李立強(qiáng),王 風(fēng),劉特立,朱 華,楊 志
(北京大學(xué)腫瘤醫(yī)院暨北京市腫瘤防治研究所 核醫(yī)學(xué)科 惡性腫瘤發(fā)病機(jī)制及轉(zhuǎn)化研究教育部重點(diǎn)實(shí)驗(yàn)室,北京 100142)
PET/CT(positron emission tomography/computed tomography)基于PET與CT的有機(jī)結(jié)合,是一種無創(chuàng)的分子影像疾病檢測(cè)手段,可以同時(shí)獲得病變部位的功能代謝狀況和精確的解剖結(jié)構(gòu)定位,具有超高的靈敏度及分辨率,廣泛應(yīng)用于臨床的疾病診斷及藥物的藥代動(dòng)力學(xué)研究等方面。目前,用于PET/CT疾病診斷及研究的正電子核素主要以11C、13N、15O及18F為主,但這些核素半衰期較短(11C:T1/2=20 min;13N:T1/2=10 min;15O:T1/2=2min;18F:T1/2=110min),不適用于合成工藝較為復(fù)雜、耗時(shí)較長的標(biāo)記分子探針,此外,在具有較長時(shí)間間隔的延時(shí)疾病掃描中也存在局限性。
碘放射性同位素(123I、125I、124I及131I)是一類核醫(yī)學(xué)領(lǐng)域的常規(guī)應(yīng)用核素,通常用于對(duì)單克隆抗體或其他類型的分子探針進(jìn)行放射性標(biāo)記,在核醫(yī)學(xué)疾病診斷、顯像定量分析以及放療方面應(yīng)用較多。目前,在碘的放射性同位素應(yīng)用中,主要以123I、125I及131I核素為主。123I適合于疾病顯像診斷,其釋放出能量為159keV的γ射線,與核素99mTc(140keV)相近,可以應(yīng)用低能高分辨的單光子發(fā)射計(jì)算機(jī)斷層顯像(SPECT)探頭進(jìn)行疾病診斷。然而,123I的半衰期相對(duì)較短,僅限于對(duì)合成簡單、快速的分子探針進(jìn)行標(biāo)記,以及診斷周期較短的疾病,同時(shí),123I核素的制備難度較大,進(jìn)一步限制了其在臨床上的廣泛應(yīng)用。125I主要釋放出27keV的X射線以及35.5keV的γ射線,能量過低,無法得到清晰的疾病診斷圖像,不適于臨床應(yīng)用,目前常被用于抗體或多肽標(biāo)記,進(jìn)行體外細(xì)胞實(shí)驗(yàn)。131I是應(yīng)用最多的一種碘放射性同位素,主要釋放出能量為606keV的β-射線,常被用于甲狀腺惡性疾病的放射性治療;131I還可以釋放出γ射線,可進(jìn)行SPECT/CT顯像,但是釋放的γ射線能量過高(364keV),需應(yīng)用配有高能通用(high energy all purpose,HEAP)準(zhǔn)直器的SPECT儀器進(jìn)行檢測(cè),限制了131I在臨床疾病診斷方面的廣泛應(yīng)用。
124I具有較長的半衰期(4.15d)及優(yōu)異的核特質(zhì)(β+:25.6%,電子俘獲(EC):74.4%)。與其他常規(guī)的正電子核素相比,124I可以提供更高質(zhì)量的PET/CT疾病診斷圖像,其應(yīng)用領(lǐng)域可從簡單的甲狀腺及甲狀旁腺顯像至復(fù)雜的神經(jīng)遞質(zhì)受體功能顯像。但124I較少的β+射線發(fā)射率(25.6%),復(fù)雜的衰變綱圖和超高能量的γ射線(1.7MeV),限制了124I的臨床應(yīng)用。即便如此,諸多研究報(bào)道依舊認(rèn)為124I是一種非常適于臨床PET/CT疾病診斷的正電子核素[1-2]。因此,本文主要對(duì)正電子核素124I的物理性質(zhì)、目前利用醫(yī)用回旋加速器常規(guī)的生產(chǎn)途徑、放射性標(biāo)記方法及在腫瘤PET分子影像方面的臨床應(yīng)用進(jìn)行闡述。
124I經(jīng)衰變主要釋放出511keV(46%)、603 keV(61%)及1691keV(11%)的γ射線和1532keV(11%)及2135keV(11%)的β+射線。124I物理半衰期為4.15d,在機(jī)體內(nèi)的生物半衰期為120~138d,有效半衰期為4.15d,主要攝取器官為甲狀腺。當(dāng)人體服入2.83×10-7Sv/Bq或吸入1.69×10-7Sv/Bq的124I會(huì)產(chǎn)生相應(yīng)的毒性作用[3]。
124I為長半衰期正電子核素,其發(fā)射的高能量β+射線,可用于PET/CT疾病診斷并獲高質(zhì)量的檢測(cè)圖像;同時(shí)還可通過電子俘獲(EC)方式發(fā)射俄歇電子,直接對(duì)腫瘤細(xì)胞DNA造成損傷,進(jìn)行治療。
