• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Influence of Interface on Mechanical Properties of Double-base Gun Propellant with RDX

    2018-05-17 02:49:08LIUJiaCHENGShanZHANGLihuaMAZhongliangXIAOZhongliang
    火炸藥學(xué)報(bào) 2018年2期

    LIU Jia, CHENG Shan,ZHANG Li-hua, MA Zhong-liang, XIAO Zhong-liang

    (1.Jianghe Chemical Technology Co., Ltd., Yichang Hubei 444200,China; 2.School of Chemical Engineering and Environment, North University of China, Taiyuan 030051,China;3.School of Chemical Engineering, Nanjing University of Science and Technology,Nanjing 210094,China)

    Introduction

    A heterogeneous gun propellant is formed as a heterogeneous mixture by adding energy-contained solid to improve its energy[1]. The solid filler makes it easier to peel or remove the binding agent attached to the gun propellant as it forms an interface between the gun propellant and the binding agent. This interface plays an important role in the properties of the gun propellants as it changes the elasticity modulus, compressive strength and impact strength to some extent.

    The degree of change is focused on the interface structure and interface interaction between binding agent and solid filler. The influence of interfacial binding strength on the properties of the gun propellant is hot-spot in composite material field[2-3].

    Studies on the mechanical properties of heterogeneous gun propellants are limited to objective evaluation or qualitative analysis, including macroscopic and microscopic methods[4-6]. Compared with the macroscopic method, the microscopic method is more direct, economic and time-saving. In order to improve the interactions of bonding agent and fillers, different bonding agents were used, and their efficiency was analyzed. The position of formed cracks in the specimen and their area have a great influence on the mechanical properties of composite propellants[7]. Besides, the interaction energy between some bonding agent and RDX was calculated by molecular dynamics method, but the difference with experimental results is unknown[8]. Applying interface principle to heterogeneous propellants to study the interface interaction and setting-up a quantitative relationship between micro parameters and macro mechanical properties is an effective way to represent the macroscopic mechanical properties of gun propellants. However, due to the complex interface structure, hardly any quantitative relationship is studied.

    Based on these, a new microscopic parameter-adhesive energy per mass RDX and bonding agent(Ed,mJ/g) was defined to represent the relationship of the bonding strength and the content of RDX. The microscopic interface between bonding agent and RDX was characterized by a three-dimensional stereo microscope. The function relationships ofσ-EdandD-Edwere established at 20 and 50℃ based on the compression test, shock test and contact angle measurement. Moreover, the results have certain guiding significance to formulation optimization, interfacial additive study, mechanical properties estimation of heterogeneous gun propellants.

    1 Theory Calculation

    1.1 Calculation of surface energy by contact angle method

    So far, there is not a direct method to measure the surface energy of solid, so some indirect methods were studied. The contact angle method was applied to this study to calculate the surface energy. Principle is as follows:

    Young′s equation[9]:

    γ2=γ12+γ1cosθ

    (1)

    Girifalco and good deduced the relationship ofγ1,γ2andγ12[10]:

    γ12=γ2+γ1-2φ(γ2γ1)1/2

    (2)

    In the equation: φ is the molar volume factor and approximate to 1, so the Equation (2) becomes:

    γ12=[(γ2)1/2-(γ1)1/2]2

    (3)

    For the adhesion work (Wa) is[11]:

    Wa=γ1+γ2-γ12

    (4)

    The following equation can be obtained by Equations (3) and (4) :

    Wa=2(γ1)1/2(γ2)1/2

    (5)

    By Equations (1) and (4) , the following equation can be obtained:

    Wa=γ1(1+cosθ)

    (6)

    The polar component and nonpolar component can be added[11], so:

    (7)

    For every component fits Equation (7) , Equations (3) and (5) respectively becomes:

    (8)

    (9)

    Equations (6) and (9) can deduce Equation (10) :

    (10)

    The surface energy can be obtained by the following equation:

    γ=γd+γp

    (11)

    So two liquids with known surface tension, polar component and nonpolar component can be dropped on the surface of a bonding agent to measure the contact angle, and using the Equation (10), two binary quadratic equation groups can be obtained. So the polar component and nonpolar component can be calculated, then the surface energy of bonding agent is acquired by Equation (11).

