陳淵釗 章定國 黎亮
摘要: 為了消除或減弱傳統(tǒng)絕對節(jié)點(diǎn)坐標(biāo)法(Absolute Nodal Coordinate Formulation,ANCF)中縮減梁單元的“失真現(xiàn)象”,構(gòu)造了一種適用于描述柔性梁絕對位形的無網(wǎng)格徑向基點(diǎn)插值 (Radial Point Interpolation Method, RPIM)形函數(shù),提出了柔性梁基于無網(wǎng)格RPIM的ANCF法。傳統(tǒng)ANCF梁單元在描述純彎曲懸臂梁的位形(一段圓?。r(shí),即便獲得精確的單元節(jié)點(diǎn)坐標(biāo),通過梁單元插值得到的位形與懸臂梁的實(shí)際位形存在差異,即失真現(xiàn)象,懸臂梁越彎曲該差異越明顯,失真越大。失真導(dǎo)致偽應(yīng)變的產(chǎn)生,極大地影響數(shù)值求解的精度。而RPIM法采用一組場節(jié)點(diǎn)離散問題域,通過計(jì)算點(diǎn)支持域內(nèi)的場節(jié)點(diǎn)構(gòu)造形函數(shù),計(jì)算點(diǎn)一般位于支持域的中心區(qū)域,不同計(jì)算點(diǎn)之間的支持域有較多重合的部分,加強(qiáng)了節(jié)點(diǎn)之間的聯(lián)系,能更合理、準(zhǔn)確地描述絕對位形,能有效減小失真。研究表明:基于RPIM的ANCF法較傳統(tǒng)ANCF法精度更高、計(jì)算效率更快、對不等距分布節(jié)點(diǎn)的適應(yīng)性更強(qiáng),在大變形柔性多體系統(tǒng)動(dòng)力學(xué)領(lǐng)域內(nèi)具有推廣性。
關(guān)鍵詞: 多體系統(tǒng)動(dòng)力學(xué); 柔性梁; 絕對節(jié)點(diǎn)坐標(biāo)法; 徑向基點(diǎn)插值法; 失真
中圖分類號(hào): O313.7; O322 文獻(xiàn)標(biāo)志碼: A 文章編號(hào): 1004-4523(2018)02-0245-10
DOI:10.16385/j.cnki.issn.1004-4523.2018.02.007
引 言
ANCF法最早由Shabana[1]于1996年提出,該方法直接從連續(xù)介質(zhì)力學(xué)出發(fā),推導(dǎo)得到的動(dòng)力學(xué)方程具有常數(shù)質(zhì)量陣、不存在離心力項(xiàng)和科氏力項(xiàng)等特點(diǎn),是一種適用于求解大轉(zhuǎn)動(dòng)、大變形動(dòng)力學(xué)問題的方法[2-5]。一般地,ANCF法基于有限單元法,許多ANCF梁、板單元是通過多項(xiàng)式構(gòu)造得到的[6-11]。然而Sanborn[12]發(fā)現(xiàn)三次多項(xiàng)式曲線的彎曲程度會(huì)影響參數(shù)點(diǎn)的分布,在曲線彎曲程度較大時(shí)會(huì)出現(xiàn)偽應(yīng)變及曲線失真。張?jiān)絒13]指出純彎曲的ANCF縮減梁單元在彎曲程度較大時(shí)存在軸向拉伸變形,即存在偽拉伸應(yīng)變,并認(rèn)為其原因?yàn)閺澢?、拉伸?yīng)變相互耦合,提出相應(yīng)的解耦方法以消除偽應(yīng)變,但其形函數(shù)仍與ANCF縮減梁單元一致。而Hyldahl [14]使用ANCF矩形殼單元離散一個(gè)四分之一空心圓盤時(shí),發(fā)現(xiàn)一些單元之間存在“空白”,即相鄰兩個(gè)單元彎曲的共用邊不重合,存在明顯的縫隙。空心圓盤和ANCF殼單元可以分別看成是矩形板、ANCF矩形單元在變形后的形狀,ANCF矩形單元基于精確的節(jié)點(diǎn)坐標(biāo)插值得到的絕對位形與變形后的矩形板存在誤差,即失真現(xiàn)象,說明基于多項(xiàng)式的ANCF單元并不能很好地描述變形體的絕對位形。事實(shí)上,若給定一段圓心角較大的圓弧曲線(純彎曲懸臂梁的位形),將兩端端點(diǎn)的位置及梯度精確賦值給ANCF縮減梁單元節(jié)點(diǎn)坐標(biāo),通過單元插值得到的曲線與實(shí)際曲線會(huì)存在偏差,曲線越彎曲偏差越大,因此,單個(gè)ANCF一維梁單元并不能很好地描述大曲率的曲線,單元的位形不同于純彎曲細(xì)長梁的位形,即存在失真現(xiàn)象,從而使得單元中產(chǎn)生偽應(yīng)變。