依據(jù)回旋加速器類型、粒子流束種類及轟擊能量的不同,124I的制備途徑可分為多種。124I核素常用制備途徑列于表1。最初,124I被認(rèn)為是124Te(p,2n)123I核反應(yīng)制備123I核素生產(chǎn)過程中產(chǎn)生的污染核素,當(dāng)發(fā)現(xiàn)124I具有良好的核醫(yī)學(xué)應(yīng)用前景后,便通過124Te(p,n)124I核反應(yīng)制備了124I核素,但是產(chǎn)率較低[4]。Lambrecht等[5]采用15 MeV的氘核124Te轟擊固體靶,通過124Te(d,2n)124I核反應(yīng)可以制備大量高純度的124I核素。該方法使用80~85 μA的電流轟擊6 h,可以得到10 GBq的124I核素。由于當(dāng)時(shí)缺乏可以應(yīng)用80~85 μA電流進(jìn)行氘核轟擊的回旋加速器,且產(chǎn)物中存在較多125I雜質(zhì)核素,致使該方法沒有廣泛應(yīng)用。
表1 124I的常用制備途經(jīng)Table 1 The main nuclear reactions for the production of 124I
近年來,由于商業(yè)化高純度富集124Te的出現(xiàn),使得通過124Te(p,n)124I核反應(yīng)生產(chǎn)124I的產(chǎn)率可以達(dá)到124Te(d,2n)124I的80%,并且轟擊能量較低(<12 MeV),可以利用醫(yī)用小型回旋加速器制備124I[6],因此,目前124Te(p,n)124I核反應(yīng)為124I核素的主流制備途徑。
目前,124I的生產(chǎn)主要以固體靶為主,靶材料與生產(chǎn)123I相似,但需要滿足一些獨(dú)特的要求。Bosch等[12]于1977年首次提出124I生產(chǎn)的固體靶材料條件:(1) 靶材料與靶片的熱穩(wěn)定性及導(dǎo)熱性質(zhì)優(yōu)越,能夠在轟擊打靶過程中保持穩(wěn)定;(2) 制靶過程簡單,每次轟擊后可以回收99%以上的124Te;(3) 轟擊結(jié)束后可以快速、簡單的進(jìn)行124I分離純化;(4) 轟擊后生產(chǎn)的124I以化學(xué)形態(tài)存在,且不影響后續(xù)標(biāo)記過程或體內(nèi)應(yīng)用。
靶材料熱穩(wěn)定性的強(qiáng)弱至關(guān)重要。目前,應(yīng)用于124I生產(chǎn)制備的靶材料主要有Te單質(zhì)(element tellurium)與TeO2(tellurium doixide)。與Te單質(zhì)相比,TeO2化學(xué)結(jié)構(gòu)特殊,具有更高的熔點(diǎn)(733℃)以及更好的熱穩(wěn)定性,適用于124I的生產(chǎn)制備[12]。同時(shí),由于Te單質(zhì)在高溫及O2存在的情況下會(huì)發(fā)生爆炸并使124I揮發(fā),極易造成環(huán)境放射性污染,因此,近年來多數(shù)關(guān)于124I生產(chǎn)制備的研究報(bào)道都以TeO2為靶材料[13-16]。
為了進(jìn)一步提高TeO2靶材料的熱穩(wěn)定性,通常會(huì)在其中摻雜5%的Al2O3。Al2O3可以增加靶材料與靶片的黏附性,還可進(jìn)一步增加TeO2的熔點(diǎn)(895℃),同時(shí),在高溫環(huán)境下,Al2O3可以形成一種玻璃樣表面結(jié)構(gòu),能有效地保持靶材料形態(tài)的完整性[9,17-19]。
靶體材料的性質(zhì)對(duì)于124I生產(chǎn)制備同樣具有決定性作用。通常,靶體材料的選擇需要遵循以下原則:(1) 具有優(yōu)異的熱穩(wěn)定性與良好的耐腐蝕性;(2) 與靶材料(如TeO2)具有一定的黏附能力;(3) 性質(zhì)較為穩(wěn)定或在粒子流束轟擊下產(chǎn)生少量短半衰期核素的靶體材料。因此,目前常用的靶體材料主要以金屬鉑和鉭為主[9,13,17,19-20]。此外,有研究表明合金金屬也可作為靶體的構(gòu)成材料,例如鉑銥合金(90%鉑,10%銥)等[21-23]。
靶片轟擊后的核素分離純化步驟對(duì)124I的生產(chǎn)產(chǎn)率和純度有很大影響[24]。目前,用于124I分離及純化的方法主要有碘升華法、萃取法、離子樹脂交換法以及電化學(xué)分離法。其中,碘升華法為常用的方法。該方法將轟擊后的靶片放入石英管中,通過梯度加熱將124I升華,隨后通入一定流速的惰性氣體將124I蒸汽吹入堿性溶液中進(jìn)行收集。該方法最初主要應(yīng)用于131I與123I的分離純化,隨后,Weinreich
與Knust于1996年首次將該方法用于124I的生產(chǎn)[22,24-25]。
