• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    超廣義k次投影的線(xiàn)性組合群可逆和可逆性

    2018-05-14 08:55付石琴劉曉冀
    關(guān)鍵詞:廣義投影文獻(xiàn)

    付石琴 劉曉冀

    參考文獻(xiàn):

    [1]BAKSALARY O M. Revisitation of generalized and hypergeneralized projectors[M]//Statistical Inference, Econometric Analysis and Matrix Algebra. Physica-Verlag HD, 2009:317-324.

    [2]BENITEZ J, THOME N. Characterizations and linear combinations of k-generalized projectors [J]. Linear Algebra & Its Applications, 2005, 410(2):150-159.

    [3]鄧春源, 李啟慧, 杜鴻科. Generalized n-idempotents and Hyper-generalized n-idempotents[J]. Communications in Mathematical Research, 2006, 22(4):387-394.

    [4] BAKSALARY J, BAKSALARY O M, LIU X. Further properties of generalized and hypergeneralized projectors[J]. Linear Algebra & Its Applications, 2004, 389(1):295-303.

    [5] BAKSALARY J K, BAKSALARY O M, LIU X, et al. Further results on generalized and hypergeneralized projectors[J]. Linear Algebra & Its Applications, 2008, 429(5-6):1038-1050.

    [6] ZENG Y D, LIN L F, MATHEMATICS D O. Nonsingularity of linear combinations of idempotent matrices[J]. Linear Algebra & Its Applications, 2013, 388(1):25-29.

    [7]LIU X, WU S, BENITEZ J. On nonsingularity of combinations of two group invertible matrices and two tripotent matrices[J]. Linear & Multilinear Algebra, 2011, 59(12):1409-1417.

    [8]TOSIC M. Characterizations and the Moore-Penrose inverse of hypergeneralized k-projectors[J]. Bulletin of the Korean Mathematical Society, 2014, 51(2):438-441.

    [9] M, D S, DENG C. The Moore-Penrose inverse of a linear combination of commuting generalized and hypergeneralized projectors[J]. Electronic Journal of Linear Algebra Ela, 2011, 22(1):1129-1137.

    [10] LIU X, ZHANG M, JULIO B. Expressions of the group inverse of the linear combinations of k-ldempotent matrices and the Moore-Penrose generalized lnverse of the linear combinations of the hypergeneralized ldempotent matrices[J]. Chinese Annals of Mathematics, 2014,35(4):463-478.

    [11] ZUO K. Nonsingularity of the difference and the sum of two idempotent matrices[J]. Linear Algebra & Its Applications, 2010, 433(2):476-482.

    [12]LI H Y,ZUO K Z. The study of idempotence, reversibility, the group inverse, D-inverse, M-P inverse of combination for two special operator[J]. Applied Mathematics, 2014:19-25.

    [13]MEYER C. Matrix analysis and applied linear algebra[M]. Society for Industrial and Applied Mathematics, 2000.

    [14] J. Moore-Penrose inverses and commuting elements of C*-algebras[J]. Journal of Mathematical Analysis & Applications, 2008, 345(2):766-770.

    猜你喜歡
    廣義投影文獻(xiàn)
    有關(guān)向量上的投影的概念解讀
    投影向量問(wèn)題
    Hostile takeovers in China and Japan
    The Last Lumberjacks
    Cultural and Religious Context of the Two Ancient Egyptian Stelae An Opening Paragraph
    找投影
    一類(lèi)特別的廣義積分
    任意半環(huán)上正則元的廣義逆
    The Application of the Situational Teaching Method in English Classroom Teaching at Vocational Colleges
    《投影與視圖》單元測(cè)試題
    平乡县| 师宗县| 赤水市| 静安区| 永安市| 台山市| 茂名市| 玛纳斯县| 息烽县| 绵竹市| 高州市| 汪清县| 恭城| 井研县| 陆丰市| 普定县| 西峡县| 博罗县| 洪洞县| 巩留县| 逊克县| 大兴区| 奇台县| 平山县| 定结县| 陆河县| 永寿县| 樟树市| 和平县| 天水市| 项城市| 双城市| 崇义县| 临洮县| 平阴县| 剑河县| 正镶白旗| 韶关市| 沈阳市| 崇州市| 石楼县|