• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Thermodynamics of de Sitter Black Holes in Massive Gravity?

    2018-06-11 12:21:12YuBoMa馬宇波SiXuanZhang張思軒YanWu鄔巖LiMa馬立andShuoCao曹碩
    Communications in Theoretical Physics 2018年5期
    關(guān)鍵詞:室早導(dǎo)聯(lián)起源

    Yu-Bo Ma(馬宇波),Si-Xuan Zhang(張思軒),Yan Wu(鄔巖),Li Ma(馬立),and Shuo Cao(曹碩),?

    1Department of Physics,Shanxi Datong University,Datong 037009,China

    2Department of Astronomy,Beijing Normal University,Beijing 100875,China

    3Beijing Aerospace Petrochemical Technology and Equipment Engineering Corporation,Beijing 100166,China

    1 Introduction

    The study of the thermodynamic characteristics of de Sitter space-time has arouse extensive attention in the recent years.[1?17]At the stage of cosmological inflation in the early time,our universe behaves like a quasi-de Sitter space-time,in which the cosmological constant takes the form of vacuum energy.Moreover,if the dark energy is simply a cosmological constant,i.e.,a component with constant equation of state,our universe will evolve into a new stage of de Sitter space-time in this simplest scenario.Therefore,a better knowledge of de Sitter space-time(especially its classical and quantum characteristics)is very important to construct the general framework of cosmic evolution.In the previous works,the black hole horizon and the cosmological horizon are always treated as two independent thermodynamic systems,[4?7,13]from which the thermodynamic volume of de Sitter space-time as well as the corresponding thermodynamic quantities satisfying the first thermodynamics law were obtained.[3]It is commonly recognized that the entropy of de Sitter space-time is the sum of that for the two types of horizons,[7,14]however,such statement concerning the nature of de Sitter space-time entropy still needs to be checked with adequate physical explanation.

    Considering the fact that all thermodynamic quantities related to the black hole horizon and the cosmological horizon in de Sitter space-time can be expressed as a function of mass M,electric charge Q,and cosmological constant Λ,it is natural to consider the dependency between the two types of thermodynamic quantities.More specifically,the discussion of the following two problems is very significant to study the stability and evolution of de Sitter space-time:Do the thermodynamic quantities follow the behavior of their counterparts in AdS black holes,especially when the black hole horizon is correlated with that of the cosmological horizon?What is the specific relation between the entropy of de Sitter space-time and that of the two horizons(the black hole horizon and the cosmological horizon)? The above two problems also provide the main motivation of this paper.

    On the other hand,to the present,massive gravity has already proven its potential to alleviate the naturalness problem of the cosmological constant[18?20]even in the limit as the graviton mass approaches zero,which can be clearly seen both in the framework of linear gravity theories[21?22]and nonlinear massive gravity theories.[23?24]The ghostlike instability in the latter,which is well known as the Boulware-Deser ghost,has also been extensively discussed in many previous works.[25?26]Moreover,different from the traditional way of simply adding a mass term to the GR action,the new idea of constructing massive gravity theories was fi rstly studied in the context of a charged BTZ black hole,[27]and further well developed in the presence of Maxwell and Born-Infeld electrodynamics in asymptotically AdS space-times.[28]Details of the derived thermodynamic quantities(the corrected entropy,etc.)as well as the corresponding phase transitions may be found in Refs.[29–33].In this paper we expect to provide complementary results on the thermodynamics of dS black hole in massive gravity.

    Following this direction,in our analysis we obtain the effective thermodynamic quantities of de Sitter black holes in massive gravity(DSBHMG),based on the correlation between the black hole horizon and the cosmological horizon. Our results show that the entropy of this type of space-time takes the same form as that in Reissner-Nordstrom de Sitter space-time,which lays a solid foundation for deeply understanding the universal thermodynamic characteristics of de Sitter space-time in the future.This paper is organized as follows.In Sec.2,we briefly introduce the thermodynamic quantities of the horizons of black holes and the Universe in DSBHMG,and furthermore obtain the electric charge Q when the two horizons show the same radioactive temperature.In Sec.3,taking the correlation between the two horizons into consideration,we will present the equivalent thermodynamic quantities of DSBHMG satisfying the first thermodynamic law,and perform a quantitative analysis of the corresponding effective temperature and pressure.Finally,the main conclusions are summarized in Sec.4.Throughout the paper we use the units G=~=kB=c=1.

    2 Thermodynamics of Black Holes in Massive Gravity

    In the framework of(3+1)-dimensional massive gravity with a Maxwell field(denoting Fμνas the Maxwell field-strength tensor),the corresponding action always expresses as[34?37]

    where Λ is the cosmological constant,g and R are respectively the determinant of the metric and the Ricci scalar.The last term in the right hand side denotes the massive potential associate with graviton mass m,whereμiare symmetric polynomials of the eigenvalues representing the contribution of the matrixwith fixed symmetric tensor fμν.Generated form the above action,the space-time metric of static black holes(denoting hijas Einstein space with constant curvature)can be written as

    with the metric function expressed as[38?39]

    Here k=+1,0,?1 respectively correspond to the sphere,Ricci flat,and hyperbolic symmetric cases.Note that the positions of black hole horizon r+and cosmic horizon rcare determined when f(r+,C)=0.

