄色日本黄色录像| 男男h啪啪无遮挡| 黑丝袜美女国产一区| 99九九在线精品视频| 欧美激情高清一区二区三区 | 久久性视频一级片| 如何舔出高潮| 免费不卡黄色视频| 日本欧美视频一区| 男女边吃奶边做爰视频| 宅男免费午夜| 黄色毛片三级朝国网站| 老司机影院毛片| 一区二区三区乱码不卡18| 精品国产乱码久久久久久男人| 老司机深夜福利视频在线观看 | 人体艺术视频欧美日本| 免费日韩欧美在线观看| 一级片免费观看大全| 亚洲欧美激情在线| 亚洲天堂av无毛| 久久久久久久国产电影| 精品久久久久久电影网| 精品一区二区三卡| 国产视频首页在线观看| 国产欧美亚洲国产| 亚洲欧美清纯卡通| 久久免费观看电影| 美女视频免费永久观看网站| 日韩不卡一区二区三区视频在线| 91成人精品电影| 成年女人毛片免费观看观看9 | 日韩,欧美,国产一区二区三区| 丁香六月欧美| 狠狠婷婷综合久久久久久88av| 下体分泌物呈黄色| 亚洲美女黄色视频免费看| 国产精品蜜桃在线观看| 免费高清在线观看视频在线观看| 精品国产超薄肉色丝袜足j| 中文字幕人妻熟女乱码| 日日啪夜夜爽| 啦啦啦在线观看免费高清www| 午夜免费男女啪啪视频观看| 日本爱情动作片www.在线观看| 伦理电影大哥的女人| 天天躁日日躁夜夜躁夜夜| 国产成人精品久久久久久| 在线免费观看不下载黄p国产| 制服诱惑二区| 精品亚洲成a人片在线观看| 国产一区亚洲一区在线观看| 欧美变态另类bdsm刘玥| 亚洲,一卡二卡三卡| 精品国产露脸久久av麻豆| 免费日韩欧美在线观看| 国产黄频视频在线观看| 免费黄网站久久成人精品| 亚洲免费av在线视频| 久久狼人影院| 91老司机精品| 黑丝袜美女国产一区| 美女国产高潮福利片在线看| 久久性视频一级片| 十八禁高潮呻吟视频| 美女扒开内裤让男人捅视频| 一本一本久久a久久精品综合妖精| 少妇猛男粗大的猛烈进出视频| 男女之事视频高清在线观看 | 男人舔女人的私密视频| 自拍欧美九色日韩亚洲蝌蚪91| 考比视频在线观看| 久久 成人 亚洲| 一级毛片黄色毛片免费观看视频| 国产黄色视频一区二区在线观看| 91aial.com中文字幕在线观看| 在线 av 中文字幕| 免费高清在线观看视频在线观看| 伊人久久大香线蕉亚洲五| 国产男人的电影天堂91| 男女床上黄色一级片免费看| 亚洲婷婷狠狠爱综合网| 一级片免费观看大全| 老司机靠b影院| 亚洲国产av影院在线观看| 国产xxxxx性猛交| av天堂久久9| 国产免费现黄频在线看| 成年人午夜在线观看视频| 亚洲人成电影观看| 久久久久久人妻| 亚洲av福利一区| 国产一卡二卡三卡精品 | 宅男免费午夜| netflix在线观看网站| 交换朋友夫妻互换小说| 18禁动态无遮挡网站| 精品久久蜜臀av无| 亚洲第一青青草原| 精品卡一卡二卡四卡免费| 国产成人精品无人区| 丰满饥渴人妻一区二区三| 亚洲av男天堂| a级片在线免费高清观看视频| 色播在线永久视频| 日韩av不卡免费在线播放| 晚上一个人看的免费电影| 日韩大片免费观看网站| 蜜桃在线观看..| 99久久综合免费| 日韩一本色道免费dvd| 男人舔女人的私密视频| 国产亚洲午夜精品一区二区久久| 伦理电影大哥的女人| 国产精品久久久久久精品电影小说| 亚洲美女黄色视频免费看| 午夜福利视频在线观看免费| 制服人妻中文乱码| 叶爱在线成人免费视频播放| 侵犯人妻中文字幕一二三四区| 午夜老司机福利片| h视频一区二区三区| 啦啦啦视频在线资源免费观看| 国产成人精品久久二区二区91 | 亚洲精品自拍成人| 亚洲精品国产av蜜桃| 自拍欧美九色日韩亚洲蝌蚪91| 精品少妇黑人巨大在线播放| 色婷婷久久久亚洲欧美| 99精品久久久久人妻精品| 欧美精品高潮呻吟av久久| 9色porny在线观看| 免费观看av网站的网址| 亚洲精品在线美女| 大码成人一级视频| 中文字幕人妻丝袜一区二区 | 国产精品偷伦视频观看了| 亚洲成人免费av在线播放| 国产高清国产精品国产三级| 老司机影院毛片| 一级黄片播放器| 久久这里只有精品19| 国产av一区二区精品久久| 好男人视频免费观看在线| 亚洲人成电影观看| 亚洲欧美色中文字幕在线| 久久99热这里只频精品6学生| 国产免费福利视频在线观看| 国产成人欧美| 成人三级做爰电影| 国产欧美亚洲国产| 亚洲国产精品成人久久小说| 大香蕉久久成人网| 飞空精品影院首页| 肉色欧美久久久久久久蜜桃| 免费不卡黄色视频| 国产xxxxx性猛交| 大片电影免费在线观看免费| 久久久欧美国产精品| 久久青草综合色| 久久久久久久久久久免费av| 精品久久久精品久久久| 成人毛片60女人毛片免费| 日韩中文字幕欧美一区二区 | 制服诱惑二区| 三上悠亚av全集在线观看| 菩萨蛮人人尽说江南好唐韦庄| 日本欧美视频一区| 久久综合国产亚洲精品| 国产精品av久久久久免费| 久久久久精品性色| 欧美日韩视频精品一区| www.自偷自拍.com| 亚洲国产欧美在线一区| 欧美老熟妇乱子伦牲交| 久久国产亚洲av麻豆专区| 人体艺术视频欧美日本| 最近的中文字幕免费完整| 中文字幕人妻熟女乱码| 欧美精品高潮呻吟av久久| 国产亚洲最大av| 看免费成人av毛片| 高清欧美精品videossex| 国产黄色免费在线视频| 18禁观看日本| 久久久久国产一级毛片高清牌| a级片在线免费高清观看视频| 毛片一级片免费看久久久久| 男女下面插进去视频免费观看| 亚洲欧美激情在线| 久久这里只有精品19| 亚洲精品久久成人aⅴ小说| 黑人欧美特级aaaaaa片| 天天添夜夜摸| 最近的中文字幕免费完整| 国产极品粉嫩免费观看在线| 欧美精品高潮呻吟av久久| 9色porny在线观看| 欧美日韩亚洲综合一区二区三区_| 97人妻天天添夜夜摸| 久久久亚洲精品成人影院|