    1.2 Calculation of Ed

    R. J. Wu[10]using semi-continuous model of energy adduct concept, assuming the force between molecules consist nonpolar parts and polar components, gets an interface energy equation suitable for low surface energy system:

    (12)

    (13)

    2 Experiment

    2.1 Materials and devices

    RDX (the average diameter of RDX is about 0.0577mm and it is bought from Luzhou Chemical Plant) , double-base tablet (it is produced by Luzhou Chemical Plant) , anhydrous ethanol, ether, diphenylamine, and diiodomethane are all analytically pure, and they are bought from Tianjin Tianda Chemical Reagent Factory; distilled water (it is produced by ourselves)

    WSM-10KN electronic universal testing machine (the manufacturer of it is Changchun Intelligent Equipment Co., Ltd.) , drop weight machine (the manufacturer of it is Jiangsu Tianyuan Test Equipment Co.), high-low temperature test chamber (the manufacturer of it is Shanghai Linpin Instrument Co., Ltd.), digital caliper, three-dimensional stereo microscope (the manufacturer of it is Keyence Co., Japan) , contact angle measuring device (the manufacturer of it is Shanghai Zhongchen instrument Co., Ltd.)

    2.2 Preparation for double-base gun propellant

    Based on the synthetic process of gun propellant[12], the samples with different mass fraction of RDX (0,5%,10%,15%) were obtained to meet the experimental needs.

    2.3 Tests and methods

    First, the compressive property and shock resistance of these double-base gun propellants with different amounts of RDX were tested at different temperatures (20℃,50℃) . The experimental principle of compressive property testing is referred to reference[12]. The double-base gun propellants were planted on a flat and hard iron. A hammer fell from a certain height onto the samples, but the samples only deformed and must not be broken. The volume deformation impact energy was adopted to estimate the shock resistance[13], and then the contact angles of bonding agent/distilled water and bonding agent/diiodomethane were measured at different temperatures (20℃,50℃) , finally the surface images of these gun propellants were observed by three-dimensional stereo microscope under normal temperature after being impacted. Five samples are tested at every amount of RDX.

    3 Results and Discussion

    3.1 Surface characterization

    Double-base gun propellants were impacted by the same impact energy, that means the hammer fell from the same height to make the samples broken. The fractured face was observed by three-dimensional stereo microscope, as shown in Figure 1. Double-base gun propellants have good toughness, thus the ones with none or low content of RDX deformed only but cannot be broken. So cracks just in samples with 10% and 15% RDX were observed.

    Fig.1 Surface of double-base gun propellants with different contents of RDX after it is impacted

    Based on observation from the Figure 1, we can see that the bonding agent peels off the RDX crystals (the crysals ringed in the two pictures) when the samples were impacted. With the same impact energy samples with 15% RDX is damaged more seriously. As in the Figure 1 (b), not only the RDX crystals fall off and exposed completely, but the whole bonding agent produces faults (as the part pointed out by arrow 1) and cracks (the section showed by arrows 2 and 3). Also, in the Figure 1 (a), for RDX crystals only semi-nudity exposed.

    This is the case that NC and RDX are two-phase components and incompatible substances, making an interface between the two phases. As the content of RDX increases, the interface between the two phases also increases, and interface failure increases, thus leads stress to focus, and the gun propellants are broken from the interface. As RDX is more, RDX/RDX and RDX/NC strands cannot intertwine as NC/NC strands, so the interaction of interface decreases, resulting in that gun propellants are damaged easily when impacted. In a word, the reason is the interface in the heterogeneous gun-propellants.

    3.2 Mechanical property testing results of double-base gun propellants

    The results of compression tests are shown in Table 1, and the results of impact experiments are summarized in Table 2. The average value of the five groups is calculated to be the final result. And the standard deviation is listed following it.

    Table 1 Yield stress (σ) and elasticity modulus (E) of double-base gun propellants with different RDX at different temperatures

    Table 2 Volume deformation impact energy (D) of double-base gun propellants with different content of RDX at different temperatures

    From the results we can see that at 20 or 50℃ compressive strength increases, impact resistance decreases with increasing RDX content. Because the RDX added can share the load with the bonding agent, limit bonding agent to deform by mechanical constraints, enhance the polymer binder system, and improve the compressive strength. But the added RDX makes the gun propellants produce more interfaces, and lead stress to focus. Also RDX can peel from the bonding agent, resulting in the decrease of impact resistance.

    3.3 Surface energy results of bonding agent

    According to the contact angle on the bonding agent with water and diiodomethane,γ,γp,γdof bonding agent can be obtained by Equations. (10) and (11) .γ,γp,γdof water and diiodomethane at 20℃ are referred to reference[11], also the surface tension temperature coefficient of water is -0.16mN/(m·℃) , and of diiodomethane is about -0.1mN/(m·℃) . The obtained results are listed in Table 3. Also the average value of the five group data for the contact angle is calculated here. And the standard deviation is listed following it.