用碘升華法分離純化124I過程中,參數(shù)的選擇對(duì)于純化效率有較大的影響(表2)。Knust等[22]認(rèn)為,降低加熱器與冷凝管中氣體體積和124I的堿性收集溶液體積,可有效提高純化后124I的放射性活度;一些研究者認(rèn)為,對(duì)加熱器與冷凝管之間的鏈接管道進(jìn)行預(yù)加熱,可以防止124I蒸汽提前凝結(jié),提高產(chǎn)率[9,13];Glaser與Braghirolli等在冷凝管中增加Al2O3過濾網(wǎng),顯著提高了TeO2回收率[13,26]。
表2 不同參數(shù)的碘升華法用于124I分離及純化Table2 Dry distillation setup parameters of 124I purification
直接標(biāo)記利用Chloramine T、Iodogen和多種氧化酶等將124I-氧化為124I2單質(zhì),進(jìn)而與標(biāo)記物前體中酪氨酸殘基上的H發(fā)生親電取代。該方法適用于結(jié)構(gòu)中存在酪氨酸殘基,且該殘基遠(yuǎn)離活性結(jié)構(gòu)中心的探針前體。直接標(biāo)記法操作步驟成熟、簡單,標(biāo)記率較高,且通過直接取代探針前體結(jié)構(gòu)中的H進(jìn)行放射性標(biāo)記,可以有效地減少124I的引入對(duì)前體活性產(chǎn)生的影響,是目前最常用的一種124I放射性標(biāo)記方法。目前應(yīng)用直接標(biāo)記方法制備的124I放射性探針列于表3。
表3 應(yīng)用直接標(biāo)記法進(jìn)行124I核素標(biāo)記的蛋白與抗體Table 3 Direct labeling of proteins and antibodies with 124I
間接標(biāo)記方法預(yù)先將124I核素通過親核或親電取代反應(yīng)標(biāo)記到輔基上,再通過輔基與探針前體中的活性基團(tuán)(氨基、巰基等)進(jìn)行反應(yīng),間接的對(duì)探針前體進(jìn)行124I核素標(biāo)記。該方法適用于結(jié)構(gòu)中不存在酪氨酸殘基或酪氨酸殘基位于活性結(jié)構(gòu)中心的探針前體,但輔基的引入存在影響探針前體活性的可能。與直接標(biāo)記方法相比,所得標(biāo)記物在體內(nèi)不易脫碘,有更好的生物穩(wěn)定性。目前常見的124I標(biāo)記輔基有Bolton-Hunter試劑[124I]SHPP、3-[124I]SIB與4-[124I]SIB(圖1)等。其中,[124I]SHPP已被應(yīng)用于對(duì)靶向血管內(nèi)皮細(xì)胞生長因子受體(vascular endothelial growth factor receptor,VEGFR)的VG76e抗體進(jìn)行標(biāo)記(圖2),進(jìn)而監(jiān)測(cè)針對(duì)血管內(nèi)皮生長因子(VEGF)信號(hào)通路治療的療效[37]。
圖1 4-[124I]SIB與3-[124I]SIB的化學(xué)結(jié)構(gòu)式Fig.1 The structures of 4-[124I]SIB and 3-[124I]SIB
目前,已有多種類型探針應(yīng)用直接或間接標(biāo)記方法進(jìn)行核素124I標(biāo)記,并在核醫(yī)學(xué)臨床與臨床前進(jìn)行廣泛研究,表4對(duì)這些探針進(jìn)行了簡要匯總。
圖2 [124I]SHPP與[124I]SHPP-VG76e的制備Fig.2 Synthesis of [124I]SHPP and [124I]SHPP-VG76e
應(yīng)用配體探針參考文獻(xiàn)腫瘤蛋白與多肽124I-SHPP, 124I-A14-iodoinsulin[37]腎癌抗體124I-Cg250[38-41]結(jié)直腸癌抗體124I-CDR huA33, 124I-minibodies[42-43]腫瘤細(xì)胞增殖抗體124I-IUdr, 124I-FIAU, 124I-drFIB[44-47]凋亡Annexin V124I-Annexin V[29, 48]乏氧抗體124I-IAZA, 124I-IAZG[49]