為避免偽應(yīng)變的產(chǎn)生,應(yīng)使ANCF精準(zhǔn)地描述整個(gè)絕對位形,消除或減小失真,一般的解決方法便是大量增加單元數(shù)目,避免失真現(xiàn)象的產(chǎn)生,但這樣會(huì)大大增加計(jì)算的規(guī)模及耗時(shí)。因此,構(gòu)造一種精確描述絕對位形的離散方法是非常有必要的。計(jì)算力學(xué)中除了有限元法(Finite Element Method, FEM)以外,仍有不少新發(fā)展起來的離散方法,如無網(wǎng)格法(Meshfree Method)[15]。無網(wǎng)格法是一種不依賴單元網(wǎng)格的離散方法,該方法采用一組點(diǎn)來離散求解區(qū)域,并應(yīng)用計(jì)算點(diǎn)支持域內(nèi)的場節(jié)點(diǎn)構(gòu)造近似函數(shù),可以使用較多的場節(jié)點(diǎn)來提高近似函數(shù)的連續(xù)性[15]。FEM法兩個(gè)相鄰單元的計(jì)算點(diǎn)之間的聯(lián)系僅僅依靠單元間的共同節(jié)點(diǎn),而無網(wǎng)格法不同計(jì)算點(diǎn)之間的聯(lián)系則是依靠對應(yīng)支持域重合部分的場節(jié)點(diǎn),比單元的共同節(jié)點(diǎn)多得多,使得無網(wǎng)格法節(jié)點(diǎn)之間的聯(lián)系更加緊密,可以更好地描述變形場。而目前應(yīng)用無網(wǎng)格法對絕對坐標(biāo)場插值的研究尚未有報(bào)道。
現(xiàn)有的無網(wǎng)格法有多種,如再生核粒子法(Reproducing Kernel Particle Method, RKPM)[16-18]、無網(wǎng)格局部Perov-Galerkin法(Meshfree Local Perov-Galerkin Method, MLPGM)[19]、徑向基點(diǎn)插值法[20]等。其中Liu GR等 [15,20] 提出的RPIM具有魯棒性、高精度、Kronecker函數(shù)特性等特點(diǎn),因此多被用于固體、流體力學(xué)問題的研究中[20-25]。杜超凡等成功將無網(wǎng)格法RPIM應(yīng)用到柔性梁一次近似剛?cè)狁詈夏P蚚26],并在柔性多體系統(tǒng)動(dòng)力學(xué)問題上取得了良好的結(jié)果,說明無網(wǎng)格法在柔性多體系統(tǒng)動(dòng)力學(xué)具有推廣性[26-28]。
鑒于無網(wǎng)格RPIM法的優(yōu)勢,本文構(gòu)造一種適用于描述柔性梁絕對位形的RPIM形函數(shù),并基于連續(xù)介質(zhì)力學(xué)和哈密頓原理建立平面細(xì)長梁系統(tǒng)的動(dòng)力學(xué)方程,提出基于無網(wǎng)格RPIM的絕對節(jié)點(diǎn)坐標(biāo)法。本文首先闡明ANCF縮減梁單元中失真現(xiàn)象的客觀存在性,通過與本文方法對比,分析偽應(yīng)變產(chǎn)生原因,同時(shí)檢驗(yàn)本文方法描述曲線的性能。再通過大變形靜力學(xué)、動(dòng)力學(xué)算例,分析失真對傳統(tǒng)ANCF縮減梁單元精度的影響,同時(shí)比較說明本文方法精確處理大變形問題的精度及效率。
1 柔性梁的ANCF模型
本文研究對象為平面梁系統(tǒng),采用Euler-Bernouli假設(shè),不考慮剪切變形,并認(rèn)為變形時(shí)梁的橫截面仍保持為平面且與中軸線垂直避免偽應(yīng)變的產(chǎn)生,其實(shí)就是避免失真現(xiàn)象,但失真現(xiàn)象很難完全消除,僅能盡量減小失真的程度,所以需要增加離散的節(jié)點(diǎn)數(shù)。事實(shí)上,除了加密離散以外,還可以采用其他更合理的插值方法來減小失真。若取長度為3 m整圓,等長劃分三段,即取四節(jié)點(diǎn),應(yīng)用傳統(tǒng)ANCF法和本文方法進(jìn)行插值,如圖4所示,傳統(tǒng)ANCF插值結(jié)果偏差較大,失真明顯,本文方法所得結(jié)果基本與圓重合,說明本文方法較傳統(tǒng)ANCF描述曲線更合理,失真的程度較傳統(tǒng)ANCF法小得多。