張安鵬 錢前 高振宇,*
水稻免耕直播近年來已成為廣大農(nóng)村水稻栽培的主要方式。直播技術(shù)對(duì)種子的要求高,需要選用在各種逆境環(huán)境下仍具有高活力的種子。另外,在我國東北和南方稻區(qū),機(jī)插秧比例呈上升趨勢(shì),規(guī)?;墓S化育秧要求種子去休眠的整齊度一致。因此,種子活力日益受到育種家和農(nóng)民的關(guān)注。種子活力是衡量種子質(zhì)量的關(guān)鍵指標(biāo)。種子活力的遺傳分析和生理生化機(jī)理的研究,對(duì)育種實(shí)踐和農(nóng)業(yè)生產(chǎn)有著重要的指導(dǎo)作用。
種子基本上都會(huì)經(jīng)歷發(fā)育和萌發(fā)兩個(gè)過程[1]。發(fā)育過程包括胚形態(tài)的發(fā)生和成熟時(shí)期[2]。萌發(fā)則包括三個(gè)階段:一、快速吸水,代謝加強(qiáng);二、緩慢吸水,水分處于平衡狀態(tài),合成mRNA,對(duì)赤霉素、脫落酸和生長素等激素進(jìn)行調(diào)節(jié)[3-5],細(xì)胞分裂,胚根伸長,萌動(dòng)發(fā)生;三、加速吸水,胚根和胚芽的生長速度加快,完整幼苗的雛形出現(xiàn)[6]。種子活力是種子生理學(xué)的一個(gè)新領(lǐng)域,等同于1876年Nobbe提出的“生長力”一詞。1950年,國際種子檢驗(yàn)協(xié)會(huì)第一次討論了如何定義種子活力。1976年,種子活力被定義為種子在發(fā)芽和出苗期間各種活性強(qiáng)度和不同特性的整體表現(xiàn)。1980年,北美官方種子分析家協(xié)會(huì)把種子活力定義為在田間環(huán)境條件下種子能夠迅速整齊出苗以及幼苗能夠正常生長的潛力[7]。
種子活力是一個(gè)綜合性狀[8],不僅取決于自身的遺傳因素,發(fā)育期間所處的環(huán)境條件和種子成熟后的貯藏條件也會(huì)對(duì)種子活力造成極大影響[9-11]。遺傳條件是決定種子活力大小的內(nèi)部因素[12]。王洋等[13]根據(jù)太湖流域的生態(tài)特點(diǎn),選用297個(gè)地方粳稻品種和2個(gè)對(duì)照品種,對(duì)它們的種子活力各項(xiàng)指數(shù)進(jìn)行分析,發(fā)現(xiàn)品種間存在著真實(shí)的遺傳差異。佟漢文等[14]通過對(duì)湖北地區(qū)3個(gè)小麥試點(diǎn)的16個(gè)小麥新品種的種子活力指數(shù)的結(jié)果分析,發(fā)現(xiàn)品種間的遺傳差異對(duì)種子活力的影響要比地點(diǎn)間的差異大。成廣雷等[15]研究發(fā)現(xiàn),不同基因型玉米的種子活力面對(duì)臨界脅迫時(shí)的表現(xiàn)差異較大,在相同貯藏條件下,基因型是影響種子活力的決定性因素。方玉梅等[9]對(duì)水稻不同雜交組合后代的種子活力進(jìn)行了研究,發(fā)現(xiàn)選用相同父本、不同母本的雜交后代的種子活力差異顯著,而選用不同材料作為父本、同一材料作為母本所得到的雜交后代種子活力基本相當(dāng),說明雜交水稻種子活力組合間的不同主要由母體遺傳造成。
環(huán)境因素同樣對(duì)種子活力有較大影響。在適溫環(huán)境下生長的日本晴種子要比在低溫下生長的平均壽命短[16-17]。許多實(shí)驗(yàn)室對(duì)種子活力和成熟度進(jìn)行了研究,發(fā)現(xiàn)兩者之間存在緊密關(guān)聯(lián)[18-22]。Guan等[23]對(duì)甜玉米種子的時(shí)間序列分析發(fā)現(xiàn)種子干質(zhì)量比其他活力參數(shù)對(duì)種子活力的影響更大。隨著種子的生長,蛋白質(zhì)和淀粉等物質(zhì)不斷積累,發(fā)芽率提高,種子活力增強(qiáng),當(dāng)種子生長至一定程度時(shí)達(dá)到最高峰,此時(shí)的種子發(fā)芽率和種子活力均達(dá)到最大值[7]。當(dāng)種子活力到達(dá)最大值以后,其他活性因子如維生素E、寡聚糖、核酸、揮發(fā)性物質(zhì)和蛋白因子等會(huì)導(dǎo)致種子活力不可逆的下降[24]。如果種子在脫水階段失水過多,細(xì)胞內(nèi)就會(huì)發(fā)生有害的生理變化,溶質(zhì)結(jié)晶;離子平衡和酸堿平衡被破壞;蛋白質(zhì)不可逆變性;生物膜的降解和代謝活動(dòng)不正常進(jìn)行,從而導(dǎo)致種子受到脫水傷害[25]。播種后,肥料施用量對(duì)種子活力也具有影響,Troyjack等[26]通過對(duì)氮肥施用量對(duì)玉米種子活力的影響進(jìn)行研究,發(fā)現(xiàn)施N量為36.4 kg/hm2時(shí),玉米種子活力最高。種子在儲(chǔ)藏過程中各種代謝活動(dòng)仍持續(xù)進(jìn)行,溫度和濕度對(duì)種子活力的影響最大[27]。張玉蘭等[28]研究表明,適度降低水稻種子的含水量有利于保持種子活力。張兆英等[29]對(duì)白術(shù)、黃芩和遠(yuǎn)志三種藥用植物設(shè)計(jì)了不同的貯藏條件,結(jié)果發(fā)現(xiàn)隨著種子含水量的升高,三種植物的種子活力都降低。張鳳等[30]對(duì)大豆種子活力進(jìn)行了研究,得出中等和低含水量有利于種子活力的保持的結(jié)論。人們一般采用低溫和超干兩種方法來維持種子活力[31]。Yamane等[32]通過對(duì)抗旱水稻和常規(guī)水稻種子活力各項(xiàng)指標(biāo)的對(duì)比,發(fā)現(xiàn)在旱直播及土壤缺磷條件下,抗旱水稻種子活力顯著高于常規(guī)品種,直接影響到后期水稻產(chǎn)量。