    Table 3 Contact angle (θ) , surface energy (γ) , polar component (γp) and nonpolar component (γd) of bonding agent at different temperatures

    3.4 Results of Ed

    The interface energy of RDX/bonding agent and the adhesive work are calculated by Equations (12) and (4) respectively. The results are presented in Table 4. Due to the average diameter of RDX is about 0.0577mm[14].γ,γp,γdof RDX are referred to reference[14]. The surface tension temperature coefficient is 0.5mN/(m·℃)[10]. Because the shape of RDX is irregular, its surface area is approximately 0.239m2/g. FinallyEdis calculated as Table 4.

    Table 4 Adhesive work of binding agent ( , adhesive work of interface (Wa) and adhesive energy per mass of RDX and binding agent (Ed) of gun propellants with different content of RDX at different temperatures

    3.5 Relationship between Ed and mechanical properties

    For studying the relationship betweenEdand mechanical properties, discussing whetherEdcan represent mechanical properties, theσ-EdandD-Edcurves are drew as Figure 3 and Figure 4, and the relationship is listed in Table 5.

    Table 5 Relationship between σ and Ed or D and Ed at different temperatures

    Fig.3 σ vs. Ed curves of double-base gun propellants at different temperatures

    Fig.4 D vs. Ed curves of double-base gun propellants at different temperatures

    Based on the results, we can see thatσ-EdorD-Edat different temperatures present exponential decay function relationship. With increasing the content of RDX,Eddecreases, butσandDincrease, that is to say, compressive strength increases and impact resistance decreases, which agrees with the macroscopic mechanical properties testing results. So the relationship between macroscopic mechanical parameters and microscopic interface parameter can be quantified. But the meaning and universality of the parameters in the equations should be studied further.

    4 Conclusion

    (1)With increasing the content of RDX, the compressive strength of double-base gun propellants increases, but the impact resistance decreases and the impacted damage is more serious.

    (2)Edis defined to represent the influence of RDX′s content on macroscopic mechanical properties. Exponential decay function relationship (y=a+be-x/t) ofσ-EdorD-Edis obtained at different temperatures(when the RDX is five kind). So it is easier and more convenient to represent macroscopic mechanical properties by usingEdbefore the gun propellants produced. The mechanical properties can be estimated before the gun propellants shaped up.

    (3)Edcan represent macroscopic mechanical properties. But the relationship under low temperature and the influence of RDX′s size to mechanical properties is still need to be further studied.

    References:

    [1] Naya T I, Kohga M. Influences of particle size and content of RDX on burning characteristics of RDX-based propellant[J]. Aerospace Science and Technology, 2014,32(1):26-34.

    [2] Iqbal M M, Ch S R, Wang L, et al. Investigation the effect of solid fillers on mechanical and rheological properties of composite propellants[J]. International Journal of Energetic Materials and Chemical Propulsion, 2010,33(4):40-46.

    [3] Lan Y H, Zhai J X, Li D H. Multiscale simulation on the influence of dimethyl hydantoin on mechanical properties of GAP/RDX propellants[J]. Propellants, Explosives, Pyrotechnics,2014,39(1):18-32.

    [4] Takahashi S J, Koyama M F, Maria T J. Solid polyurethane-based composite propellant: I- influence of the bonding agent[J]. Química Nova,2002,25(1):107-110.

    [5] Zhang J B, Ju Y T, Zhou C S. A study of experimental method for mechanical properties of solid propellant under hydrostatic compressive loading[J]. Applied Mechanics and Materials,2013,300:789-793.

    [6] Zhang X J, Chang X L, Zhang S Y. Experimental study on low temperature mechanical properties of HTPB propellant[J]. Applied Mechanics and Materials, 2013,310(3):124-128.

    [7] Dostanic J, Uscumlic G.The use of image analysis for the study of interfacial bonding in solid composite propellant[J]. Journal of the Serbian Chemical Society,2007,72(10):1023-1030.

    [8] Liu Y F, Chen Y, Shi L. Synthesis of three novel laurylamine-derived long-chain alkyl bonding agents and their interactions with RDX[J]. Propellants, Explosives, Pyrotechnics,2012,32(1):69-76.