表3給出了此時(shí)基于兩種方法求得的勢能。在傳統(tǒng)ANCF結(jié)果中,一個(gè)長度為1 m、曲率κ=2π/3單元的偽應(yīng)變能為7.3985 J(如表2所示),三個(gè)單元的偽應(yīng)變之和為22.1958 J,三個(gè)單元所得偽勢能為一個(gè)單元偽勢能的三倍,說明傳統(tǒng)ANCF單元之間聯(lián)系簡單,偽勢能較大,而本文方法所得結(jié)果較傳統(tǒng)ANCF法小得多,說明本文方法能有效減小失真。
4 仿真算例
由上一節(jié)得知ANCF描述彎曲較大的曲線時(shí)會(huì)失真,從而產(chǎn)生偽應(yīng)變,這種現(xiàn)象對ANCF求解大變形問題時(shí)有著怎樣的影響,下面通過兩個(gè)簡單的例子進(jìn)行討論。
4.1 受集中力矩作用的懸臂梁
考慮圖5所示的懸臂梁,梁末端受集中力矩τ的作用,研究其靜力學(xué)問題。梁長L=1.8 m,橫截面積A=2.5 cm2,截面慣性矩I=0.130 cm4,彈性模量E=68.95 GPa,密度ρ=2766.67 kg/m3,即梁參數(shù)選取與文獻(xiàn)[30-32]一致。
圖5 受集中力矩作用的懸臂梁
Fig.5 Cantilever beam under a moment
若梁末端受到力矩τ作用,力矩大小為τ=λEIL(51)其中λ為一常數(shù)。梁變形后的軸線為一段弧線,相應(yīng)的曲率為κ=τLEI=λ(52) 當(dāng)λ=2π時(shí)柔性梁的位形為一整圓,梁末端的水平、豎直方向上的絕對位移為0。選取不同數(shù)目的等距離分布的節(jié)點(diǎn)和不等距離分布的節(jié)點(diǎn),對比本文方法和傳統(tǒng)ANCF法的差異。
等距分布的節(jié)點(diǎn)在梁上第i個(gè)節(jié)點(diǎn)的水平絕對坐標(biāo)為xi=(i-1)Lm, i=1,…,m(53) 不等距分布的節(jié)點(diǎn)選取切比雪夫插值節(jié)點(diǎn),梁兩端節(jié)點(diǎn)分布較密集,中間稀疏,梁上第i個(gè)節(jié)點(diǎn)的水平絕對坐標(biāo)為xi=L2-L2cosi-1πm, i=1,…,m(54) 傳統(tǒng)ANCF法在使用這些節(jié)點(diǎn)時(shí)為相鄰兩節(jié)點(diǎn)構(gòu)成一個(gè)單元。
在計(jì)算時(shí),需忽略動(dòng)能的影響,故靜力學(xué)方程為Qτ-F=0(55) 利用Newton-Raphson迭代即可求解靜力學(xué)方程。
表4為梁末端的水平方向的絕對位移,其解析解為0。從表4可以看出,在節(jié)點(diǎn)數(shù)較少時(shí),傳統(tǒng)ANCF法計(jì)算結(jié)果不準(zhǔn)確,本文方法計(jì)算結(jié)果仍有較高精度。此外,使用等距節(jié)點(diǎn)的傳統(tǒng)ANCF法仿真數(shù)值結(jié)果的精度要比使用不等距節(jié)點(diǎn)好,甚至高一個(gè)數(shù)量級(jí),說明傳統(tǒng)ANCF法的計(jì)算精度受節(jié)點(diǎn)的分布情況影響很大,對網(wǎng)格依賴性高,而本文方法幾乎不受節(jié)點(diǎn)分布影響,對節(jié)點(diǎn)分布的依賴性很弱,由此可說明本文方法較傳統(tǒng)ANCF法對不等距分布的節(jié)點(diǎn)更具適應(yīng)性,數(shù)值穩(wěn)定性高。
表4 梁末端的水平方向絕對位移(單位:m)