膜脂過氧化作用和自由基增生是造成種子活力下降的兩個(gè)重要原因[7]。種子劣變時(shí),脂質(zhì)發(fā)生過氧化,膜透性增加,細(xì)胞內(nèi)溶質(zhì)向外滲出,合成能力下降,各種激素發(fā)生改變,超氧化物歧化酶(SOD)和過氧化物酶(POD)活性降低,造成對(duì)自由基及過氧化物的清除能力減弱,自由基積累,對(duì)膜磷脂分子的不飽和脂肪酸造成破壞,膜原有的保護(hù)功能降低,有毒物質(zhì)如丙二醛(MDA)等的積聚,造成種子活力下降。不飽和脂肪酸與氧氣可以在脂氧合酶(LOX)的催化下反應(yīng)生成脂肪酸過氧化物酶,LOX活性增加時(shí),不飽和脂肪酸降低,脂肪酸氧化和自由基生成,種子劣變速度加快[33]。
基因組學(xué)的發(fā)展推動(dòng)了種子活力的研究。在大腸桿菌中重組表達(dá)胚胎晚發(fā)育豐富蛋白(LEA)提高了細(xì)胞對(duì)各種非生物脅迫(高鹽、滲透、冷、熱和紫外線輻射等)的耐受性,在體外LEA可以維持乳酸脫氫酶在包括熱、凍融和干旱等非生物脅迫下的穩(wěn)定性,表明LEA與多種非生物脅迫抗性相關(guān)[34]。Catusse等[35]利用蛋白質(zhì)組學(xué)方法對(duì)甜菜種子活力的蛋白差異和表達(dá)特異性進(jìn)行了分析。Chatelain團(tuán)等[36]發(fā)現(xiàn)甲硫氨酸亞砜還原酶(MSRs)可以通過調(diào)節(jié)擬南芥種子氧化修復(fù)增加種子壽命。對(duì)轉(zhuǎn)基因水稻種子老化與萌發(fā)率關(guān)系的研究表明,miR164c上調(diào)會(huì)降低種子的耐老化能力,而miR168a的上調(diào)對(duì)種子活力的保持是有利的[37]。擬南芥種子中含有棉子糖、水蘇糖和毛蕊花糖等低聚糖,這些都與種子活力顯著相關(guān),同時(shí),過表達(dá)ZmGOLS2和ZmRS或單獨(dú)過表達(dá)ZmGOLS2均可顯著增加低聚糖的含量,種子活力也得以增強(qiáng)[38]。植物中存在一類與種子活力密切相關(guān)的小熱休克蛋白(sHSP)。Kaur等[39]研究發(fā)現(xiàn)胞質(zhì)sHSP OsHSP18.2能夠通過減少種子中有害的活性氧積累來提高水稻種子活力。Cheng等[40]研究發(fā)現(xiàn)凝集素受體蛋白激酶有助于種子萌發(fā)和水稻的先天免疫,敲除OslecRK基因會(huì)抑制α-淀粉酶基因的表達(dá),從而降低種子活力。當(dāng)加速衰老時(shí),胚中會(huì)過度積累含異天冬氨酸的蛋白,OsPIMT1通過修復(fù)包含異天冬氨酸的有害蛋白,提高種子的生命力[41-42]。磷脂酰肌醇激酶(PI3K)在正常植物生長和應(yīng)激反應(yīng)中起重要的作用,有研究證實(shí),磷脂酰肌醇激酶通過調(diào)節(jié)NADPH氧化酶活性來控制水稻種子的萌發(fā)[43]。
種子活力是一個(gè)復(fù)雜的農(nóng)藝性狀,受多種因素的影響。種子活力有多項(xiàng)指標(biāo),包括種子的平均發(fā)芽率、發(fā)芽指數(shù)和活力指數(shù)[44-45]、幼苗期的根長(seedling root length,SRL)、苗長(seedling shoot length,SSL)、鮮質(zhì)量(seedling wet weight,SWW)和干質(zhì)量(seedling dry weight,SDW)等[46-47]。這些性狀都是由多基因控制的數(shù)量性狀,同時(shí)受種子自身發(fā)育狀況、收獲磨損情況和儲(chǔ)藏條件等各種環(huán)境因素的影響,因此,對(duì)其開展遺傳分析相對(duì)比較困難。隨著現(xiàn)代分子生物學(xué)的發(fā)展,數(shù)量性狀位點(diǎn)(quantitative trait loci,QTL)分析成為研究復(fù)雜性狀的有效方法[48-50]并應(yīng)用于水稻種子活力的研究。
雖然水稻種子活力的QTL分析屢見報(bào)道,但由于不同實(shí)驗(yàn)室所用的試驗(yàn)材料和實(shí)驗(yàn)條件不同,得到的結(jié)果也不盡相同(表1)。中國農(nóng)業(yè)科學(xué)院作物科學(xué)研究所利用秈粳交(密陽23/吉冷1號(hào))的F2:3群體鑒定了14℃低溫下水稻的種子活力相關(guān)QTL,并推斷耐寒基因與水稻種子活力密切相關(guān)[51]。Song等[44]利用親本大關(guān)稻和IR28構(gòu)建的重組自交系群體對(duì)種子的萌發(fā)率、發(fā)芽率和發(fā)芽指數(shù)進(jìn)行了QTL定位,發(fā)現(xiàn)定位結(jié)果與種子大小、種子形狀和種子休眠的QTL定位結(jié)果一致。