    In Fig.1 we display the behavior of the metric function f(r),where the parameters are chosen as Λ=1,m0=30,m=2.12,c1=2,c2=3.18,q=1.7,while k is fixed at 1,0,and?1.It is obvious that there are two intersection points between f(r)and the axis of r,which respectively correspond to the positions of black hole horizon r+and cosmological horizon rc.Thus,the mass m0can be expressed in terms of r+,cas

    where x=r+/rc.The temperature of the black hole horizons and cosmic horizon can be written as[40]

    Turning to the contribution of the electrical charge q,it will also generate a chemical potential as

    According to the Hamiltonian approach,we have the mass M and electric charge Q as

    and the entropy of the two horizons respectively express as

    where ν2is the area of a unit volume of constant(t,r)space(which equals to 4π for k=0).

    Fig.1 The metric function f(r)varying with r.

    It is apparent that the thermodynamic quantities corresponding to the two horizons satisfy the first law of thermodynamics

    where

    When the temperature of the black hole horizon is equal to that of the cosmological horizon,the electric charge Q and the cosmological constant Λ are related as

    As can be seen from Eqs.(5)and(12)the electric charge of the system satisfies the following expression

    When taking T+=Tc,the combination of Eqs.(5),(6),and(13)will lead to the temperature T as

    3 Effective Thermodynamic Quantities

    Considering the connection between the black hole horizon and the cosmological horizon,we can derive the effective thermodynamic quantities and corresponding first law of black hole thermodynamics as

    where the thermodynamic volume is defined by[3,5?6,41]

    It is obvious that there exit three real roots for the equation f(r)=0:the cosmological horizon(CEH)r=rc,the inner(Cauchy)horizon of black holes,and the outer horizon(BEH)r=r+of black holes.Moreover,the de Sitter space-time is characterized by Λ >0,while Λ <0 denotes the anti-de Sitter scenario.

    Here the undefined function f(x)represents the extra contribution from the correlations of the two horizons.We remark here that,when the black hole horizon and the cosmological horizon are treated as one thermodynamic system,the function f(x)could quantify the corresponding correction in the total entropy of the system.From Eq.(15),we can obtain the effective temperature Teffand pressure Peff

    Combining Eqs.(4),(16),and(17),one can obtain

    where

    When the temperature of the black hole horizon is equal to that of the cosmological horizon,the effective temperature of the space-time should be

    Then substituting Eq.(14)into Eq.(20),we get

    where

    Then Eq.(25)will transform into

    with the corresponding solution as

    主動(dòng)脈-二尖瓣結(jié)合部(aortomitral continuity,AMC),為左冠狀動(dòng)脈竇及二尖瓣前葉之間的三角纖維區(qū)域,屬于summit區(qū)域。AMC起源室早最具特征性的心電圖表現(xiàn)是V1導(dǎo)聯(lián)呈qR型,原因在于該位置的初始除極向量向左;其他心電圖特征還包括V6導(dǎo)聯(lián)呈R型,Ⅰ導(dǎo)聯(lián)呈R或Rs型。由于AMC起源室早的具體起源部位和范圍的差異,室早有時(shí)表現(xiàn)為胸前導(dǎo)聯(lián)QRS主波呈一致正向的右束支阻滯圖形;V6導(dǎo)聯(lián)無S波,而沒有前述典型的圖形表現(xiàn)。

    Considering the initial condition of f(0)=0,we can obtain

    and inserting Eq.(25)into Eqs.(20)and(22)will lead to

    Moreover,the effective chemical potential in the first law of black hole thermodynamics can be rewritten as

    One could note that the effective chemical potential,?eff,is not directly related to m2c1and m2c2,which was noted in the previous work discussing the entropy of RNdS black hole.[33]Based on the above equations,the Peff-x and Teffx diagrams could be derived by taking different value of k,q,m,c1,and c2(when taking rc=1).

    Fig.2 The Pe ff-x diagram when the parameter k is fixed at 1,0 and?1,respectively.The other parameters are fixed at m=2.12,c1=2,c2=3.18,q=1.7.

    Fig.3 The Pe ff-x diagram varying with the parameters of m,c1,c2,and q,while the other two parameters are fixed at k=?1,rc=1.

    Fig.4 The S(x)-x and f(x)-x diagrams with rc=1.

    In Figs.2 and 3,we illustrate an example of the Peff-x diagram with different value of relevant parameters,from which one could clearly see the effect of these parameters on the effective pressure of RN-dSQ space-time.Following the same procedure by inserting Eq.(28)into Eq.(17),we can also obtain the S(x)-x and f(x)-x diagrams with rc=1,which are explicitly shown in Fig.4.Similarly,in Figs.5 and 6,we show the evolution of the Teff-x diagram with different value of relevant parameters,from which one could perceive the effect of these parameters on the effective temperature of RN-dSQ space-time.As can be seen from Eq.(29),the special term m2c1and m2c2included in the expression of Teffand Peff,could have significant effects in the evolution of the globally effective temperature and pressure.More specifically,it is shown in Figs.3 and 6 that,the space-time considered in our analysis will recover to the well-known RNdS spacetime when m2c1and m2c2approach zero.Such conclusion is well consistent with that obtained in the previous literature.[33]

    Fig.6 The Te ff-x diagram varying with the parameters of m,c1,c2and q,while the other two parameters are fixed at k=?1,rc=1.