    [9] Giessen A E van, Bukman D J, Widom B. Contact angles of liquid drops on low-energy solid surfaces[J]. Journal of Colloid and Interface Science,1997,192:257-265.

    [10] Wu R J. Surface and interface of high polymer[M].Beijing: Science Press,1998:7-45.

    [11] Luo Y J, Du M N. The use of inverse gas chromatography (IGC) to determine the surface energy of RDX[J]. Propellants, Explosives, Pyrotechnics,2007,32(6):496-501.

    [12] Wang Z S, Han P M, Zhang X Z. Power Experiment[M]. Beijing: Science and Technology of China Press,1992:87-91.

    [13] Liu J, Zhang L H, Ma Z L, et al. Study on the mechanical properties of mutiphase gun propellant with RDX[J]. Chemical Propellants & Polymeric Materials, 2013,11(4):87-89.

    [14] Du M N, Luo Y J. Effect of particle size and surface free energy of RDX on the mechanical properties of the high-energy nitramine gun propellant[J].Chinese Journal of Explosives & Propellants(Huozhayao Xuebao),2005,28(3):1-3.

    一个人看视频在线观看www免费| 男女啪啪激烈高潮av片| 男人舔奶头视频| 各种免费的搞黄视频| 18禁在线播放成人免费| 麻豆精品久久久久久蜜桃| 欧美一级a爱片免费观看看| av福利片在线观看| 亚洲精品日韩av片在线观看| av在线天堂中文字幕| 五月天丁香电影| videos熟女内射| 色综合色国产| 九九久久精品国产亚洲av麻豆| 午夜亚洲福利在线播放| 成人亚洲精品av一区二区| av在线亚洲专区| 在线观看av片永久免费下载| a级毛片免费高清观看在线播放| 男人和女人高潮做爰伦理| 国产久久久一区二区三区| 成人高潮视频无遮挡免费网站| 午夜日本视频在线| 欧美另类一区| 免费黄色在线免费观看| 午夜免费观看性视频| 免费观看在线日韩| 一级片'在线观看视频| 18禁裸乳无遮挡免费网站照片| 内地一区二区视频在线| 在线a可以看的网站| 精品国产三级普通话版| 亚洲精品影视一区二区三区av| 欧美 日韩 精品 国产| 国产精品不卡视频一区二区| 亚洲成人精品中文字幕电影| 最近中文字幕高清免费大全6| 欧美3d第一页| 天天一区二区日本电影三级| 99热国产这里只有精品6| 亚洲精品久久午夜乱码| 亚洲精品国产av蜜桃| 天天一区二区日本电影三级| 在线观看一区二区三区| 欧美日韩国产mv在线观看视频 | 国产成人a区在线观看| 大陆偷拍与自拍| 日本wwww免费看| 午夜福利视频精品| 狂野欧美白嫩少妇大欣赏| 亚洲图色成人| 国产探花在线观看一区二区| 国产成人午夜福利电影在线观看| 伊人久久精品亚洲午夜| 99精国产麻豆久久婷婷| 人体艺术视频欧美日本| 22中文网久久字幕| 国产精品偷伦视频观看了| 男女下面进入的视频免费午夜| 国产成人免费观看mmmm| 