南京農(nóng)業(yè)大學(xué)洪德林課題組選取540份水稻品種(419份來自中國,121份來自越南)組成的自然群體進(jìn)行了種子活力的全基因組關(guān)聯(lián)分析,共關(guān)聯(lián)到控制根長、苗長和地上部干重性狀的27個(gè)位點(diǎn),其中11個(gè)位點(diǎn)與前人的研究結(jié)果一致,16個(gè)為尚未報(bào)道的新位點(diǎn),并且配制了15個(gè)雙親的雜交組合用以提高種子活力[52]。2012年,他們共檢測(cè)到水稻種子發(fā)育各時(shí)期的28個(gè)加性效應(yīng)QTL和9對(duì)上位性QTL;2013年,又檢測(cè)到34個(gè)與種子活力緊密連鎖的微衛(wèi)星(SSR)標(biāo)記。對(duì)比兩年數(shù)據(jù)的較發(fā)現(xiàn),有20個(gè)加性效應(yīng)QTL在兩年內(nèi)均能檢測(cè)到,其中5個(gè)QTL為新位點(diǎn);利用篩選出的4個(gè)RIL,通過自由雜交組合配置回交群體,篩選出19個(gè)與水稻種子活力相關(guān)的優(yōu)異等位基因[53]。華中農(nóng)業(yè)大學(xué)作物遺傳改良國家重點(diǎn)實(shí)驗(yàn)室利用珍汕97和明恢63構(gòu)建了RIL群體,對(duì)水稻種子的發(fā)芽率、干重和根系活力等進(jìn)行了QTL分析,發(fā)現(xiàn)淀粉酶活性、還原糖含量和根系活力相關(guān)QTL與種子活力QTL位點(diǎn)結(jié)果一致[54]。
QTL的精細(xì)定位方面,中國科學(xué)院植物分子生理學(xué)重點(diǎn)實(shí)驗(yàn)室漆小泉研究組利用水稻秈粳交組合的RIL群體定位到8個(gè)種子活力相關(guān)QTL,并將其中水稻第1和第5染色體的兩個(gè)主效QTLqSV1和qSV5c分別縮小至1.13 Mb和400 kb的物理區(qū)間內(nèi)[55]。Abe等[56]在水稻第3染色體的長臂端定位到一個(gè)控制幼苗株高的QTL,預(yù)測(cè)候選基因?yàn)镚A20氧化酶基因(OsGA20ox1)。南京農(nóng)業(yè)大學(xué)作物遺傳與種質(zhì)創(chuàng)新國家重點(diǎn)實(shí)驗(yàn)室利用粳稻品種春江06和秈稻品種臺(tái)中本地1號(hào)配組,對(duì)自然貯藏和人工老化過程中的種子活力開展QTL分析,在水稻12條染色體上共檢測(cè)到19個(gè)與種子活力相關(guān)的QTL,并將qGP9定位在水稻第9染色體兩個(gè)STS標(biāo)記之間92.6 kb的物理距離內(nèi)[57]。
中國水稻研究所水稻生物學(xué)國家重點(diǎn)實(shí)驗(yàn)室利用秈稻品種93-11和光溫敏不育系品種培矮64S,采用單粒傳法構(gòu)建了132個(gè)株系組成的RIL,定位到57個(gè)與種子活力相關(guān)的QTL。Zhang等[58]用目標(biāo)片段來自培矮64S的重組自交系與93-11連續(xù)回交,利用構(gòu)建得到的回交群體將水稻第1染色體上的控制種子活力的苗長主效QTLqSSL1b精細(xì)定位在兩個(gè)分子標(biāo)記之間約80.5 kb的物理距離內(nèi),預(yù)測(cè)了候選基因。Li等[59]以珍汕97為背景,構(gòu)建了包含143個(gè)株系的染色體片段代換系,通過QTL分析檢測(cè)到4個(gè)與種子萌發(fā)相關(guān)的位點(diǎn),并將qGR2精細(xì)定位在水稻第2染色體10.4 kb的范圍內(nèi)。
一些已克隆的基因也被證實(shí)可影響水稻的種子活力。OslecRK基因位于水稻第4染色體的47 kb定位區(qū)間內(nèi),它在萌發(fā)和開花時(shí)表達(dá),營養(yǎng)生長期不表達(dá),且主要在水稻胚芽、胚根以及穗中表達(dá),在胚芽鞘、根、葉以及莖中不表達(dá),該基因的敲除會(huì)降低種子的活力[40]。OsFbx352是一個(gè)具有F-box結(jié)構(gòu)域的蛋白,可能參與E3泛素連接酶復(fù)合體的形成,OsFbx352的表達(dá)受脫落酸(ABA)誘導(dǎo)上調(diào),葡萄糖對(duì)水稻種子萌發(fā)有抑制作用,但OsFbx352通過影響ABA的合成和代謝,降低ABA的水平,從而對(duì)葡萄糖誘導(dǎo)的種子萌發(fā)抑制起調(diào)節(jié)作用[60]。從熱激處理的水稻黃化苗中分離出編碼Ⅱ類小熱激蛋白(sHSP)的全長cDNA克隆,命名為Oshsp18.2,其表達(dá)蛋白是一種老化反應(yīng)蛋白,起著分子伴侶的作用,可以通過限制活性氧(ROS)的積累來保護(hù)和穩(wěn)定細(xì)胞內(nèi)環(huán)境,在改善非生物脅迫下的種子發(fā)育、延長種子壽命和提高種子活力上起重要作用[39,61]。OsPIMT1基因則主要在成熟種子的胚中表達(dá),胚乳中的表達(dá)量較低。該基因受脅迫誘導(dǎo)
表1 已報(bào)道的水稻種子活力相關(guān)QTL/基因Table 1.Some of reported seed vigor genes or QTLs.