    Table 1 Summary of the highest effective temperature and the corresponding xcfor different curves in Fig.5.The value of x0when the effective temperature reaches zero is also listed.

    Table 1 Summary of the highest effective temperature and the corresponding xcfor different curves in Fig.5.The value of x0when the effective temperature reaches zero is also listed.

    Parametric xc T2e ff x 0 k=1 0.3374 1.7554 0.2173 k=0 0.3468 1.5799 0.2243 k=?1 0.3571 1.4121 0.2321

    Table 2 Summary of the highest effective temperature and the corresponding xcfor different curves in Fig.6.The value of x0when the effective temperature reaches zero is also listed.

    Table 2 Summary of the highest effective temperature and the corresponding xcfor different curves in Fig.6.The value of x0when the effective temperature reaches zero is also listed.

    Parametric xc T2e ff x0 q=1.0 0.222 69 2.922 26 0.134 98 k=?1 q=1.7 0.357 10 1.412 10 0.232 10 q=2.7 0.531 08 0.568 70 0.380 43 m=1.6 0.465 46 0.439 60 0.321 08 k=?1 m=2.12 0.357 10 1.412 10 0.223 10 m=3.12 0.249 46 5.611 53 0.153 24 c1=1.0 0.363 73 1.231 66 0.238 98 k=?1 c1=2.0 0.357 10 1.412 10 0.232 10 c1=3.0 0.351 14 1.595 04 0.225 99 c2=2.18 0.417 92 0.757 68 0.279 26 k=?1 c2=3.18 0.357 10 1.412 10 0.232 10 c2=4.18 0.316 77 2.224 55 0.202 18

    4 Conclusion and Discussion

    In this paper,by taking de Sitter space-time as a thermodynamic system,we study the effective thermodynamic quantities of de Sitter black holes in massive gravity,and furthermore obtain the effective thermodynamic quantities of the space-time.Here we summarize our main conclusions in more detail:

    (i)In the previous analysis without considering the correlation between the black hole horizon and the cosmological horizon,i.e.,the two horizons are always treated as independent thermodynamic systems with different temperature,the space-time does not satisfy the requirement of thermodynamic stability.In this paper,we find that the establishment of the correlation between the two horizons will generate the common effective temperature Teff,which may represent the most typical thermodynamic feature of RN-dSQ space-time.

    (ii)As can be clearly seen from the S(x)-x and Teff-x diagrams,RN-dSQ space-time in unstable under the condition of x>xcand x

    (iii)We find that the interaction term f(x)in the entropy of RN-dSQ space-time takes the same form of that in RN-dS space-time.Considering that the entropy in the two types of space-time is the function of the position of the horizon,which has no relation with other parameters including the electric charge(Q)and the constant(Λ),the entropy in the two types of space-time should take the same form.This finding may contribute to the deep understanding the universal thermodynamic characteristics of de Sitter space-time in the future.

    Acknowledgments

    The authors declare that there is no conflict of interest regarding the publication of this paper.

    [1]R.G.Cai,Nucl.Phys.B 628(2002)375

    [2]B.D.Koberlein and R.L.Mallett,Phys.Rev.D 49(1994)5111

    [3]B.P.Dolan,D.Kastor,D.Kubiznak,et al.,Phys.Rev.D 87(2013)104017.

    [4]Y.Sekiwa,Phys.Rev.D 73(2006)084009.

    [5]D.Kubiznak and F.Simovic,Class.Quant.Grav.33(2016)245001.

    [6]J.McInerney,G.Satishchandran,and J.Traschen,Class.Quant.Grav.33(2016)105007.

    [7]M.Urano,A.Tomimatsu,and H.Saida,Class.Quant.Grav.26(2009)105010.

    [8]X.Y.Guo,H.F.Li,L.C.Zhang,and R.Zhao,Phys.Rev.D 91(2015)084009.

    [9]X.Y.Guo,H.F.Li,L.C.Zhang,and R.Zhao,Class.Quant.Grav.33(2016)135004

    [10]H.H.Zhao,M.S.Ma,L.C.Zhang,and R.Zhao,Phys.Rev.D 90(2014)064018.

    [11]M.S.Ma,R.Zhao,and Y.Q.Ma,Gen.Relativ.Gravit.49(2017)79.

    [12]T.Katsuragawa and S.Nojiri,Phys.Rev.D 91(2015)084001.

    [13]F.Mellor and I.Moss,Class.Quant.Grav.6(1989)1379.

    [14]D.Kastor and J.Traschen,Phys.Rev.D 47(1993)5370.

    [15]H.F.Li,M.S.Ma,and Y.Q.Ma,Mod.Phys.Lett.A 32(2017)1750017.