青春草亚洲视频在线观看| 亚洲精品久久午夜乱码| 亚洲va在线va天堂va国产| 精品人妻熟女av久视频| 久热久热在线精品观看| 亚洲精品国产av蜜桃| 欧美潮喷喷水| 国产一区二区三区综合在线观看 | 午夜免费男女啪啪视频观看| 91午夜精品亚洲一区二区三区| 国产成人福利小说| 少妇 在线观看| 小蜜桃在线观看免费完整版高清| 神马国产精品三级电影在线观看| 91久久精品国产一区二区三区| 最近2019中文字幕mv第一页| 日日摸夜夜添夜夜添av毛片| 3wmmmm亚洲av在线观看| 欧美激情在线99| 亚洲精品国产av蜜桃| 国产白丝娇喘喷水9色精品| 成人国产麻豆网| 国产成人a∨麻豆精品| 内地一区二区视频在线| av福利片在线观看| 男女边吃奶边做爰视频| 国产精品久久久久久精品电影小说 | 能在线免费看毛片的网站| 好男人在线观看高清免费视频| 天堂俺去俺来也www色官网| 欧美日韩亚洲高清精品| 国产精品麻豆人妻色哟哟久久| 熟女av电影| 黄色日韩在线| 亚洲av国产av综合av卡| 亚洲欧洲国产日韩| 国产黄a三级三级三级人| 啦啦啦在线观看免费高清www| 视频中文字幕在线观看| 日本欧美国产在线视频| 亚洲成人一二三区av| 日本熟妇午夜| 一本色道久久久久久精品综合| 日本欧美国产在线视频| 国产精品99久久久久久久久| 亚洲怡红院男人天堂| 一本久久精品| 中国美白少妇内射xxxbb| 中文欧美无线码| 国产av国产精品国产| 国产在线一区二区三区精| 在线天堂最新版资源| xxx大片免费视频| 亚洲四区av| 亚洲三级黄色毛片| 成人黄色视频免费在线看| 91精品伊人久久大香线蕉| 国产日韩欧美亚洲二区| 午夜福利高清视频| 69av精品久久久久久| 亚洲久久久久久中文字幕| 99精国产麻豆久久婷婷| 精品一区在线观看国产| 直男gayav资源| 国产免费福利视频在线观看| 视频中文字幕在线观看| 精品亚洲乱码少妇综合久久| 三级国产精品欧美在线观看| 午夜免费鲁丝| 国产日韩欧美在线精品| 国产极品天堂在线| av国产精品久久久久影院| 伊人久久国产一区二区| 亚洲精品久久久久久婷婷小说| 观看美女的网站| 国产91av在线免费观看| av网站免费在线观看视频| 日韩强制内射视频| 国产欧美日韩一区二区三区在线 | 国模一区二区三区四区视频| 联通29元200g的流量卡| 美女主播在线视频| 在线免费十八禁| 色5月婷婷丁香| 少妇人妻 视频| 日韩免费高清中文字幕av| 青春草视频在线免费观看| 亚洲av国产av综合av卡| 女人十人毛片免费观看3o分钟| 精品亚洲乱码少妇综合久久| 日韩一本色道免费dvd| 观看美女的网站| 日日啪夜夜爽| 国产黄色免费在线视频| 成人无遮挡网站| 日韩电影二区| 久久精品久久久久久噜噜老黄| 亚洲精品影视一区二区三区av| 欧美一级a爱片免费观看看| 国产黄色免费在线视频| 亚洲精品国产av成人精品| 成年女人在线观看亚洲视频 | 中文字幕人妻熟人妻熟丝袜美| av在线蜜桃| 狂野欧美激情性xxxx在线观看| 香蕉精品网在线| 在线天堂最新版资源| 综合色av麻豆| 国产 一区 欧美 日韩| 亚洲一区二区三区欧美精品 | 国产成人精品久久久久久| 舔av片在线| 中文字幕免费在线视频6| 精品熟女少妇av免费看| 91在线精品国自产拍蜜月| av在线老鸭窝| 亚洲av国产av综合av卡| 免费观看的影片在线观看| 午夜视频国产福利| 99热网站在线观看| 干丝袜人妻中文字幕| 老司机影院毛片| 大片电影免费在线观看免费| 99久久人妻综合| 成人毛片60女人毛片免费| 观看美女的网站| 丝袜喷水一区| 在线观看一区二区三区| 99热全是精品| 亚洲av日韩在线播放| 在线观看美女被高潮喷水网站| 别揉我奶头 嗯啊视频| 中文字幕av成人在线电影| 亚洲,一卡二卡三卡| 男女那种视频在线观看| av在线观看视频网站免费| av卡一久久| av专区在线播放| 精品国产乱码久久久久久小说| 