Tab.4 Horizontal position of the free end of beam (Unit:m)節(jié)點(diǎn)數(shù)ANCFRPIM等距不等距等距不等距4-0.31663-0.36876-0.003530.003815-0.30480-0.514720.001210.000136-0.13772-0.428260.000080.000027-0.04940-0.29022-0.00006-0.000018-0.01829-0.16898-0.000070.000039-0.00767-0.08916-0.00003〖〗0.0000210-0.00368-0.04552-0.00001-0.00001 圖6為5節(jié)點(diǎn)等距分布時(shí),應(yīng)用兩種方法分別計(jì)算λ=0,0.5π,π,1.5π,2π時(shí)柔性梁的位形所得結(jié)果。如圖所示,λ=0.5π時(shí),兩種方法基本與解析解吻合,說明求解柔性梁變形較小的靜力學(xué)問題時(shí),兩種方法使用較少節(jié)點(diǎn)也可得到較為可信的結(jié)果,同時(shí)也驗(yàn)證了本文方法的正確性。當(dāng)λ=2π時(shí),梁末端點(diǎn)A應(yīng)與懸臂端點(diǎn)O重合,傳統(tǒng)ANCF法計(jì)算得到的點(diǎn)A位置與解析解相差較大距離,且梁的位形與解析解誤差明顯,本文方法與解析解的符合度較好,說明了本文方法的正確性,且精度較ANCF法高。事實(shí)上,λ=0.5π時(shí),每個(gè)ANCF縮減梁單元的轉(zhuǎn)角θi很小,最大的僅有22.5°,所以此時(shí)的失真現(xiàn)象非常小,可以忽略;而λ=2π時(shí),單元轉(zhuǎn)角θi最大的有74°,失真現(xiàn)象明顯,偽應(yīng)變較大,會(huì)產(chǎn)生較大誤差,極大地影響了傳統(tǒng)ANCF法的求解精度。
圖6 受集中力矩作用時(shí)柔性梁的位形
Fig.6 Position of beam under a moment圖7為λ=2π時(shí)柔性梁的位形。此時(shí),傳統(tǒng)ANCF法取10個(gè)節(jié)點(diǎn)形成單元計(jì)算,本文方法取5個(gè)節(jié)點(diǎn)計(jì)算。如圖7所示,傳統(tǒng)ANCF法取等距分布的節(jié)點(diǎn)時(shí)計(jì)算結(jié)果基本與解析解重合,此時(shí)最大的單元轉(zhuǎn)角θi有39°,失真現(xiàn)象基本可以忽略,而使用不等距節(jié)點(diǎn)時(shí)誤差較大,此時(shí)最大的單元轉(zhuǎn)角θi有60°,失真現(xiàn)象明顯;本文方法取等距節(jié)點(diǎn)和不等距節(jié)點(diǎn)均與解析解基本重合,與表4所得結(jié)論一致,說明傳統(tǒng)ANCF法的網(wǎng)格對精度影響很大,穩(wěn)定性較低,本文方法則沒有這樣的缺陷。
圖7 λ=2π時(shí)柔性梁的位形
Fig.7 Position of beam under the moment (λ=2π)4.2 重力單擺
考慮如圖8所示的重力單擺,梁的材料參數(shù)仍與文獻(xiàn)[30-32]一致。
圖8 重力單擺
Fig.8 Gravity pendulum
圖9(a)和(b)分別為梁下落過程中末端的豎向、水平絕對位移,此時(shí)傳統(tǒng)ANCF法劃分四單元、本文方法取五節(jié)點(diǎn)。此時(shí)兩種方法仿真結(jié)果基本重合,ANCF縮減梁單元轉(zhuǎn)角θi最大值為0.15°,此時(shí)的梁在小變形狀態(tài),說明在求解柔性梁小變形動(dòng)力學(xué)問題時(shí),兩種方法使用較少的單元(節(jié)點(diǎn))數(shù)不會(huì)導(dǎo)致明顯的失真,可得到較好的數(shù)值結(jié)果。
圖9 自由單擺末端的絕對位移
Fig.9 Position of the free end of the pendulum
圖10 E=68.95 MPa時(shí)自由單擺末端的豎直絕對位移
Fig.10 Vertical position of free end of the pendulum
(E=68.95 MPa)圖10給出了E=68.95 MPa時(shí)柔性梁末端的豎向絕對位移。從圖10看,傳統(tǒng)ANCF 和RPIM分別在13個(gè)單元、10個(gè)節(jié)點(diǎn)時(shí)基本收斂,事實(shí)上,以某一點(diǎn)的位移作為收斂判斷的依據(jù)是不夠準(zhǔn)確的,如圖11所示,傳統(tǒng)ANCF法使用30個(gè)單元和使用13、17個(gè)單元計(jì)算得到的2.5 s時(shí)柔性梁的位形有輕微的誤差,而與RPIM使用11個(gè)節(jié)點(diǎn)的計(jì)算結(jié)果更符合,說明RPIM精度更好。值得注意的是,傳統(tǒng)ANCF法使用13個(gè)單元時(shí),彎曲最大的單元θi為39.9°;使用17個(gè)單元時(shí),彎曲最大的單元θi為32.9°。說明少量增加單元個(gè)數(shù)并不能迅速減小某些單元的彎曲程度,而大量增加單元個(gè)數(shù)則大大增加了計(jì)算的耗時(shí)及規(guī)模,若采用RPIM則可有效提高計(jì)算精度。