    [16]M.Azreg-A¨?nou,Phys.Rev.D 91(2015)064049.

    [17]M.Azreg-A¨?nou,Eur.Phys.J.C 75(2015)34.

    [18]K.Hinterbichler,Rev.Mod.Phys.84(2012)671.

    [19]M.Fierz,Helv.Phys.Acta.12(1939)3.

    [20]M.Fierz and W.Pauli,Proc.R.Soc.A 173(1939)211.

    [21]H.V.Dam and M.J.G.Veltman,Nucl.Phys.B 22(1970)397.

    [22]V.I.Zakharov,JETP Lett.12(1970)312.

    [23]D.G.Boulware and S.Deser,Phys.Rev.D 6(1972)3368.

    [24]D.G.Boulware and S.Deser,Phys.Lett.B 40(1972)227.

    [25]C.de Rham and G.Gabadadze,Phys.Rev.D 82(2010)044020.

    [26]C.de Rham,G.Gabadadze,and A.J.Tolley,Phys.Rev.Lett.106(2011)231101.

    [27]S.H.Hendi,S.Panahiyan,S.Upadhyay,and B.E.Panah,J.High Energy Phys.11(2015)157.

    [28]S.H.Hendi,B.Eslam Panah,and S.Panahiyan,J.High Energy Phys.05(2016)029.

    [29]B.R.Majhi and S.Samanta,arXiv:gr-qc/1609.06224

    [30]R.G.Cai,Y.P.Hu,Q.Y.Pan,and Y.L.Zhang,Phys.Rev.D 91(2015)024032.

    [31]J.Xu,L.M.Cao,and Y.P.Hu,Phys.Rev.D 91(2015)124033.

    [32]M.Cvetic,G.W.Gibbons,D.Kubiznak,and C.N.Pope,Phys.Rev.D 84(2011)024037.

    [33]L.C.Zhang,R.Zhao,and M.S.Ma,Phys.Lett.B 761(2016)74.

    [34]M.S.Ma,R.Zhao,and Y.S.Liu,Class.Quan.Grav.34(2017)165009.

    [35]M.S.Ma and R.H.Wang,Phys.Rev.D 96(2017)024052.

    [36]S.Upadhyay,B.Pourhassan,and H.Farahani,Phys.Rev.D 95(2017)106014.

    [37]H.F.Li,M.S.Ma,L.C.Zhang,and R.Zhao,Nucl.Phys.B 920(2017)211.

    [38]S.F.Hassan and R.A.Rosen,J.High Energy Phys.07(2011)009.

    [39]A.Adams,D.A.Roberts,and O.Saremi,Phys.Rev.D 91(2015)046003.

    [40]A.Dehyadegari,M.Kord Zangeneh,and A.Sheykhi,arXiv:hep-th/1703.00975.

    [41]D.C.Zou,R.H.Yue,and M.Zhang,Eur.Phys.J.C 77(2017)256.

    [42]P.Boonserm,T.Ngampitipan,and P.Wongjun,arXiv:grqc/1705.03278.

    [43]S.H.Hendi,R.B.Mann,S.Panahiyan,and B.Eslam Panah,Phys.Rev.D 95(2017)021501.