表達(dá),氧化脅迫可使其表達(dá)量增加3倍,冷脅迫和鹽脅迫也可導(dǎo)致OsPIMT1表達(dá)量增加2倍。OsPIMT還受脫落酸的誘導(dǎo),但對(duì)水楊酸和茉莉酸處理并不響應(yīng);當(dāng)加速衰老時(shí),胚中會(huì)過度積累富含異天冬氨酸的蛋白,OsPIMT1通過修復(fù)有害的異天冬氨酸富含蛋白,從而提高種子的生命力[41-42]。OsRac-1能從細(xì)胞質(zhì)轉(zhuǎn)運(yùn)到質(zhì)膜,在NADPH氧化酶的形成過程中起著關(guān)鍵作用,磷脂酰肌醇3-激酶PI3K能促進(jìn)Rac-1向質(zhì)膜的運(yùn)輸,從而調(diào)控NADPH氧化酶活性,進(jìn)而加速水稻種子的萌發(fā)過程[43]。OsMT2b基因編碼由84個(gè)氨基酸組成的蛋白產(chǎn)物,可負(fù)調(diào)控水稻根中的細(xì)胞分裂素含量,可能通過調(diào)節(jié)水稻根和胚中的細(xì)胞分裂素含量來控制水稻根的發(fā)育和種胚的萌發(fā)[62]。
種子活力是衡量種子質(zhì)量的關(guān)鍵指標(biāo),受到多種因素的影響,包括自身遺傳因素、種子生長的環(huán)境條件、成熟程度、收獲時(shí)的機(jī)械損傷以及貯藏條件等[73]。為了提高種子活力,我們可以選取具有優(yōu)良特性的材料配制雜交組合,同時(shí)在后代中加強(qiáng)選擇具有優(yōu)良表型的個(gè)體,根據(jù)基因型選取具有高種子活力的材料[12]。種子活力在種子生理成熟期達(dá)到最大值,因此,為了保證收獲的種子具有最大活力,需要嚴(yán)格控制種子的收獲期。同時(shí),在種子的貯藏過程中,保證外界環(huán)境處于適宜狀態(tài)并及時(shí)進(jìn)行調(diào)節(jié),可有效減緩種子活力降低的程度[31]。
國內(nèi)外已有不少實(shí)驗(yàn)室對(duì)水稻種子活力性狀開展了遺傳研究,但還存在一定的局限性。譬如,環(huán)境條件和實(shí)驗(yàn)材料的單一性;只對(duì)種子萌發(fā)某個(gè)時(shí)期的發(fā)芽率加以分析,而未對(duì)種子萌發(fā)的完整過程進(jìn)行檢測(cè);從分子水平對(duì)種子活力的研究相對(duì)較少;已克隆的種子活力相關(guān)基因相對(duì)不足等。因此,有必要在多種環(huán)境條件下對(duì)同一群體或在相同環(huán)境下對(duì)不同群體的種子活力進(jìn)行分析,從而解決環(huán)境和實(shí)驗(yàn)材料的單一性問題。同時(shí),設(shè)計(jì)多重實(shí)驗(yàn),在種子萌發(fā)的不同時(shí)期考查種子活力相關(guān)表型,并與相應(yīng)的基因型分析結(jié)合,為種子活力基因的定位克隆和分子標(biāo)記輔助選擇育種提供依據(jù)。此外,發(fā)芽率、電導(dǎo)率、CAT活性和H2O2含量等都可以在一定程度上反映種子活力,一些快速非損傷的方法如便攜式激光散斑技術(shù)、測(cè)定單粒種子氧氣消耗、高光譜成像技術(shù)、非損傷紅外熱呈像法和非損傷微測(cè)技術(shù)等也逐步被開發(fā)應(yīng)用于種子活力測(cè)定[74]。
高活力的種子具有較高的生產(chǎn)潛力和生長優(yōu)勢(shì)。提高水稻種子活力,可以提高發(fā)芽率、發(fā)芽勢(shì)和發(fā)芽指數(shù),增加幼苗的整齊度和成苗率,增強(qiáng)植株的健壯度,從而最終實(shí)現(xiàn)高產(chǎn)[75]。前人的研究成果給我們以借鑒,我們科研人員需要在此基礎(chǔ)上更深入地發(fā)掘出更多的種子活力相關(guān)基因和收集更豐富的優(yōu)異種質(zhì)資源,為我國乃至世界的水稻增產(chǎn)貢獻(xiàn)力量。
[1]Catusse J,Job C,Job D.Transcriptome-and proteomewide analyses of seed germination.Comp Rend Biol,2008,331(10):815-822.