热99国产精品久久久久久7| 熟女av电影| 日日撸夜夜添| 国产视频内射| 身体一侧抽搐| 99热这里只有是精品50| 只有这里有精品99| 老司机影院成人| 一个人看视频在线观看www免费| 免费不卡的大黄色大毛片视频在线观看| 人妻系列 视频| 久久久久国产网址| 激情五月婷婷亚洲| 黄色欧美视频在线观看| 亚洲伊人久久精品综合| 在线免费观看不下载黄p国产| 亚洲经典国产精华液单| 深爱激情五月婷婷| 亚洲丝袜综合中文字幕| 日韩大片免费观看网站| 99热这里只有是精品在线观看| 亚洲成人av在线免费| 国产精品爽爽va在线观看网站| 日本三级黄在线观看| 亚洲精品视频女| 一区二区三区免费毛片| 在线精品无人区一区二区三 | 国产精品嫩草影院av在线观看| 99re6热这里在线精品视频| 成人国产av品久久久| 国产高潮美女av| 一区二区三区四区激情视频| 人人妻人人看人人澡| 99热网站在线观看| 亚洲av不卡在线观看| 亚洲av欧美aⅴ国产| 国产精品久久久久久av不卡| 不卡视频在线观看欧美| 成人特级av手机在线观看| 高清毛片免费看| 欧美精品人与动牲交sv欧美| 久久久久九九精品影院| 内射极品少妇av片p| 国产欧美另类精品又又久久亚洲欧美| 免费看av在线观看网站| 男女边摸边吃奶| 国产免费一区二区三区四区乱码| 特级一级黄色大片| 一级a做视频免费观看| 久久久久久久久久久丰满| 久久99精品国语久久久| 简卡轻食公司| 亚洲成人av在线免费| 免费大片18禁| 亚洲三级黄色毛片| 亚洲av免费在线观看| 久久久久久久国产电影| 亚洲自拍偷在线| 在线免费十八禁| 在线a可以看的网站| 亚洲av一区综合| 18禁动态无遮挡网站| www.av在线官网国产| 国产亚洲午夜精品一区二区久久 | 日韩av不卡免费在线播放| 国产精品久久久久久av不卡| 成人高潮视频无遮挡免费网站| 丰满乱子伦码专区| 欧美97在线视频| 亚洲天堂av无毛| 大香蕉97超碰在线| 人体艺术视频欧美日本| 亚洲国产精品成人综合色| 国产午夜精品一二区理论片| 亚洲av福利一区| 国产爽快片一区二区三区| 亚洲真实伦在线观看| 国产亚洲精品久久久com| 99久久九九国产精品国产免费| 久久久精品欧美日韩精品| 男女那种视频在线观看| 亚洲国产av新网站| 九九爱精品视频在线观看| 亚洲欧美精品专区久久| 麻豆精品久久久久久蜜桃| 麻豆久久精品国产亚洲av| 国产成人a∨麻豆精品| 麻豆成人av视频| 欧美国产精品一级二级三级 | 99热这里只有精品一区| 亚洲精品成人久久久久久| 少妇人妻精品综合一区二区| 成人毛片60女人毛片免费| 亚洲国产最新在线播放| 人人妻人人澡人人爽人人夜夜| 深爱激情五月婷婷| 日日摸夜夜添夜夜添av毛片| 嫩草影院精品99| 亚洲丝袜综合中文字幕| 2018国产大陆天天弄谢| 大又大粗又爽又黄少妇毛片口| 国产一区二区在线观看日韩| 极品教师在线视频| 亚洲欧美日韩无卡精品| 国产69精品久久久久777片| 欧美精品人与动牲交sv欧美| 丝袜脚勾引网站| 精品熟女少妇av免费看| 大香蕉97超碰在线| 永久网站在线| 亚洲精品国产av成人精品| 三级经典国产精品| av卡一久久| 成人高潮视频无遮挡免费网站| 久久影院123| 国产欧美日韩精品一区二区| 国产黄a三级三级三级人| 亚洲人成网站高清观看| 亚洲精品乱久久久久久| 最近最新中文字幕大全电影3| 免费播放大片免费观看视频在线观看| 亚洲人成网站在线播| 亚洲欧美日韩无卡精品| 亚洲精品中文字幕在线视频 | 亚洲在久久综合| 狂野欧美激情性xxxx在线观看| 国产淫语在线视频| 少妇的逼好多水| 国产日韩欧美在线精品| 又粗又硬又长又爽又黄的视频| 最近最新中文字幕大全电影3| 日韩制服骚丝袜av| 亚洲图色成人| 亚洲一区二区三区欧美精品 | 精品酒店卫生间| 亚洲国产精品专区欧美| 国产老妇伦熟女老妇高清| 久久亚洲国产成人精品v| 国产免费又黄又爽又色| 精品国产露脸久久av麻豆| 