腫瘤細(xì)胞增殖(tumor proliferation)顯像可以反饋腫瘤的生長情況并進(jìn)行分級(jí),對(duì)于多種類型腫瘤的診斷及治療具有指導(dǎo)意義。多數(shù)關(guān)于腫瘤細(xì)胞增殖顯像的研究報(bào)道都以DNA類似物作為探針靶標(biāo),這些靶標(biāo)可以直接參與細(xì)胞內(nèi)的DNA復(fù)制擴(kuò)增,進(jìn)而反應(yīng)腫瘤細(xì)胞的增殖情況。由于DNA復(fù)制增殖過程持續(xù)時(shí)間較長,因此應(yīng)選擇半衰期與之相匹配的核素對(duì)這一類探針進(jìn)行標(biāo)記[44-45,50]。124I-IUdR與124I-FIAU為一種放射標(biāo)記的核苷酸類似物,是目前被廣泛研究的腫瘤增殖顯像探針,但是這兩種探針在生物體內(nèi)都存在著明顯的脫124I現(xiàn)象[44-46]。Blasberg等[51]曾應(yīng)用124I-IUdR對(duì)20例腦膜瘤與腦神經(jīng)膠質(zhì)瘤患者進(jìn)行PET顯像診斷,結(jié)果發(fā)現(xiàn),不同腫瘤類型患者組之間的腫瘤124I-IUdR攝取值(Ki)、標(biāo)準(zhǔn)攝取值(SUV)以及腫瘤/正常腦組織(Tm:Br)比值存在有很大差異,其中,不同患者組間Ki值差異最為明顯,表明可以根據(jù)患者的Ki或SUV等值判斷腫瘤類型,進(jìn)而對(duì)后續(xù)治療手段選擇提供依據(jù);此外,還發(fā)現(xiàn)在患者腫瘤部位除了對(duì)124I-IUdR具有較高攝取外,不同患者在腫瘤部位存在不同程度的124I-,這對(duì)Ki、SUV等值的計(jì)算存在有很大影響。
細(xì)胞凋亡(Apoptosis)又稱細(xì)胞程序性死亡,與壞死不同,是一種由基因調(diào)控、能量依賴的主動(dòng)性細(xì)胞清除程序。凋亡是細(xì)胞的基本特征之一,在機(jī)體的胚胎發(fā)育、組織修復(fù)與內(nèi)環(huán)境的穩(wěn)定方面起著十分重要的作用。細(xì)胞凋亡同樣存在于惡性腫瘤的生長以及發(fā)展過程中,尤其是大量存在于腫瘤缺氧壞死區(qū)域的附近,同時(shí),對(duì)腫瘤細(xì)胞凋亡情況進(jìn)行實(shí)時(shí)檢測(cè)對(duì)于放療及化療的療效預(yù)測(cè)具有重要意義。
Annexin V為常用的細(xì)胞凋亡檢測(cè)試劑,它可以與表達(dá)于處于凋亡早期細(xì)胞表面的磷酯酰絲氨酸進(jìn)行特異性結(jié)合,進(jìn)而反饋細(xì)胞的凋亡情況。目前,許多研究者將Annexin V進(jìn)行124I標(biāo)記,并進(jìn)行腫瘤細(xì)胞凋亡PET/CT顯像,驗(yàn)證了其對(duì)于腫瘤診斷、放化療療效預(yù)測(cè)的能力[52]。例如,2005年,Dekker等[29,48]通過直接、間接法對(duì)Annexin V類似物進(jìn)行124I標(biāo)記,并通過體內(nèi)、外實(shí)驗(yàn)探究不同標(biāo)記方法對(duì)探針在體內(nèi)生物學(xué)性質(zhì)的影響,結(jié)果表明,直接標(biāo)記產(chǎn)生的124I-Annexin V具有更好的生物學(xué)性質(zhì)。此外,124I-4IB-Annexin V與124I-Annexin V相比,其在細(xì)胞凋亡非?;钴S的肝臟部位攝取極低,表明4IB的引入影響了Annexin V與磷酯酰絲氨酸結(jié)合的能力。
單克隆抗體是目前用于治療癌癥的臨床一線藥物,在多種類型癌癥治療過程中都具有較好效果。Immuno PET顯像是將單克隆抗體進(jìn)行放射性核素標(biāo)記,并進(jìn)行相應(yīng)癌癥的PET/CT顯像診斷或治療療效評(píng)價(jià)。單克隆抗體的特異性與PET/CT的超高靈敏度和分辨率的有機(jī)結(jié)合,使得Immuno PET成為了臨床疾病診斷的主流檢測(cè)方式。
124I是一種非常適用于Immuno PET腫瘤顯像的放射核素,其較長的半衰期匹配單克隆抗體在機(jī)體內(nèi)的藥代動(dòng)力學(xué)性質(zhì)[53]。此外,131I、125I和123I等放射性核素對(duì)蛋白及單克隆抗體標(biāo)記的研究體系較為完整,可以直接用于124I的單克隆抗體標(biāo)記[54-56]。Wilbur等[57]研究了碘放射性同位素標(biāo)記抗體的最佳方法,與Chloramin-T相比,應(yīng)用PIB(N-succinimidyl 4-iodobenzoate)作為氧化劑進(jìn)行標(biāo)記,可以顯著提高標(biāo)記抗體在機(jī)體內(nèi)的穩(wěn)定,降低甲狀腺部位放射性的凝聚。
124I-G250是用于腎細(xì)胞癌診斷的抗體類放射性探針,目前已經(jīng)處于臨床研究階段,是一種具有代表性的124I核素標(biāo)記的抗體類探針。G250主要通過Iodogen方法進(jìn)行124I核素標(biāo)記,124I-G250對(duì)于腎細(xì)胞癌的檢出率(94%)明顯高于131I-G250(30%)以及18F-FDG(90%)[38]。