    猜你喜歡
    室早導(dǎo)聯(lián)起源
    特發(fā)性室性早搏的心率相關(guān)性與臨床特征
    關(guān)于《心電圖動(dòng)態(tài)演變?yōu)锳slanger 樣心肌梗死1 例》的商榷
    這種室早或不需治療
    人人健康(2022年14期)2022-07-26 02:29:08
    圣誕節(jié)的起源
    特發(fā)性室性早搏與自主神經(jīng)張力的關(guān)系
    三維Lorenz-RR 散點(diǎn)圖分析插入性室性早搏揭示房室結(jié)雙徑路1 例
    奧運(yùn)會(huì)的起源
    清明節(jié)的起源
    萬物起源
    中國漫畫(2017年4期)2017-06-30 13:06:16
    aVR導(dǎo)聯(lián)ST段改變對(duì)不同冠脈血管病變的診斷及鑒別診斷意義
    中文字幕av电影在线播放| 18禁国产床啪视频网站| 午夜福利免费观看在线| 欧美精品一区二区免费开放| 精品久久蜜臀av无| 亚洲成人手机| 在线观看www视频免费| 91av网站免费观看| 91国产中文字幕| 黄色丝袜av网址大全| 久久精品国产综合久久久| 欧美 日韩 精品 国产| 精品人妻在线不人妻| 少妇裸体淫交视频免费看高清 | 日韩中文字幕欧美一区二区| 久热这里只有精品99| 肉色欧美久久久久久久蜜桃| 操美女的视频在线观看| 国产成人免费无遮挡视频| 国产成人欧美| 日本精品一区二区三区蜜桃| 免费人妻精品一区二区三区视频| 久久ye,这里只有精品| 9热在线视频观看99| 精品人妻1区二区| 国产亚洲欧美在线一区二区| 大香蕉久久成人网| av天堂久久9| 变态另类成人亚洲欧美熟女 | 淫妇啪啪啪对白视频| 变态另类成人亚洲欧美熟女 | 国产精品电影一区二区三区 | 亚洲精品美女久久av网站| 久久久久久久精品吃奶| av欧美777| 大片电影免费在线观看免费| 精品熟女少妇八av免费久了| 亚洲av欧美aⅴ国产| 亚洲欧美一区二区三区黑人| 一级,二级,三级黄色视频| 久久九九热精品免费| 久久久精品国产亚洲av高清涩受| 法律面前人人平等表现在哪些方面| 午夜免费鲁丝| 久久精品亚洲精品国产色婷小说| 九色亚洲精品在线播放| 国产一区二区三区视频了| 国产日韩欧美亚洲二区| 80岁老熟妇乱子伦牲交| 久久国产精品大桥未久av| 国产黄色免费在线视频| 亚洲五月婷婷丁香| 亚洲欧洲精品一区二区精品久久久| 五月天丁香电影| 欧美精品高潮呻吟av久久| 一个人免费在线观看的高清视频| 国产精品美女特级片免费视频播放器 | 亚洲欧美激情在线| 国产精品国产av在线观看| 老鸭窝网址在线观看| 欧美日韩亚洲国产一区二区在线观看 | 中文字幕av电影在线播放| 国产高清视频在线播放一区| 大香蕉久久网| 美女主播在线视频| 精品免费久久久久久久清纯 | 人人妻人人爽人人添夜夜欢视频| 欧美亚洲日本最大视频资源| 一本久久精品| 免费日韩欧美在线观看| 不卡一级毛片| 国产一区有黄有色的免费视频| a级片在线免费高清观看视频| 欧美日本中文国产一区发布| 亚洲七黄色美女视频| 中文欧美无线码| e午夜精品久久久久久久| av天堂久久9| 超碰成人久久| 成人国产一区最新在线观看| 成年动漫av网址| 亚洲精品国产精品久久久不卡| 久久午夜亚洲精品久久| 一级毛片精品| 男人舔女人的私密视频| 国产亚洲欧美在线一区二区| 女人精品久久久久毛片| 欧美 亚洲 国产 日韩一| 亚洲欧美色中文字幕在线| 亚洲精品中文字幕一二三四区 | 在线永久观看黄色视频| 中国美女看黄片| 91大片在线观看| 动漫黄色视频在线观看| 亚洲精品美女久久av网站| 热99re8久久精品国产| 91九色精品人成在线观看| 午夜福利视频在线观看免费| 精品福利永久在线观看| 国产一区二区 视频在线| 婷婷成人精品国产| 亚洲av日韩精品久久久久久密| 色婷婷av一区二区三区视频| 欧美人与性动交α欧美软件| 国产av一区二区精品久久| 国产成人影院久久av| 久久人人爽av亚洲精品天堂| 日韩免费av在线播放| 黄色视频,在线免费观看| 一本—道久久a久久精品蜜桃钙片| 国产精品熟女久久久久浪| av欧美777| 国产成人影院久久av| 精品少妇久久久久久888优播| 麻豆乱淫一区二区| 久久精品国产a三级三级三级| 精品久久久久久久毛片微露脸| 一本色道久久久久久精品综合| 成年人午夜在线观看视频| 少妇被粗大的猛进出69影院| 制服诱惑二区| 搡老熟女国产l中国老女人| 日本欧美视频一区| 亚洲一区二区三区欧美精品| 啦啦啦中文免费视频观看日本| 老熟妇仑乱视频hdxx| 国产成人精品在线电影| 欧美一级毛片孕妇| 亚洲欧美激情在线| 色94色欧美一区二区| 亚洲成国产人片在线观看| 成年版毛片免费区| www.999成人在线观看| 精品国产乱码久久久久久小说| 午夜91福利影院| 国产真人三级小视频在线观看| 在线看a的网站| 丰满人妻熟妇乱又伦精品不卡| 久久久精品区二区三区| 一个人免费在线观看的高清视频| 大码成人一级视频| 亚洲中文字幕日韩| 色94色欧美一区二区| 精品欧美一区二区三区在线| 午夜两性在线视频| 国产精品.