[2]Bewley J D.Seed germination and dormancy.Plant Cell,1997,9(7):1055-1066.
[3]Da S E,Toorop P E,van Lammeren A A,Hilhorst H W.ABA inhibits embryo cell expansion and early cell division events during coffee(Coffea arabica‘Rubi’)seed germination.Ann Bot,2008,102(3):425-433.
[4]Nakashima K,Yamaguchi-Shinozaki K.ABA signaling in stress-response and seed development.Plant Cell Rep,2013,32(7):959-970.
[5]Zhu G H,Ye N H,Zhang J H.Glucose-induced delay of seed germination in rice is mediated by the suppression of ABA catabolism rather than an enhancement of ABA biosynthesis.Plant&Cell Physiol,2009,50(3):644-651.
[6]Yang P F,Li X J,Wang X Q,Chen H,Chen F,Shen S H.Proteomic analysis of rice(Oryza sativa)seeds during germination.Proteomics,2007,7(18):3358-3368.
[7]孫群,王建華,孫寶啟.種子活力的生理和遺傳機(jī)理研究進(jìn)展.中國農(nóng)業(yè)科學(xué),2007,40(1):48-53.Sun Q,Wang J H,Sun B Q.Advances on seed vigor physiological and genetic mechanisms.Sci Agric Sin,2007,40(1):48-53.(in Chinese with English abstract)
[8]高厚玉,景立權(quán),陳龍,居靜,王云霞,朱建國,楊連新,王余龍.自由空氣中CO2濃度和溫度增高對(duì)水稻種子活力的影響.中國水稻科學(xué),2016,30(4):371-379.Gao H Y,Jing L Q,Chen L,Ju J,Wang Y X,Zhu J G,Yang L X,Wang Y L.Effects of elevated atmospheric CO2and temperature on seed vigor of rice under open-air field conditions.Chin J Rice Sci,2016,30(4):371-379.(in Chinese with English abstract)
[9]方玉梅,宋明.種子活力研究進(jìn)展.種子科技,2006,24(2):33-36.Fang Y M,Song M.Research progress of seed vigor.Seed Sci&Technol,2006,24(2):33-36.(in Chinese)
[10]劉毓俠,王鐵固.種子活力研究進(jìn)展.玉米科學(xué),2012,20(4):90-94.Liu Y X,Wang T G.Research progress of seed vigor.J Maize Sci,2012,20(4):90-94.(in Chinese with English abstract)
[11]張紅生,胡晉.種子學(xué).北京:科學(xué)出版社,2010.Zhang H S,Hu J.Seed Science.Beijing:Science Press,2010.(in Chinese)
[12]HodgkinT,HegartyT W.Geneticallydetermined variation in seed germination and field emergence ofBrassica oleracea.Ann Appl Biol,2010,88(3):407-413.
[13]王洋,王盈盈,洪德林.太湖流域水稻種子活力和耐缺氧能力遺傳變異研究.南京農(nóng)業(yè)大學(xué)學(xué)報(bào),2009,32(3):1-7.Wang Y,Wang Y Y,Hong D L.Genetic variation of seed vigor and tolerance to anoxia among rice(Oryza sativaL.)varieties in Taihu Lake region.J Nanjing Agric Univ,2009,32(3):1-7.(in Chinese with English abstract)
[14]佟漢文,劉易科,朱展望,張宇慶,陳泠,高春保.基因型和環(huán)境對(duì)小麥種子活力的影響.麥類作物學(xué)報(bào),2012,32(6):1167-1170.Tong H W,Liu Y K,Zhu Z W,Zhang Y Q,Chen L,Gao C B.Effects of genotype and wheat seed vigor.J Trit Crops,2012,32(6):1167-1170.(in Chinese with English abstract)
[15]成廣雷,張海嬌,趙久然,劉春閣,王元東,王曉光,王榮煥,陳傳永,徐田軍.臨界脅迫貯藏條件下不同基因型玉米種子活力及生理變化.中國農(nóng)業(yè)科學(xué),2015,48(1):33-42.Cheng G L,Zhang H J,Zhao J R,Liu C G,Wang Y D,Wang X G,Wang R H,Chen C Y,Xu T J.Vigor and physiological changes of different genotypes of maize seed(Zea maysL.)under critical stress storage conditions.Sci Agric Sin,2015,48(1):33-42.(in Chinese with English abstract)
[16]Ellis R H,Jackson M T.Seed production environment,time of harvest,and the potential longevity of seeds of three cultivars of rice(Oryza sativaL.).Ann Bot,1993,72(6):583-590.
[17]周新國.雜交水稻制種噴施穗萌抑制劑的效果初探.雜交水稻,2003,18(4):37-38.Zhou X G.Effects of Suimengyizhiji on inhibiting germination of seeds on panicles in hybrid rice seed production.Hybrid Rice,2003,18(4):37-38.(in Chinese with English abstract)
[18]Fussell L K,Pearson C J.Effects of grain development and thermal history on grain maturation and seed vigour ofPennisetum americanum.J Exp Bot,1980,31(2):635-643.