Zechmann等[58]將靶向前列腺癌摸特異性抗原(PSMA)的單克隆抗體MIP-1095進(jìn)行124I核素標(biāo)記,并對(duì)多發(fā)轉(zhuǎn)移的前列腺癌患者進(jìn)行了PET/CT顯像,結(jié)果表明,124I-MIP-1095在人體內(nèi)具有具有很好地生物學(xué)性質(zhì),僅在患者腎臟、唾液腺和淚腺具有一定程度的放射性凝聚,患者前列腺處原發(fā)腫瘤病灶及多處轉(zhuǎn)移病灶均具有較高的探針攝取。同時(shí),利用124I-MIP-1095在患者體內(nèi)的PET/CT顯像結(jié)果進(jìn)行了各器官組織的輻射劑量計(jì)算,成功計(jì)算出應(yīng)用131I-MIP-1095對(duì)患者進(jìn)行治療所需的劑量。
除PSMA外,前列腺干細(xì)胞抗原(PSCA)是一種高度表達(dá)于前列腺癌原發(fā)病灶與骨轉(zhuǎn)移病灶的膜蛋白抗原,且表達(dá)程度與患者的預(yù)后水平密切相關(guān)。Knowles等[59]通過124I核素對(duì)anti-PSCA A11minibody進(jìn)行標(biāo)記,并對(duì)LAPC-9前列腺癌骨轉(zhuǎn)移模型進(jìn)行PET/CT顯像實(shí)驗(yàn),與18F-Fluoride對(duì)比結(jié)果表明,124I-anti-PSCA A11minibody具有更強(qiáng)的LAPC-9骨轉(zhuǎn)移病灶能力,且124I-anti-PSCA A11minibody連續(xù)顯像可以實(shí)時(shí)檢測(cè)MDV-3100D對(duì)LAPC-9皮下腫瘤的治療療效。
O'Donoghue等[60]合成并制備了靶向A33抗原的124I-huA33抗體探針,將該探針經(jīng)靜脈滴注方式注射入結(jié)直腸癌患者體內(nèi),注射后1周進(jìn)行PET/CT顯像檢查,結(jié)果表明,124I-huA33可以對(duì)患者體內(nèi)的結(jié)直腸腫瘤病灶進(jìn)行清晰的顯像診斷;腫瘤組織免疫組化及放射自顯影實(shí)驗(yàn)表明,124I-huA33在腫瘤部位的攝取程度完全依賴該部位A33抗原的表達(dá)程度,為后續(xù)應(yīng)用huA33抗體進(jìn)行結(jié)直腸癌放射免疫治療提供了參考依據(jù)。
還有諸多抗體進(jìn)行了124I標(biāo)記并用于相應(yīng)癌癥的顯像診斷。例如,用于結(jié)直腸癌早期診斷的124I-Anti-CEA minibodies、124I-Anti-HER2 diabody等,以及廣譜性腫瘤顯像診斷探針124I-SHPP和124I-MIBG等[37,42-43,61]。
分化程度較高的甲狀腺癌癌細(xì)胞表面存有Na+/I-轉(zhuǎn)運(yùn)體,具有攝碘能力,因此,臨床上通常應(yīng)用131I進(jìn)行內(nèi)照射治療此類型甲狀腺癌。目前,基于124I的甲狀腺癌PET/CT顯像檢測(cè)在甲狀腺癌的分型診斷以及核素131I放療的劑量計(jì)算方面研究較多?;?24I的PET/CT與131I的SPECT/CT顯像相比,在具有攝碘能力的甲狀腺癌原位及遠(yuǎn)端轉(zhuǎn)移病灶診斷方面,具有很高的靈敏度及檢出率。Ruhlmann等[62]對(duì)227位具有不同轉(zhuǎn)移情況的甲狀腺癌患者分別進(jìn)行了124I的PET/CT與131I的SPECT/CT顯像診斷,比較二者對(duì)具有攝碘能力的甲狀腺癌轉(zhuǎn)移灶檢出率的區(qū)別,結(jié)果表明,124I的PET/CT與131I的SPECT/CT顯像均具有較好的轉(zhuǎn)移病灶檢出率,但在部分患者的淋巴結(jié)轉(zhuǎn)移病灶診斷方面,124I的PET/CT具有更高的檢測(cè)診斷靈敏度。
本文主要介紹了124I的理化性質(zhì),并對(duì)124I的生產(chǎn)方式和臨床應(yīng)用進(jìn)行了歸納。124I理化性質(zhì)優(yōu)越,生產(chǎn)方式多樣、成熟、簡單與便捷,并且對(duì)于多肽或蛋白進(jìn)行標(biāo)記的方法簡單、有效,在臨床疾病顯像診斷與治療領(lǐng)域研究與應(yīng)用較多。但是,124I較低的正電子發(fā)射比例(23%)以及超高能量的γ射線(1.7 Mev)發(fā)射等缺點(diǎn),對(duì)它的臨床應(yīng)用造成了一定的阻礙,有待進(jìn)一步依據(jù)其特性進(jìn)行應(yīng)用方面的開發(fā)與拓展。
參考文獻(xiàn):
[1] Koehler L,Gagnon K,McQuarrie S,et al.Iodine-124:a promising positron emitter for organic PET chemistry[J].Molecules,2010,15(4):2 686-2 718.