久久久| 久久精品国产99精品国产亚洲性色 | 国产精品久久久av美女十八| 男女边摸边吃奶| 亚洲欧美日韩高清在线视频 | √禁漫天堂资源中文www| 激情视频va一区二区三区| 亚洲视频免费观看视频| h视频一区二区三区| 嫁个100分男人电影在线观看| 亚洲av国产av综合av卡| av福利片在线| 亚洲色图综合在线观看| 欧美 日韩 精品 国产| 一二三四社区在线视频社区8| tocl精华| av一本久久久久| 热99国产精品久久久久久7| 国产精品98久久久久久宅男小说| av欧美777| 黄频高清免费视频| 亚洲五月婷婷丁香| 久久久精品94久久精品| 色婷婷久久久亚洲欧美| 久久国产精品男人的天堂亚洲| 人人妻人人爽人人添夜夜欢视频| 久久久精品免费免费高清| 免费少妇av软件| 少妇被粗大的猛进出69影院| 精品人妻熟女毛片av久久网站| 免费高清在线观看日韩| 18禁美女被吸乳视频| 99国产精品一区二区蜜桃av | av有码第一页| 国产黄色免费在线视频| 亚洲色图 男人天堂 中文字幕| 青草久久国产| 在线观看免费午夜福利视频| 精品欧美一区二区三区在线| 国产av国产精品国产| 一区二区三区国产精品乱码| 亚洲精品av麻豆狂野| 777久久人妻少妇嫩草av网站| 老熟妇仑乱视频hdxx| 国产免费av片在线观看野外av| 国产在线视频一区二区| 中文字幕人妻丝袜制服| 制服诱惑二区| 国精品久久久久久国模美| 侵犯人妻中文字幕一二三四区| 丝瓜视频免费看黄片| 人人妻人人爽人人添夜夜欢视频| av超薄肉色丝袜交足视频| 一区在线观看完整版| 美女主播在线视频| 中文字幕色久视频| 欧美日韩国产mv在线观看视频| 妹子高潮喷水视频| 国产一区二区三区综合在线观看| 亚洲人成伊人成综合网2020| www日本在线高清视频| 欧美老熟妇乱子伦牲交| 日本一区二区免费在线视频| 超碰成人久久| 黄片小视频在线播放| 精品熟女少妇八av免费久了| 欧美人与性动交α欧美软件| 久久天堂一区二区三区四区| 亚洲熟女精品中文字幕| 久久精品国产综合久久久| 99re在线观看精品视频| 久久九九热精品免费| 91九色精品人成在线观看| 久久久精品免费免费高清| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲第一欧美日韩一区二区三区 | 一边摸一边抽搐一进一出视频| 日韩中文字幕欧美一区二区| 久久中文看片网| 在线观看免费日韩欧美大片| 亚洲精品国产色婷婷电影| 女同久久另类99精品国产91| 欧美av亚洲av综合av国产av| 久久毛片免费看一区二区三区| 精品福利永久在线观看| 18禁黄网站禁片午夜丰满| 久久 成人 亚洲| 黄色 视频免费看| 人妻 亚洲 视频| 午夜福利免费观看在线| 高清毛片免费观看视频网站 | bbb黄色大片| 久久人妻av系列| 婷婷成人精品国产| 99在线人妻在线中文字幕 | 在线av久久热| 久久精品亚洲熟妇少妇任你| 久久国产精品男人的天堂亚洲| 亚洲av第一区精品v没综合| 熟女少妇亚洲综合色aaa.| 9热在线视频观看99| 午夜福利一区二区在线看| 中国美女看黄片| 最新美女视频免费是黄的| 建设人人有责人人尽责人人享有的| 日韩中文字幕欧美一区二区| 国产又爽黄色视频| 高清视频免费观看一区二区| 国产成人影院久久av| 男男h啪啪无遮挡| 丝袜在线中文字幕| 亚洲男人天堂网一区| 满18在线观看网站| 别揉我奶头~嗯~啊~动态视频| av片东京热男人的天堂| 高清在线国产一区| 欧美日韩国产mv在线观看视频| 老司机靠b影院| 国产精品国产av在线观看| 麻豆国产av国片精品| 夫妻午夜视频| 在线观看66精品国产| 日韩欧美一区视频在线观看| 纵有疾风起免费观看全集完整版| 国产区一区二久久| 人人澡人人妻人| 妹子高潮喷水视频| 一区二区日韩欧美中文字幕| 一级片免费观看大全| 亚洲avbb在线观看| 亚洲中文字幕日韩| 人人妻人人爽人人添夜夜欢视频| 亚洲人成伊人成综合网2020| 国产精品熟女久久久久浪| 亚洲国产看品久久| 国产精品偷伦视频观看了| 黑人欧美特级aaaaaa片| 999久久久精品免费观看国产| 一二三四社区在线视频社区8| 久久免费观看电影| 欧美精品av麻豆av| 欧美性长视频在线观看| 