[19]毛培勝,韓建國,浦心春,宋錦峰,倪小琴.高羊茅種子成熟過程中的活力變化.中國草地學(xué)報(bào),1997,5(2):36-41.Mao P S,Han J G,Pu X C,Song J F,Ni X Q.Change of seed vigor during maturation in tall fescue.Chin J Grassl,1997,5(2):36-41.(in Chinese with English abstract)
[20]王顯國,韓建國,陳志紅.新麥草種子成熟過程中活力變化的研究.草地學(xué)報(bào),2000,8(4):306-311.Wang X G,Han J G,Chen Z H.Research on vigor changes of new wheatgrass seeds during maturation.Acta Agrest Sin,2000,8(4):306-311.(in Chinese with English abstract)
[21]張建成,王輝.不同成熟度花生種子發(fā)芽率及活力差異性研究.種子,2005,24(1):3-4.Zhang J C,Wang H.Studies on the seed germination and viability of different maturation peanut.Seed,2005,24(1):3-4.(in Chinese with English abstract)
[22]Adam N M,McDonnald M B,Henderlong P R.The influence of seed position,planting and harvesting dates on soybean seed quality.Seed Sci Technol,1989,17(1):143-152.
[23]Guan Y J,Hu J,Wang Z F,Zhu S J,Wang J C,Knapp A.Time series regression analysis between changes in kernel size and seed vigor during developmental stage ofsh2,sweet corn(Zea maysL.)seeds.Sci Hort,2013,154(2):25-30.
[24]朱世楊,郭媛,洪德林.水稻種子抗老化遺傳分析.遺傳,2008,30(2):217-224.Zhu S Y,Guo Y,Hong D L.Genetic analysis on aging-resistant in rice seed.Hereditas(Beijing),2008,30(2):217-224.(in Chinese with English abstract)
[25]李金華,王豐,廖亦龍,劉武革.水稻種子活力的生理生化及遺傳研究.分子植物育種,2009,7(4):772-777.Li J H,Wang F,Liao Y L,Liu W G.Advance on seed vigor physiological-biochemical and genetic mechanisms in rice.Mol Plant Breed,2009,7(4):772-777.(in Chinese with English abstract)
[26]Troyjack C,Pimentel J R,ítala T D P,Ruddy A V E,Lanes B A J,Felipe K,Manoela A M,Gustavo H D,Vinícius J S,Ivan R C,Luis O B S,Tiago Z A,Tiago P.Nitrogen fertilization on maize sowing:plant growth and seed vigor.Am J Plant Sci,2018,9(1):83-97.
[27]汪曉峰,叢滋金.種子活力的生物學(xué)基礎(chǔ)及提高和保持種子活力的研究進(jìn)展.種子,1997,16(6):36-39.Wang X F,Cong Z J.The biological basis of seed vigor and the research progress of improving and maintaining seed vigor.Seed,1997,16(6):36-39.(in Chinese)
[28]張玉蘭,汪曉峰,景新明,林堅(jiān).水稻種子含水量及其對(duì)貯藏壽命的影響.中國農(nóng)業(yè)科學(xué),2005,38(7):1480-1486.Zhang Y L,Wang X F,Jing X M,Lin J.The effect of moisture content on storage life of rice seeds.Sci Agric Sin,2005,38(7):1480-1486.(in Chinese with English abstract)
[29]張兆英,秦淑英,王文全,韓婧.不同貯藏條件對(duì)3種藥用植物種子活力的影響.安徽農(nóng)業(yè)科學(xué),2012,40(9):5157-5159.Zhang Z Y,Qin S Y,Wang W Q,Han J.Effects of storage condition on seed vigor of three medicinal plants.J Anhui Agric Sci,2012,40(9):5157-5159.(in Chinese with English abstract)
[30]張鳳,劉美,楊翠翠,楊文思,孫慶泉.貯藏溫度和種子含水量對(duì)大豆種子活力的影響.山東農(nóng)業(yè)科學(xué),2014(8):37-41.Zhang F,Liu M,Yang C C,Yang W S,Sun Q Q.Effects of storage temperature and seed moisture content on soybean seed vigor.Shandong Agric Sci,2014(8):37-41.(in Chinese with English abstract)
[31]楊永青,汪曉峰.種子活力與生物膜的研究現(xiàn)狀.植物學(xué)報(bào),2004,21(6):641-648.Yang Y Q,Wang X F.Advances on relationship between biomembrane and seed vigor.Chin Bull Bot,2004,21(6):641-648.(in Chinese with English abstract)
[32]Yamane K,Garcia R,Imayoshi K,Mabesa-Telosa R C,Banayo N P M C,Vergara G V,Yamauchi A,Cruz P S,Kato Y.Seed vigour contributes to yield improvement in dry direct-seeded rainfed lowland rice.Ann Appl Biol,2018,172(1):100-110.
[33]馬書燕,李吉躍,彭祚登.人工老化過程中柔枝松種子酶活性變化的研究.種子,2011,30(5):9-14.Ma S Y,Li J Y,Peng Z D.Study on the activity changes of enzyme in the seeds ofPinus fiexilisJames during artificial aging.Seed,2011,30(5):9-14.(in Chinese with English abstract)
[34]Wang Y X,Xiong G S,Hu J,Jiang L,Yu H,Fang Y X,Zeng L J,Xu E B,Xu J,Ye W J,Meng X B,Liu R F,Chen H Q,Jing Y H,Wang Y H,Zhu X D,Li J Y,Qian Q.Copy number variation at theGL7locus contributes to grain size diversity in rice.Nat Genet,2015,47(8):944-948.
[35]Catusse J,Strub J M,Job C,Dorsselaer A V,Job D.Proteome-wide characterization of sugarbeet seed vigor and its tissue specific expression.Proc Natl Acad Sci USA,2008,105(29):10262-10267.