[2] Chacko A M,Divgi C R.Radiopharmaceutical chemistry with iodine-124:a non-standard radiohalogen for positron emission tomography[J].Med Chem,2011,7(5):395-412.
[3] Pentlow K S,Graham M C,Lambrecht R M,et al.Quantitative imaging of iodine-124 with PET[J].J Nucl Med,1996,37(9):1557-1562.
[4] Kondo K,Lambrecht R M,Norton E F,et al.Cyclotron isotopes and radiopharmaceuticals-ⅩⅫ.Improved targetry and radiochemistry for production of123I and124I[J].Int J Appl Radiat Isot,1977,28(9):765-771.
[5] Lambrecht R M,Sajjad M,Qureshi M A,et al.Production of iodine-124[J].Journal of Radioanalytical & Nuclear Chemistry,1988,127(2):143-150.
[6] Scholten B,Kovács Z,Tárkányi F,et al.Excitation functions of124Te(p,xn)124,123I reactions from 6 to 31MeV with special reference to the production of124I at a small cyclotron[J].Applied Radiation & Isotopes,1995,46(4):255-259.
[7] Schmitz J.The production of [124I]iodine and [86Y]yttrium[J].European Journal of Nuclear Medicine & Molecular Imaging,2011,38(1):4-9.
[8] Nagatsu K,Fukada M,Minegishi K,et al.Fully automated production of iodine-124 using a vertical beam[J].Applied Radiation & Isotopes Including Data Instrumentation & Methods for Use in Agriculture Industry & Medicine,2011,69(1):146-157.
[9] Qaim S M,Hohn A,Bastian T,et al.Some optimisation studies relevant to the production of high-purity at a small-sized cyclotron[J].Applied Radiation & Isotopes,2003,58(1):69-78.
[10] Bastian T,Coenen H H ,Qaim S M.Excitation functions of124Te(d,xn)124,125I reactions from threshold up to 14 MeV:comparative evaluation of nuclear routes for the production of124I[J].Applied Radiation & Isotopes Including Data Instrumentation & Methods for Use in Agriculture Industry & Medicine,2001,55(3):303-308.
[11] Hassan K F,Qaim S M,Saleh Z A,et al.3He-particle-induced reactions on Sb for production of124I[J].Applied Radiation & Isotopes Including Data Instrumentation & Methods for Use in Agriculture Industry & Medicine,2006,64(4):409.
[12] Van den Bosch R,De Goeij J J,Van der Heide J A,et al.A new approach to target chemistry for the iodine-123 production via the124Te(p,2n) reaction[J].Int J Appl Radiat Isot,1977,28(3):255-261.
[13] Glaser M,Mackay D B,Ranicar A S O,et al.Improved targetry and production of iodine-124 for PET studies[J].Radiochimica Acta/international Journal for Chemical Aspects of Nuclear Science & Technology,2004,92(12):951-956.
[14] Zaidi J H,Qaim S M,St?cklin G.Excitation functions of deuteron induced nuclear reactions on natural tellurium and enriched 122 Te:Production of123I via the122Te(d,n)123I-process[J].International Journal of Applied Radiation & Isotopes,1983,34(10):1425-1430.
[15] Oberdorfer F,Helus F,Maierborst W.Experiences in the routine production ofI via the Te(p,2n)I reaction with a low energy cyclotron[J].Journal of Radioanalytical Chemistry,1981,65(1-2):51-56.
[16] Apelt H,Blessing G,Knieper J,et al.Some technical improvements in the production of123I via the124Te(p,2n)123I reaction at a compact cyclotron[J].International Journal of Applied Radiation & Isotopes,1981,32(8):581-587.
[17] Sheh Y,Koziorowski J,Balatoni J,et al.Low energy cyclotron production and chemical separation of “no carrier added” iodine-124 from a reusable,enriched tellurium-124 dioxide/aluminum oxide solid solution target[J].Radiochimica Acta,2000,88(3-4):169.
[18] Sajjad M,Bars E,Nabi H A.Optimization of124I production via124Te(p,n)124I reaction[J].Applied Radiation & Isotopes,2006,64(9):965-970.
[19] Nye J A,Avilarodriguez M A,Nickles R J.Production of [124I]-iodine on an 11MeV cyclotron[J].Radiochimica Acta,2006,94(4):213-216.
[20] Alekseev I E,Darmograi V V,Marchenkov N S.Development of diffusion-thermal methods for preparing67Cu and124I for radionuclide therapy and positron emission tomography[J].Radiochemistry,2005,47(5):502-509.
[21] Smith G E,Sladen H L,Biagini S C,et al.Inorganic approaches for radiolabelling biomolecules with fluorine-18 for imaging with positron emission tomography[J].Dalton Trans,2011,40(23):6196.
[22] Knust E J,Dutschka K,Weinreich R.Preparation of124I solutions after thermodistillation of irradiated124TeO2targets[J].Applied Radiation & Isotopes,2000,52(2):181-184.