圖11 2.5 s時(shí)柔性梁的位形
Fig.11 Deformed shape of the pendulum (t=2.5 s)
圖12 梁上每點(diǎn)的曲率
Fig.12 Curvature of points of the beam
由于應(yīng)力應(yīng)變比位移更為重要,故以2.5 s時(shí)柔性梁上每點(diǎn)的曲率來衡量兩種方法的收斂性,如圖12所示,傳統(tǒng)ANCF法和RPIM分別在使用23個(gè)單元和14個(gè)節(jié)點(diǎn)時(shí)收斂。表5列出了兩種方法應(yīng)用廣義α法[33]計(jì)算時(shí)的相對耗時(shí),傳統(tǒng)ANCF法使用23個(gè)單元計(jì)算耗時(shí)比RPIM使用14個(gè)節(jié)點(diǎn)計(jì)算耗時(shí)要多得多,可表明RPIM精確處理大變形問題的高效性。圖13給出了柔性單擺下落過程中的能量變化曲線,系統(tǒng)的動(dòng)能、勢能、應(yīng)變能之和恒為零,即系統(tǒng)能量守恒,再次說明RPIM法的正確性。
表5 兩種方法的相對耗時(shí)
Tab.5 The relative time consuming of two methodsANCFRPIM19
單元23
單元29
單元12
節(jié)點(diǎn)14
節(jié)點(diǎn)15
節(jié)點(diǎn)1.4272.25784.26311.3421.494注:該算例采用廣義α法計(jì)算[33]
圖13 能量平衡曲線
Fig.13 Energy balance curve5 結(jié) 論
本文應(yīng)用無網(wǎng)格RPIM法對平面柔性梁的絕對位形進(jìn)行插值,利用支持域內(nèi)的場節(jié)點(diǎn)所對應(yīng)的徑向基函數(shù)及其導(dǎo)數(shù)來構(gòu)造絕對位形的插值形函數(shù),并通過哈密頓原理建立柔性梁系統(tǒng)的動(dòng)力學(xué)方程,提出基于無網(wǎng)格RPIM的ANCF法。研究表明:
1) 傳統(tǒng)ANCF縮減梁單元在求解大變形問題時(shí)會(huì)存在失真現(xiàn)象,單元越彎曲失真現(xiàn)象就越明顯,產(chǎn)生的偽應(yīng)變也越大,嚴(yán)重降低了數(shù)值求解的精度。故應(yīng)控制每個(gè)單元的彎曲程度,加密網(wǎng)格、大量增加單元個(gè)數(shù),但也同時(shí)大大增加了計(jì)算成本。
2) 本文方法能合理、準(zhǔn)確地描述柔性梁變形后的絕對位形曲線,有效減小失真的程度,降低偽應(yīng)變的影響。通過靜力學(xué)和動(dòng)力學(xué)仿真算例可以說明:本文方法較傳統(tǒng)ANCF法精度更高、計(jì)算效率更快,對不等距分布節(jié)點(diǎn)的適應(yīng)性更強(qiáng)。
參考文獻(xiàn):
[1] Shabana A A. An absolute nodal coordinate formulation for the large rotation and deformation analysis of flexible bodies [R].Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, 1996.
[2] Yakoub R Y, Shabana A A. Three dimensional absolute nodal coordinate formulation for beam elements: implementation and applications [J]. Journal of Mechanical Design, 2001, 123(4): 614—621.