国产日韩欧美亚洲二区| cao死你这个sao货| 国产高清国产精品国产三级| 另类精品久久| 91av网站免费观看| 青青草视频在线视频观看| 丁香六月天网| 99国产精品一区二区蜜桃av | 最新在线观看一区二区三区| 久久精品亚洲熟妇少妇任你| 欧美精品高潮呻吟av久久| 久久国产精品大桥未久av| 老司机午夜十八禁免费视频| 99国产精品99久久久久| 亚洲少妇的诱惑av| 国产有黄有色有爽视频| 操美女的视频在线观看| 免费日韩欧美在线观看| 久久亚洲精品不卡| 麻豆av在线久日| av又黄又爽大尺度在线免费看| 国产精品电影一区二区三区 | 亚洲国产欧美日韩在线播放| 久久精品熟女亚洲av麻豆精品| 亚洲欧美一区二区三区黑人| av又黄又爽大尺度在线免费看| 水蜜桃什么品种好| 亚洲视频免费观看视频| 如日韩欧美国产精品一区二区三区| 亚洲欧美日韩高清在线视频 | 如日韩欧美国产精品一区二区三区| 人人澡人人妻人| 动漫黄色视频在线观看| 久久精品国产亚洲av香蕉五月 | 日本一区二区免费在线视频| 不卡一级毛片| 日本av免费视频播放| 亚洲精品成人av观看孕妇| 纵有疾风起免费观看全集完整版| 成年人午夜在线观看视频| 少妇裸体淫交视频免费看高清 | 老司机午夜福利在线观看视频 | 国产极品粉嫩免费观看在线| 每晚都被弄得嗷嗷叫到高潮| 国产精品成人在线| 亚洲成人免费电影在线观看| 国产黄色免费在线视频| 国产精品1区2区在线观看. | 亚洲一卡2卡3卡4卡5卡精品中文| 国产成人欧美| 99精品久久久久人妻精品| 国产一区二区三区视频了| 桃红色精品国产亚洲av| 麻豆乱淫一区二区| 大香蕉久久成人网| 妹子高潮喷水视频| 亚洲天堂av无毛| 天堂俺去俺来也www色官网| 久久久久久久久久久久大奶| 国产精品98久久久久久宅男小说| 色精品久久人妻99蜜桃| 亚洲精品一卡2卡三卡4卡5卡| av网站免费在线观看视频| 在线十欧美十亚洲十日本专区| 免费观看人在逋| 一本综合久久免费| 日本a在线网址| 不卡av一区二区三区| 日韩视频一区二区在线观看| 黑人操中国人逼视频| 90打野战视频偷拍视频| 大片免费播放器 马上看| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲成人免费电影在线观看| 成人手机av| 日韩一区二区三区影片| 免费人妻精品一区二区三区视频| 欧美日韩黄片免| 香蕉国产在线看| 亚洲精品国产区一区二| 在线观看免费午夜福利视频| 精品少妇内射三级| 国产精品九九99| 久久 成人 亚洲| 国产精品九九99| 国产1区2区3区精品| 啦啦啦 在线观看视频| 99精品在免费线老司机午夜| 午夜福利免费观看在线| av电影中文网址| 黑丝袜美女国产一区| 丰满少妇做爰视频| 一夜夜www| 色婷婷久久久亚洲欧美| 国产精品 国内视频| 亚洲精品一卡2卡三卡4卡5卡| 日韩人妻精品一区2区三区| 下体分泌物呈黄色| 日韩大码丰满熟妇| 国产一区二区三区视频了| 亚洲色图 男人天堂 中文字幕| 丝袜在线中文字幕| 国产成人一区二区三区免费视频网站| videos熟女内射| 十分钟在线观看高清视频www| 丝袜喷水一区| 免费久久久久久久精品成人欧美视频| 久久天堂一区二区三区四区| 国产精品一区二区在线不卡| 亚洲久久久国产精品| 脱女人内裤的视频| 午夜福利在线免费观看网站| 一本综合久久免费| 欧美精品人与动牲交sv欧美| 亚洲三区欧美一区| 99香蕉大伊视频| 亚洲全国av大片| 一区二区av电影网| 久久久国产欧美日韩av| 成人三级做爰电影| 久久毛片免费看一区二区三区| 制服人妻中文乱码| 久久精品aⅴ一区二区三区四区| 成人18禁在线播放| 高清视频免费观看一区二区| 少妇猛男粗大的猛烈进出视频| 90打野战视频偷拍视频| 不卡av一区二区三区| 欧美在线一区亚洲| 午夜两性在线视频| 国产欧美日韩综合在线一区二区| 亚洲少妇的诱惑av| 亚洲精品国产一区二区精华液| 少妇被粗大的猛进出69影院| 精品少妇久久久久久888优播| 大香蕉久久网| 欧美人与性动交α欧美软件| 久久天躁狠狠躁夜夜2o2o| 亚洲国产毛片av蜜桃av| 黑人巨大精品欧美一区二区蜜桃| 中亚洲国语对白在线视频| 黑人操中国人逼视频| 久久av网站| 亚洲国产中文字幕在线视频| 伊人久久大香线蕉亚洲五| 中文字幕另类日韩欧美亚洲嫩草| 人人妻人人添人人爽欧美一区卜| 亚洲国产看品久久| 国产麻豆69| 国产精品久久久久久精品古装| 99国产精品一区二区蜜桃av | 黄色a级毛片大全视频| 国产在线观看jvid| 三级毛片av免费| 午夜两性在线视频| 肉色欧美久久久久久久蜜桃| 看免费av毛片| 另类亚洲欧美激情| 精品午夜福利视频在线观看一区 | 99久久精品国产亚洲精品| 国产又爽黄色视频| 