[23] Blasberg R,Roelcke U,Weinreich R.[124I]-iododeoxyuridine imaging tumor proliferation[J].Journal of Nuclear Medicine,1996,37(Suppl 5):106-128.
[24] Van d B R,De Goeij J J,Ja V D H,et al.A new approach to target chemistry for the iodine-123 production via the124Te(p,2n) reaction[J].International Journal of Applied Radiation & Isotopes,1977,28(3):255.
[25] Shikata E,Amano H.Dry-distillation of iodine-131from several tellurium compounds[J].Journal of Nuclear Science & Technology,1973,10(10):80-88.
[26] Braghirolli A M S,Waissmann W,Silva J B D,et al.Production of iodine-124 and its applications in nuclear medicine[J].Applied Radiation & Isotopes,2014,90(90C):138-148.
[27] Zweit J,Sharma H L,Goodall R,et al.Excitation functions of proton induced reactions in natural tellurium:production of no carrier added I-124 for PET applications[J].Proceed- ings of the Fourth International Workshop on Targetry and Target Chemistry,1991,63(5):76-78.
[28] Robinson M K,Doss M,Shaller C,et al.Quantitative immuno-positron emission tomography imaging of HER2-positive tumor xenografts with an iodine-124 labeled anti-HER2 diabody[J].Cancer Research,2005,65(4):1471-1478.
[29] Dekker B,Keen H,Shaw D,et al.Functional comparison of annexin V analogues labeled indirectly and directly with iodine-124[J].Nuclear Medicine & Biology,2005,32(4):403.
[30] Verel I,Visser G W M,Vosjan M J W D,et al.High-quality124I-labelled monoclonal antibodies for use as PET scouting agents prior to131I-radioimmunotherapy[J].European Journal of Nuclear Medicine & Molecular Imaging,2004,31(12):1645-1652.
[31] Verel I,Visser G W,Boerman O C,et al.Long-lived positron emitters zirconium-89 and iodine-124 for scouting of therapeutic radioimmunoconjugates with PET[J].Cancer Biotherapy & Radiopharmaceuticals,2003,18(4):655.
[32] Sundaresan G,Yazaki P J,Shively J E,et al.124I-labeled engineered anti-CEA minibodies and diabodies allow high-contrast,antigen-specific small-animal PET imaging of xenografts in athymic mice[J].Journal of Nuclear Medicine Official Publication Society of Nuclear Medicine,2003,44(12):1962-1969.
[33] Glaser M,Brown D J,Law M P,et al.Preparation of no-carrier-added [124I] A14-iodoinsulin as a radiotracer for positron emission tomography[J].Journal of Labelled Compounds & Radiopharmaceuticals,2001,44(6):465-480.
[34] Daghighian F,Pentlow K S,Larson S M,et al.Development of a method to measure kinetics of radiolabelled monoclonal antibody in human tumour with applications to microdosimetry:positron emission tomography studies of iodine-124 labelled 3F8 monoclonal antibody in glioma[J].European Journal of Nuclear Medicine,1993,20(5):402-409.
[35] Westera G,Reist H W,Buchegger F,et al.Radioimmuno positron emission tomography with monoclonal antibodies:a new approach to quantifying in vivo tumour concentration and biodistribution for radioimmunotherapy[J].Nuclear Medicine Communications,1991,12(5):429.
[36] Bakir M A,Eccles S,Babich J W,et al.C-erbB2 protein overexpression in breast cancer as a target for PET using iodine-124-labeled monoclonal antibodies[J].Journal of Nuclear Medicine Official Publication Society of Nuclear Medicine,1992,33(12):2 154-2 160.
[37] Glaser M,Carroll V A,Collingridge D R,et al.Preparation of the iodine-124 derivative of the Bolton-Hunter reagent ([124I]I-SHPP) and its use for labelling a VEGF antibody as a PET tracer[J].Journal of Labelled Compounds & Radiopharmaceuticals,2002,45(12):1077-1090.
[38] Divgi C R,Pandit-Taskar N,Jungbluth A A,et al.Preoperative characterisation of clear-cell renal carcinoma using iodine-124-labelled antibody chimeric G250 (I-cG250) and PET in patients with renal masses:a phase I trial[J].Lancet Oncology,2007,8(4):304-310.
[39] Brouwers A H,Dorr U,Lang O,et al.131I-cG250 monoclonal antibody immunoscintigraphy versus [18F]FDG-PET imaging in patients with metastatic renal cell carcinoma:a comparative study[J].Nucl Med Commun,2002,23(3):229-236.
[40] Pryma D A,O'Donoghue J A,Humm J L,et al.Correlation of in vivo and in vitro measures of carbonic anhydrase IX antigen expression in renal masses using antibody124I-cG250[J].J Nucl Med,2011,52(4):535-540.
[41] Salacinski P,Hope J,Mclean C.Iodination of proteins glycoproteins and peptides using a solid phase oxidizing agent (IODO-GEN)[J].Analytical Biochemistry,1981:117-146.