[3] Shabana A A, Yakoub R Y. Three dimensional absolute nodal coordinate formulation for beam elements: theory [J]. Journal of Mechanical Design, 2001, 123(4): 606—613.
[4] Omar M A, Shabana A A. A two-dimensional shear deformable beam for large rotation and deformation problems [J]. Journal of Sound and Vibration, 2001, 243(3): 565—576.
[5] Berzeri M, Shabana A A. Development of simple models for the elastic forces in the absolute nodal co-ordinate formulation [J]. Journal of Sound and Vibration, 2000, 235(4): 539—565.
[6] Olshevskiy A, Dmitrochenko O, Dai M D, et al. The simplest 3-, 6- and 8-noded fully-parameterized ANCF plate elements using only transverse slopes [J]. Multibody System Dynamics, 2014, 34(1): 23—51.
[7] Yan D, Liu C, Tian Q, et al. A new curved gradient deficient shell element of absolute nodal coordinate formulation for modeling thin shell structures [J]. Nonlinear Dynamics, 2013, 74(1-2): 153—164.
[8] Dmitrochenko O, Mikkola A. Two simple triangular plate elements based on the absolute nodal coordinate formulation[J]. Journal of Computational and Nonlinear Dynamics, 2008, 3(4): 041012.
[9] Gerstmayr J, Shabana A A. Analysis of thin beams and cables using the absolute nodal coordinate formulation [J]. Nonlinear Dynamics, 2006, 45(1-2): 109—130.
[10]Dufva K E, Sopanen J T, Mikkola A M. A two-dimensional shear deformable beam element based on the absolute nodal coordinate formulation[J]. Journal of Sound and Vibration, 2005, 280(3-5): 719—738.
[11]Dufva K, Shabana A A. Analysis of thin plate structures using the absolute nodal coordinate formulation[J]. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 2005, 219(4): 345—355.
[12]Sanborn G G, Choi J, Choi J H. Curve-induced distortion of polynomial space curves, flat-mapped extension modeling, and their impact on ANCF thin-plate finite elements [J]. Multibody System Dynamics, 2011, 26(2): 191—211.