[36]Chatelain E,Satour P,Laugier E,Vu B L,Payet N,Rey P,Montrichard F.Evidence for participation ofthe methionine sulfoxide reductase repair system in plant seed longevity.Proc Natl Acad Sci USA,2013,110(9):3633-3638.
[37]Qin M L,Luo F X,Liu L S,Zeng Z Y,Jiang X C.A Study on the relationship between the expression of miR164c and miR168b and seed vigor of rice.Acta Laser Biol Sin,2013,22(2):166-173.
[38]Li T,Zhang Y M,Wang D,Liu Y,Dirk L M A,Goodman J,Downie A B,Wang J M,Wang G Y,Zhao T Y.Regulation of seed vigor by manipulation of raffinose family oligosaccharides(RFOs)in maize andArabidopsis.Mol Plant,2017,10(12):1540-1555.
[39]Kaur H,Petla B P,Kamble N U,Singh A,Rao V,Salvi P,Ghosh S,Majee M.Differentially expressed seed aging responsive heat shock protein OsHSP18.2 implicates in seed vigor,longevity and improves germination and seedling establishment under abiotic stress.Front Plant Sci,2015,6:713-725.
[40]Cheng X Y,Wu Y,Guo J P,Du B,Chen R Z,Zhu L L,He G C.A rice lectin receptor-like kinase that is involved in innate immune responses also contributes to seed germination.Plant J,2013,76(4):687.
[41]Wei Y D,Xu H B,Diao L R,Zhu Y S,Xie H G,Cai Q H,Wu F X,Wang Z H,Zhang J F,Xie H A.Protein repair L-isoaspartyl methyltransferase1(PIMT1)in rice improves seed longevity by preserving embryo vigor and viability.Plant Mol Biol,2015,89(4-5):475-492.
[42]Petla B P,Kamble N U,Kumar M,Verma P,Ghosh S,Singh V,Rao V,Salvi P,Kaur H,Saxena S C,Majee M.Rice proteinL-isoaspartyl methyltransferase isoforms differentially accumulate during seed maturation to restrict deleterious isoAsp and reactive oxygen species accumulation and are implicated in seed vigor and longevity.New Phytol,2016,211(2):627-645.
[43]Liu J,Zhou J,Xing D.Phosphatidylinositol 3-Kinase plays a vital role in regulation of rice seed vigor via altering NADPH oxidase activity.Plos One,2012,7(3):e33817-e33827.
[44]Wang E T,Xu X,Zhang L,Zhang H,Lin L,Wang Q,Li Q,Ge S,Lu B R,Wang W,He Z H.Duplication and independent selection of cell-wall invertase genesGIF1andOsCIN1during rice evolution and domestication.BMC Evol Biol,2010,10(1):108-120.
[45]孫亞莉,劉紅梅,徐慶國.鎘脅迫對(duì)不同水稻品種種子萌發(fā)特性的影響.中國水稻科學(xué),2017,31(4):425-431.Sun Y L,Liu H M,Xu Q G.Effects of cadmium stress on rice seed germination characteristics.Chin J Rice Sci,2017,31(4):425-431.(in Chinese with English abstract)
[46]Redo?a E D,Mackill D J.Mapping quantitative trait loci for seeding vigor in rice using RFLPs.Theor Appl Genet,1996,92(3-4):395-402.
[47]Regan K L,Siddique K H M,Turner N C,Whan B R.Potential for increasing early vigor and total biomass in spring wheat II characteristics associated with early vigor.Crop Past Sci,1992,43(3):541-553.
[48]Huang X Z,Qian Q,Liu Z B,Sun H Y,He S Y,Luo D,Xia G M,Chu C C,Li J Y,Fu X D.Natural variation at theDEP1locus enhances grain yield in rice.Nat Genet,2009,41(4):494-497.
[49]Song X J,Huang W,Shi M,Zhu M Z,Lin H X.A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase.Nat Genet,2007,39(5):623-630.
[50]Wang W Q,Liu S J,Song S Q,M?ller I M.Proteomics of seed development,desiccation tolerance,germination and vigor.Plant Physiol&Biochem,2015,86(86):1-15.
[51]Han L Z,Zhang Y Y,Qiao Y L,Cao G L,Zhang S Y,Kim J H,Koh H J.Genetic and QTL analysis for low-temperature vigor of germination in rice.Acta Genet Sin,2006,33(11):998-1006.
[52]Dang X J,Thi T G,Dong G S,Wang H,Edzesi W M,Hong D L.Genetic diversity and association mapping of seed vigor in rice(Oryza sativaL.).Planta,2014,239(6):1309-1319.
[53]Liu L F,Lai Y Y,Cheng J P,Wang L,Du W L,Wang Z F,Zhang H S.Dynamic quantitative trait locus analysis of seed vigor at three maturity stages in rice.Mol Breed,2014,34(2):501-510.
[54]Cui K H,Peng S B,Xing Y Z,Xu C G,Yu S B,Zhang Q.Molecular dissection of seedling-vigor and associated physiological traits in rice.Theor Appl Genet,2002,105(5):745-753.
[55]Xie L X,Tan Z W,Zhou Y,Xu R B,Feng L B,Xing Y Z,Qi X Q.Identification and fine mapping of quantitative trait loci for seed vigor in germination and seedling establishment in rice.J Integr Plant Biol,2014,56(8):749-759.
[56]Abe A,Takagi H,Fujibe T,Aya K,Kojima M,Sakakibara H,Uemura A,Matsuoka M,Terauchi R.OsGA20ox1, a candidate gene for a major QTL controlling seedling vigor in rice.Theor Appl Genet,2012,125(4):647-657.