[42] Lee F T,Hall C,Rigopoulos A,et al.Immuno-PET of human colon xenograft- bearing BALB/c nude mice using124I-CDR-grafted humanized A33 monoclonal antibody[J].Journal of Nuclear Medicine Official Publication Society of Nuclear Medicine,2001,42(5):764.
[43] Sundaresan G,Yazaki P J,Shively J E,et al.124I-labeled engineered anti-CEA minibodies and diabodies allow high-contrast,antigen-specific small-animal PET imaging of xenografts in athymic mice[J].Journal of Nuclear Medicine Official Publication Society of Nuclear Medicine,2003,44(12):1962-1969.
[44] Guenther I,Wyer L,Knust E J,et al.Radiosynthesis and quality assurance of 5-[124I]Iodo-2′-deoxyuridine for functional PET imaging of cell proliferation[J].Nuclear Medicine & Biology,1998,25(4):359-365.
[45] Blasberg R,Roelcke U R,Beattie B,et al.Imaging brain tumor proliferative activity with [124I]iododeoxyuridine[J].Cancer Research,2000,60(3):624-635.
[46] Roelcke U,Hausmann O,Merlo A,et al.PET imaging drug distribution after intratumoral injection:the case for (124)I-iododeoxyuridine in malignant gliomas[J].Journal of Nuclear Medicine Official Publication Society of Nuclear Medicine,2002,43(11):1444-1451.
[47] Tjuvajev J G,Doubrovin M,Akhurst T,et al.Comparison of radiolabeled nucleoside probes (FIAU,FHBG,and FHPG) for PET imaging of HSV1-tk gene expression[J].J Nucl Med,2002,43(8):1072-1083.
[48] Dekker B,Keen H,Lyons S,et al.MBP-annexin V radiolabeled directly with iodine-124 can be used to image apoptosis in vivo using PET[J].Nuclear Medicine & Biology,2005,32(3):241.
[49] Reischl G,Dorow D S,Cullinane C,et al.Imaging of tumor hypoxia with [I-124] IAZA in comparison with [F-18] FMISO and [F-18]FAZA - first small animal PET results[J].Journal of Pharmacy & Pharmaceutical Sciences,2007,10(2):203-211.
[50] Bading J R,Shields A F.Imaging of cell proliferation:status and prospects[J].Journal of Nuclear Medicine Official Publication Society of Nuclear Medicine,2008,49 (Suppl 2):64S.
[51] Blasberg R G,Roelcke U,Weinreich R,et al.Imaging brain tumor proliferative activity with [124I]iododeoxyuridine[J].Cancer Res,2000,60(3):624-635.
[52] Fadok V A,Voelker D R,Campbell P,et al.Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages[J].J Immunol,1992,148(7):2 207-2 216.
[53] Verel I,Visser G W,Boerman O C,et al.Long-lived positron emitters zirconium-89 and iodine-124 for scouting of therapeutic radioimmunoconjugates with PET[J].Cancer Biother Radiopharm,2003,18(4):655-661.
[54] van Dongen G A,Visser G W,Lub-de Hooge M N,et al.Immuno-PET:a navigator in monoclonal antibody development and applications[J].Oncologist,2007,12(12):1379.
[55] Verel I V,Visser G W,Dongen G A.The promise of immuno-PET in radioimmunotherapy[J].Journal of Nuclear Medicine,2005,46(Suppl 1):164S-171S.
[56] Nayak T K,Brechbiel M W.Radioimmunoimaging with longer-lived positron-emitting radionuclides:potentials and challenges[J].Bioconjug Chem,2009,20(5):825.
[57] Wilbur D S,Hadley S W,Hylarides M D,et al.Development of a stable radioiodinating reagent to label monoclonal antibodies for radiotherapy of cancer[J].Journal of Nuclear Medicine,1989,30(2):216-226.
[58] Zechmann C M,Afsharoromieh A,Armor T,et al.Radiation dosimetry and first therapy results with a124I/131I-labeled small molecule (MIP-1095) targeting PSMA for prostate cancer therapy[J].European Journal of Nuclear Medicine & Molecular Imaging,2014,41(7):1280-1292.
[59] Knowles S M,Tavare R,Zettlitz K A,et al.Applications of immunoPET:using124I-anti-PSCA A11minibody for imaging disease progression and response to therapy in mouse xenograft models of prostate cancer[J].Clin Cancer Res,2014,20(24):6 367-6 378.
[60] O’Donoghue J A,Smith-Jones P M,Humm J L,et al.124I-huA33 antibody uptake is driven by A33 antigen concentration in tissues from colorectal cancer patients imaged by immuno-PET[J].J Nucl Med,2011,52(12):1878-1885.
[61] Lee C L,Wahnishe H,Sayre G A,et al.Radiation dose estimation using preclinical imaging with124I-metaiodobenzylguanidine (MIBG) PET[J].Medical Physics,2010,37(9):4 861-4 867.
[62] Ruhlmann M,Jentzen W,Ruhlmann V,et al.High level of agreement between pretherapeutic124I PET and intratherapeutic131I imaging in detecting iodine-positive thyroid cancer metastases[J].J Nucl Med,2016,57(9):1339-1342.