[13]張 越, 趙 陽, 譚春林,等. ANCF索梁單元應(yīng)變耦合問題與模型解耦[J]. 力學(xué)學(xué)報(bào), 2016, 48(6): 1406—1415.
Zhang Yue, Zhao Yan,Tan Chunlin, et al. The strain coupling problem and model decoupling of ANCF cable/beam element[J]. Chinese Journal of Theoretical and Applied Mechanics,2016,48(6):1406—1415.
[14]Hyldahl P, Mikkola A M, Balling O, et al. Behavior of thin rectangular ANCF shell elements in various mesh configurations [J]. Nonlinear Dynamics, 2014, 78(2): 1277—1291.
[15]劉桂榮,顧元通. 無網(wǎng)格法理論及程序設(shè)計(jì)[M].王建明,周學(xué)軍,譯. 濟(jì)南:山東大學(xué)出版社,2007:45—133.
Liu G R, Gu Y T. An Introduction to Meshfree Methods and Their Programming[M]. Jinan:Shandong University Press, 2007:45—133.
[16]Chen J S, Pan C, Roque C M O L, et al. A lagrangian reproducing kernel particle method for metal forming analysis[J]. Computational Mechanics, 1998, 22(3): 289—307.
[17]Chen J S, Pan C, Wu C T, et al. Reproducing kernel particle methods for large deformation analysis of non-linear structures[J]. Computer Methods in Applied Mechanics & Engineering, 1996, 139(1-4): 195—227.
[18]Liu W K, Jun S, Zhang Y F. Reproducing kernel particle methods. Int J Numer Meth Eng[J]. International Journal for Numerical Methods in Fluids, 1995, 20(8-9): 1081—1106.
[19]Xiong Y B, Long S Y. Local petrov-galerkin method for a thin plate[J]. Applied Mathematics and Mechanics, 2004, 25(2): 210—218.
[20]Wang J G, Liu G R. A point interpolation meshless method based on radial basis functions[J]. International Journal for Numerical Methods in Engineering, 2002, 54(11): 1623—1648.
[21]Cui X Y, Feng H, Li G Y, et al. A cell-based smoothed radial point interpolation method (CS-RPIM) for three-dimensional solids[J]. Engineering Analysis with Boundary Elements, 2015, 50: 474—485.
[22]Pilafkan R, Folkow P D, Darvizeh M, et al. Three dimensional frequency analysis of bidirectional functionally graded thick cylindrical shells using a radial point interpolation method (RPIM) [J]. European Journal of Mechanics / A Solids, 2013, 39(5): 26—34.
[23]Gu Y T, Wang W L, Fu Q. An enriched radial point interpolation method (e-RPIM) for the analysis of crack tip[J]. Engineering Fracture Mechanics, 2010, 78(1): 175—190.
[24]Chen S L, Li Y X. An efficient RPIM for simulating wave motions in saturated porous media[J]. International Journal of Solids & Structures, 2008, 45(25): 6316—6332.
[25]Dai K Y, Liu G R, Han X, et al. Inelastic analysis of 2D solids using a weak-form RPIM based on deformation theory[J]. Computer Methods in Applied Mechanics & Engineering, 2006, 195(33): 4179—4193.
[26]杜超凡, 章定國, 洪嘉振. 徑向基點(diǎn)插值法在旋轉(zhuǎn)柔性梁動(dòng)力學(xué)中的應(yīng)用[J]. 力學(xué)學(xué)報(bào), 2015, 47(2): 279—288.
Du Chaofan, Zhang Dingguo, Hong Jiazhen. A meshfree method based on radial point interpolation method for the dynamic analysis of rotating flexible beams[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015,47(2): 279—288.
[27]杜超凡, 章定國. 光滑節(jié)點(diǎn)插值法:計(jì)算固有頻率下界值的新方法[J]. 力學(xué)學(xué)報(bào), 2015, 47(5): 839—847.
Du Chaofan, Zhang Dingguo. Node-based smoothed point interpolation method: a new method for computing lower bound of natural frequency[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(5): 839—847.