[57]Li C S,Shao G S,Wang L,Wang Z F,Mao Y J,Wang X Q,Zhang X H,Liu S T,Zhang H S.QTL identification and fine mapping for seed storability in rice(Oryza sativaL.).Euphytica,2017,213(6):127-138.
[58]Zhang A P,Liu C L,Chen G,Hong K,Gao Y,Tian P,Peng Y L,Zhang B,Ruan B P,Jiang H Z,Guo L B,Qian Q,Gao Z Y.Genetic analysis for rice seedling vigor and fine mapping of a major QTLqSSL1bfor seedling shoot length.Breed Sci,2017,67(3):307-315.
[59]Li M,Sun P L,Zhou H J,Yu S B.Identification of quantitative trait loci associated with germination using chromosome segment substitution lines of rice(Oryza sativaL.).Theor Appl Genet,2011,123(3):411-420.
[60]Song S Y,Dai X Y,Zhang W H.A rice F-box gene,OsFbx352, is involved in glucose-delayed seed germination in rice.J Exp Bot,2012,63(15):5559-5568.
[61]Chang P F,Jinn T L,Huang W K,Chen Y,Chang H M,Wang C W.Induction of a cDNA clone from rice encoding a class II small heat shock protein by heat stress,mechanical injury,and salicylic acid.Plant Sci,2007,172(1):64-75.
[62]Yuan J,Chen D,Ren Y J,Zhang X L,Zhao J.Characteristic and expression analysis of a Metallothionein gene,OsMT2b,down-regulated by cytokinin suggests functions in root development and seed embryo germination of rice.Plant Physiol,2008,146(4):1637-1650.
[63]Challam C,Kharshing G A,Yumnam J S,Tyagi W.Association ofqLTG3-1with germination stage cold tolerance in diverse rice germplasm from the Indian subcontinent.Plant Genet Resour,2013,11(3):206-211.
[64]Wang Z F,Wang J F,Bao Y M,Wang F H,Zhang H S.Quantitative trait loci analysis for rice seed vigor during the germination stage.J Zhejiang Univ:Sci B,2010,11(12):958-964.
[65]Gu X Y,Foley M E,Horvath D P,Anderson J V,Feng J H,Zhang L H,Mowry C R,Ye H,Suttle J C,Kadowaki K I,Chen Z X.Association between seed dormancy and pericarp coloris controlled by a pleiotropic gene that regulates abscisic acid and flavonoid synthesis in weedy red rice.Genetics,2011,189(4):1515-1524.
[66]Sugimoto K,Takeuchi Y,Ebana K,Miyao A,Hirochika H,Hara N,Ishiyama K,Kobayashi M,Ban Y,Hattori T,Yano M.Molecular cloning ofSdr4,a regulator involved in seed dormancy and domestication of rice.Proc Natl Acad Sci USA,2010,107(13):5792-5797.
[67]Han L Z,Qiao Y L,Zhang S Y,Zhang Y Y,Cao G L,Kim J,Lee K,Koh H.Identification of quantitative trait loci for cold response of seedling vigor traits in rice.Acta Genet Sin,2007,34(3):239-246.
[68]Cao L Y,Zhu J,Ren L F,Zhao S T,Yan Q C.Mapping QTLs and epistasis for seeding vigor in rice(Oryza sativaL.).Acta Agrono Sin,2012,28(6):809-815.
[69]Anandan A,Anumalla M,Pradhan S K,Ali J.Population structure,diversity and trait association analysis in rice(Oryza sativaL.)germplasm for early seedling vigor(ESV)using trait linked SSR markers.PLoS One,2016,11(3):e0152406-e0152427.
[70]陳利華,萬杉.不同溫度條件下水稻種子活力QTL的定位分析.植物科學(xué)學(xué)報(bào),2005,23(2):125-130.Chen L H,Wan S.Mapping of QTL controlling seed vitality in rice under different temperature conditions.J Plant Sci,2005,23(2):125-130.(in Chinese with English abstract)
[71]Sabouri A,Sabouri H,Ocampo M D.Genetic analysis seedling vigour under osmotic stress in rice by QTL mapping.Russ Agric Sci,2012,38(5-6):423-429.
[72]Huang Z,Yu T,Su L,Yu S B,Zhang Z H,Zhu Y G.Identification of chromosome regions associated with seedling vigor in rice.Acta Genet Sin,2004,31(6):596-603.
[73]林英莉,劉國戈.淺析種子活力的影響因素.種子世界,2012,12(6):17.Lin Y L,Liu G G.Influencing factors of seed vigor.Seed World,2012,12(6):17.(in Chinese)
[74]李俊周,李夢(mèng)琪,劉磊,劉娟,杜彥修,趙全志.水稻種子H2O2流速和種子活力的關(guān)系研究.華北農(nóng)學(xué)報(bào),2017,32(4):189-194.Li J Z,Li M Q,Liu L,Liu J,Du Y X,Zhao Q Z.Study on the relationship between H2O2velocity and seed vigor of rice seeds.Acta Agric Bor Sin,2017,32(4):189-194.(in Chinese with English abstract)
[75]王鐵固,張懷勝,馬娟,佘寧安,陳士林.玉米種子活力與產(chǎn)量的相關(guān)分析.安徽農(nóng)業(yè)科學(xué),2012,40(10):5848-5849.Wang T G,Zhang H S,Ma J,Ren N A,Chen S L.Correlation analysis between seed vigor and maize yield.J Anhui Agric Sci,2012,40(10):5848-5849.(in Chinese with English abstract)