久久热在线av| 欧美日韩中文字幕国产精品一区二区三区 | 伊人久久大香线蕉亚洲五| 首页视频小说图片口味搜索| 另类亚洲欧美激情| 久久 成人 亚洲| 中文字幕人妻丝袜制服| 国产亚洲av高清不卡| 美女主播在线视频| 欧美av亚洲av综合av国产av| 中文字幕最新亚洲高清| 亚洲av日韩精品久久久久久密| 中文字幕精品免费在线观看视频| 视频在线观看一区二区三区| 午夜精品国产一区二区电影| 大码成人一级视频| 欧美黄色片欧美黄色片| 久久精品国产综合久久久| 99国产精品一区二区蜜桃av | 99国产精品免费福利视频| 色综合婷婷激情| 久久人妻熟女aⅴ| 又紧又爽又黄一区二区| 最黄视频免费看| 免费黄频网站在线观看国产| 中文字幕最新亚洲高清| 国产精品免费一区二区三区在线 | 国产精品二区激情视频| 如日韩欧美国产精品一区二区三区| 亚洲精品中文字幕在线视频| 中文字幕人妻熟女乱码| 成人国产一区最新在线观看| 99热网站在线观看| 午夜福利视频在线观看免费| 夜夜夜夜夜久久久久| 丝袜喷水一区| 91麻豆av在线| 巨乳人妻的诱惑在线观看| 一本色道久久久久久精品综合| 97在线人人人人妻| 亚洲成a人片在线一区二区| 免费黄频网站在线观看国产| 久久久久国产一级毛片高清牌| 日本欧美视频一区| 法律面前人人平等表现在哪些方面| 少妇被粗大的猛进出69影院| 欧美久久黑人一区二区| 日本精品一区二区三区蜜桃| 国产精品一区二区在线不卡| kizo精华| 国产人伦9x9x在线观看| av视频免费观看在线观看| 午夜激情久久久久久久| 亚洲美女黄片视频| 性少妇av在线| 韩国精品一区二区三区| 日韩有码中文字幕| 国产一区二区三区视频了| 桃红色精品国产亚洲av| 午夜两性在线视频| 青草久久国产| 成人av一区二区三区在线看| 视频在线观看一区二区三区| 黄色成人免费大全| 亚洲一码二码三码区别大吗| 中文字幕精品免费在线观看视频| 99精国产麻豆久久婷婷| 欧美人与性动交α欧美软件| 免费女性裸体啪啪无遮挡网站| 国产亚洲精品一区二区www | 欧美日本中文国产一区发布| 中文字幕最新亚洲高清| 久热这里只有精品99| www.精华液| av在线播放免费不卡| 色尼玛亚洲综合影院| 欧美激情 高清一区二区三区| 日本av手机在线免费观看| 日韩三级视频一区二区三区| 日日爽夜夜爽网站| av有码第一页| 丰满少妇做爰视频| 99国产综合亚洲精品| 99九九在线精品视频| 91av网站免费观看| 啦啦啦中文免费视频观看日本| 成年人免费黄色播放视频| 最新美女视频免费是黄的| 18禁国产床啪视频网站| 国产区一区二久久| 日韩视频在线欧美| 国产精品 欧美亚洲| 国产一卡二卡三卡精品| 最新美女视频免费是黄的| 天天影视国产精品| 久久久国产精品麻豆| 亚洲成人手机| 丝袜美腿诱惑在线| 9热在线视频观看99| 香蕉国产在线看| 韩国精品一区二区三区| 国产成人欧美在线观看 | 午夜日韩欧美国产| 亚洲av第一区精品v没综合| 亚洲色图av天堂| 国产精品偷伦视频观看了| 飞空精品影院首页| 精品一区二区三区四区五区乱码| 纯流量卡能插随身wifi吗| 久久久精品国产亚洲av高清涩受| 国产日韩欧美亚洲二区| 精品欧美一区二区三区在线| 国产高清激情床上av| 91大片在线观看| 亚洲熟妇熟女久久| 黄色毛片三级朝国网站| 国产成人精品在线电影| 欧美人与性动交α欧美软件| 啪啪无遮挡十八禁网站| 黄网站色视频无遮挡免费观看| av福利片在线| videos熟女内射| 国产精品免费大片| 国产伦理片在线播放av一区| 黄色毛片三级朝国网站| 丝袜美腿诱惑在线| 9热在线视频观看99| 欧美日韩成人在线一区二区| 久久国产精品影院| 午夜老司机福利片| 他把我摸到了高潮在线观看 | 亚洲av欧美aⅴ国产| 99久久人妻综合| 黑人欧美特级aaaaaa片| 大型av网站在线播放| 亚洲av成人不卡在线观看播放网| av一本久久久久| 大香蕉久久网| 国产精品亚洲一级av第二区| 日韩中文字幕视频在线看片| 五月开心婷婷网| 在线观看免费视频日本深夜| 精品久久蜜臀av无| 亚洲av日韩精品久久久久久密| 欧美成人午夜精品| 91麻豆av在线| 一个人免费在线观看的高清视频| 精品国产亚洲在线| 国产精品免费大片| 丝袜美腿诱惑在线| 中文字幕制服av| 国产精品久久电影中文字幕 | 色精品久久人妻99蜜桃| 精品亚洲成国产av| 啦啦啦在线免费观看视频4| 久久免费观看电影| tube8黄色片| 免费一级毛片在线播放高清视频 | 欧美 日韩 精品 国产| 高清在线国产一区| 天堂中文最新版在线下载| 三上悠亚av全集在线观看| 国产成人啪精品午夜网站| 香蕉丝袜av| 少妇粗大呻吟视频| 制服人妻中文乱码| 欧美在线一区亚洲|