久久精品综合一区二区三区| 日本黄色片子视频| 国产毛片a区久久久久| 国产男人的电影天堂91| 国产美女午夜福利| 99久久九九国产精品国产免费| 国产精品福利在线免费观看| 色视频在线一区二区三区| 国产精品伦人一区二区| 免费观看在线日韩| 狂野欧美激情性xxxx在线观看| 欧美 日韩 精品 国产| 免费看不卡的av| 九九久久精品国产亚洲av麻豆| 最近手机中文字幕大全| 日韩视频在线欧美| 亚洲真实伦在线观看| av国产久精品久网站免费入址| 免费观看性生交大片5| 国产日韩欧美亚洲二区| 男人舔奶头视频| 日日摸夜夜添夜夜爱| 国产欧美日韩精品一区二区| 日本午夜av视频| 精品久久久精品久久久| 97超碰精品成人国产| 午夜激情久久久久久久| 免费人成在线观看视频色| 大片电影免费在线观看免费| 精品久久久久久久人妻蜜臀av| 日本猛色少妇xxxxx猛交久久| 成人综合一区亚洲| 九色成人免费人妻av| 联通29元200g的流量卡| 丰满乱子伦码专区| 久久亚洲国产成人精品v| 听说在线观看完整版免费高清| 熟女av电影| 久久人人爽av亚洲精品天堂 | 男人舔奶头视频| 国产中年淑女户外野战色| 男人舔奶头视频| 久久精品国产亚洲网站| 亚洲自拍偷在线| 婷婷色av中文字幕| 国内揄拍国产精品人妻在线| 免费黄网站久久成人精品| 亚洲av成人精品一二三区| 别揉我奶头 嗯啊视频| 亚洲国产精品专区欧美| 国产日韩欧美在线精品| 夫妻午夜视频| 国产伦在线观看视频一区| 一级毛片久久久久久久久女| 黄色一级大片看看| 18禁在线无遮挡免费观看视频| 看十八女毛片水多多多| 国语对白做爰xxxⅹ性视频网站| 高清午夜精品一区二区三区| 精品一区二区三区视频在线| freevideosex欧美| 香蕉精品网在线| 久久精品久久久久久噜噜老黄| 丝瓜视频免费看黄片| 日日撸夜夜添| 成人一区二区视频在线观看| 舔av片在线| 在线精品无人区一区二区三 | 内地一区二区视频在线| 最近最新中文字幕免费大全7| 中文在线观看免费www的网站| 日韩三级伦理在线观看| 人妻 亚洲 视频| 噜噜噜噜噜久久久久久91| 亚洲性久久影院| av在线播放精品| 亚洲成色77777| 亚洲va在线va天堂va国产| 欧美xxⅹ黑人| 国产中年淑女户外野战色| 国产精品成人在线| 国产爽快片一区二区三区| 免费av毛片视频| 真实男女啪啪啪动态图| 九色成人免费人妻av| 久久久欧美国产精品| 欧美日韩视频高清一区二区三区二| 99re6热这里在线精品视频| 69av精品久久久久久| 99精国产麻豆久久婷婷| 下体分泌物呈黄色| 国产亚洲5aaaaa淫片| 国产亚洲一区二区精品| eeuss影院久久| 精品亚洲乱码少妇综合久久| 久久人人爽人人爽人人片va| 看黄色毛片网站| 深爱激情五月婷婷| 精品酒店卫生间| 性色avwww在线观看| 日本黄大片高清| 久久久久国产精品人妻一区二区| 97人妻精品一区二区三区麻豆| 国产久久久一区二区三区| 各种免费的搞黄视频| 日韩一区二区视频免费看| 国产视频首页在线观看| 国产成人freesex在线| 王馨瑶露胸无遮挡在线观看| 国产女主播在线喷水免费视频网站| 亚洲精品第二区| 久久国产乱子免费精品| 尤物成人国产欧美一区二区三区| 日韩av免费高清视频| 91精品一卡2卡3卡4卡| 国产av国产精品国产| 美女脱内裤让男人舔精品视频| 欧美3d第一页| 一区二区av电影网| 日韩电影二区| 天美传媒精品一区二区| 人体艺术视频欧美日本| 狂野欧美白嫩少妇大欣赏| 少妇人妻一区二区三区视频| 日日啪夜夜爽| 国国产精品蜜臀av免费| 国产一区二区三区综合在线观看 | 男女那种视频在线观看| 久久ye,这里只有精品| 久久精品国产亚洲av涩爱| 国产免费一区二区三区四区乱码| 亚洲av欧美aⅴ国产| 欧美3d第一页| 一级毛片 在线播放| av专区在线播放| 视频中文字幕在线观看| 在线天堂最新版资源| 国产黄色视频一区二区在线观看| 成人黄色视频免费在线看| 