[28]杜超凡, 章定國. 基于無網(wǎng)格點(diǎn)插值法的旋轉(zhuǎn)懸臂梁的動(dòng)力學(xué)分析[J]. 物理學(xué)報(bào), 2015,64(3): 396—405.
Du Chaofan, Zhang Dingguo. A meshfree method based on point interpolation for dynamic analysis of rotating cantilever beams[J]. Acta Phys. Sin., 2015, 64(3): 396—405.
[29]章孝順,章定國,陳思佳,等. 基于絕對節(jié)點(diǎn)坐標(biāo)法的大變形柔性梁幾種動(dòng)力學(xué)模型研究[J].物理學(xué)報(bào), 2016, 65(9):148—157.
Zhang Xiaoshun, Zhang Dingguo, Chen Sijia,et al. Several dynamic models of a large deformation flexible beam based on the absolute nodal coordinate formulation[J]. Acta Phys. Sin., 2016, 65(9):148—157.
[30]陳思佳, 章定國, 洪嘉振. 大變形旋轉(zhuǎn)柔性梁的一種高次剛?cè)狁詈蟿?dòng)力學(xué)模型[J]. 力學(xué)學(xué)報(bào), 2013, 45(2):251—256.
Chen Sijia, Zhang Dingguo, Hong Jiazhen. A high-order rigid-flexible coupling model of a rotating flexible beam under large deformation[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(2):251—256.
[31]李 彬, 劉錦陽. 大變形柔性梁系統(tǒng)的絕對坐標(biāo)方法[J]. 上海交通大學(xué)學(xué)報(bào), 2005, 39(5): 827—831.
Li Bin, Liu Jinyang. Application of absolute nodal coordination formulation in flexible beams with large deformation[J]. Journal of Shanghai Jiaotong University, 2005, 39(5): 827—831.
[32]章孝順, 章定國, 洪嘉振. 考慮曲率縱向變形效應(yīng)的大變形柔性梁剛?cè)狁詈蟿?dòng)力學(xué)建模與仿真[J]. 力學(xué)學(xué)報(bào),2016,48(3):692—701.
Zhang X H, Zhang D G, Hong J Z. Rigid-flexible couple dynamic modeling and simulation with the longitudinal deformation induced curvature effect for a rotating flexible beam under larger deformation [J]. Chinese Journal of Theoretical and Applied Mechanics,2016,48(3):692—701.
[33]Amold M, Brüls O. Convergence of the generalized-α scheme for constrained mechanical systems[J]. Multibody System Dynamics, 2007,18(2):185—202.
An absolute nodal coordinate formulation based on
radial point interpolation method for planar slender beams
CHEN Yuan-zhao, ZHANG Ding-guo, LI Liang
(School of Science, Nanjing University of Science and Technology, Nanjing 210094, China)
Abstract: In order to alleviate or eliminate the ‘distortion phenomenon of the deficient beam elements in the traditional absolute nodal coordinate formulation (ANCF), an ANCF based on radial point interpolation method (RPIM) for flexible beams is proposed in which a new RPIM shape functions are constructed to describe the absolute configuration of flexible beams. For a pure bending cantilever beam (an arc), there is always difference between configuration of the beams by using the gradient deficient beam elements and the actual configuration of the beam in the traditional ANCF. The difference, namely ‘distortion phenomenon, becomes more obvious with the increase of the bending deformation of the beam, which may cause the pseudo strain and have serious influence on accuracy of numerical solution. In the present method, the RPIM is used to discretize the deformation field through a set of field nodes and the shape functions are generally established based on field nodes within a support domain of the calculating point. The calculating points are generally located in the central region of the support domain, and the support domain of different calculating points can have more coincident parts. Thus, the connection between field nodes is strengthened, which makes the method describe the configuration in more reasonable and effectively alleviate influence of the distortion and pseudo strain. The simulation results show that the proposed method has higher calculation accuracy and efficiency and is more adaptive for the non-equidistant nodes compared with the traditional ANCF, which can be further extended in the dynamic field of flexible multi-body system.
Key words: multibody dynamics; flexible beam; absolute nodal coordinate formulation; radial point interpolation method; distortion