精品人妻一区二区三区麻豆| 欧美国产精品一级二级三级 | 在线播放无遮挡| 国产成人免费无遮挡视频| 欧美xxⅹ黑人| 欧美丝袜亚洲另类| 亚洲国产av新网站| 日韩一区二区视频免费看| 午夜免费鲁丝| 欧美日韩一区二区视频在线观看视频在线 | 新久久久久国产一级毛片| 午夜激情久久久久久久| 在线精品无人区一区二区三 | 国产色爽女视频免费观看| 亚洲精品国产成人久久av| 大香蕉久久网| 一本一本综合久久| 国产午夜精品久久久久久一区二区三区| 丝瓜视频免费看黄片| 亚洲内射少妇av| 国产成人freesex在线| 美女cb高潮喷水在线观看| 亚洲精品自拍成人| 亚洲精品成人av观看孕妇| 国产黄色免费在线视频| videossex国产| 欧美xxxx性猛交bbbb| 亚洲电影在线观看av| 亚洲国产精品成人综合色| 欧美+日韩+精品| 国产亚洲最大av| 国产毛片在线视频| 国产精品爽爽va在线观看网站| 成人欧美大片| 精品久久国产蜜桃| 国产日韩欧美在线精品| 久久99热这里只有精品18| 中文字幕亚洲精品专区| 黄片无遮挡物在线观看| 久久精品久久久久久久性| 亚洲成人精品中文字幕电影| 亚洲成人一二三区av| 哪个播放器可以免费观看大片| 天堂俺去俺来也www色官网| 一区二区三区精品91| 99热这里只有是精品在线观看| 91aial.com中文字幕在线观看| 成年免费大片在线观看| 亚洲精品日韩av片在线观看| 极品教师在线视频| 亚洲美女视频黄频| 亚洲av不卡在线观看| 日本色播在线视频| 18禁动态无遮挡网站| 亚洲欧美成人综合另类久久久| 熟妇人妻不卡中文字幕| 亚洲欧洲国产日韩| 中文字幕免费在线视频6| 日韩中字成人| 国产欧美日韩一区二区三区在线 | 免费电影在线观看免费观看| 王馨瑶露胸无遮挡在线观看| 欧美日韩综合久久久久久| 日韩欧美精品免费久久| 亚洲电影在线观看av| 亚洲精品日本国产第一区| 亚洲精品亚洲一区二区| 天堂俺去俺来也www色官网| 成人黄色视频免费在线看| 国产爽快片一区二区三区| 少妇人妻久久综合中文| 亚洲人成网站高清观看| 日本猛色少妇xxxxx猛交久久| 国产精品人妻久久久久久| 久久综合国产亚洲精品| 搞女人的毛片| 日韩亚洲欧美综合| av免费观看日本| 国产淫语在线视频| 一个人观看的视频www高清免费观看| 日韩人妻高清精品专区| 久久精品国产a三级三级三级| 狂野欧美激情性xxxx在线观看| 欧美区成人在线视频| 国产乱来视频区| 最近最新中文字幕免费大全7| 欧美人与善性xxx| 大香蕉97超碰在线| 日韩中字成人| 赤兔流量卡办理| 欧美xxxx黑人xx丫x性爽| 神马国产精品三级电影在线观看| 国产大屁股一区二区在线视频| 欧美日韩视频高清一区二区三区二| 永久网站在线| 中文字幕免费在线视频6| 精品一区在线观看国产| 国产熟女欧美一区二区| 亚洲精品456在线播放app| 大片电影免费在线观看免费| 看十八女毛片水多多多| 久久久久性生活片| 国产精品国产三级国产av玫瑰| 日韩国内少妇激情av| 久久久久精品性色| 亚洲怡红院男人天堂| 色5月婷婷丁香| 中文乱码字字幕精品一区二区三区| 国内揄拍国产精品人妻在线| 日韩在线高清观看一区二区三区| 亚洲最大成人手机在线| 26uuu在线亚洲综合色| 国产精品人妻久久久久久| 禁无遮挡网站| av国产免费在线观看| 小蜜桃在线观看免费完整版高清| 日韩免费高清中文字幕av| 婷婷色综合大香蕉| 新久久久久国产一级毛片| 夫妻午夜视频| 九草在线视频观看| 毛片女人毛片| 午夜福利高清视频| 最近的中文字幕免费完整| 久久99蜜桃精品久久| 蜜桃亚洲精品一区二区三区| 亚洲一级一片aⅴ在线观看| 国产伦精品一区二区三区四那| 亚洲精品国产成人久久av| 日日摸夜夜添夜夜添av毛片| 久久97久久精品| 国产老妇女一区| 国产精品99久久99久久久不卡 | 国产爱豆传媒在线观看| 女人被狂操c到高潮| 菩萨蛮人人尽说江南好唐韦庄| 国产日韩欧美在线精品|