陳筱詩(shī) 肖瑩瑩 周嬌 曾文強(qiáng) 楊進(jìn)國(guó)
[摘要] 目的 觀察右美托咪定(DEX)預(yù)處理對(duì)細(xì)菌脂多糖(LPS)激活的星形膠質(zhì)細(xì)胞(AS)高遷移率族蛋白1(HMGB1)在基因水平表達(dá)的影響,探究其與煙堿樣乙酰膽堿受體α7亞型(α7nAChR)的關(guān)系。 方法 選取新生1~2 d的SD大鼠,分離、培養(yǎng)大腦皮質(zhì)AS。將細(xì)胞接種于細(xì)胞培養(yǎng)板上,按照隨機(jī)數(shù)字表法分為空白對(duì)照組、LPS組、DEX預(yù)處理組、α銀環(huán)蛇毒素(α-BGT,為α7nAChR拮抗劑)組和α-BGT預(yù)處理組。免疫細(xì)胞化學(xué)技術(shù)檢測(cè)AS特異性標(biāo)志物膠質(zhì)纖維酸性蛋白(GFAP)的表達(dá),甲基噻唑基四唑(MTT)法檢測(cè)細(xì)胞活力,實(shí)時(shí)熒光定量PCR檢測(cè)各組HMGB1的mRNA表達(dá)水平。 結(jié)果 第三代AS純度達(dá)95%以上。活化的AS HMGB1 mRNA表達(dá)水平上調(diào),與空白對(duì)照組比較差異有高度統(tǒng)計(jì)學(xué)意義(P < 0.01)。與LPS組比較,DEX預(yù)處理組HMGB1 mRNA表達(dá)明顯降低(P < 0.01)。與DEX預(yù)處理組比較,α-BGT預(yù)處理有顯著逆轉(zhuǎn)DEX預(yù)處理的作用(P < 0.01),但是α-BGT單獨(dú)作用于AS則對(duì)HMGB1基因表達(dá)并無(wú)影響(P > 0.05)。 結(jié)論 DEX預(yù)處理下調(diào)HMGB1表達(dá),阻斷α7nAChR后DEX預(yù)處理作用消失,提示DEX預(yù)處理的抗炎作用與其激活α7nAChR相關(guān)。
[關(guān)鍵詞] 星形膠質(zhì)細(xì)胞;脂多糖;右美托咪定;高遷移率族蛋白1;神經(jīng)炎
[中圖分類(lèi)號(hào)] R741 [文獻(xiàn)標(biāo)識(shí)碼] A [文章編號(hào)] 1673-7210(2018)04(c)-0008-05
Effect of Dexmedetomidine pretreatment on HMGB1 mRNA expression in LPS-stimulated astrocytes
CHEN Xiaoshi1 XIAO Yingying1 ZHOU Jiao2 ZENG Wenqiang1 YANG Jinguo1
1.Department of Anesthesiology, Affiliated Dongfeng Hospital, Hubei University of Medicine, Hubei Province, Shiyan 442008, China; 2.Department of Urology, Affiliated Dongfeng Hospital, Hubei University of Medicine, Hubei Province, Shiyan 442008, China
[Abstract] Objective To investigate the effect of Dexmedetomidine pretreatment on the high mobility group box 1 (HMGB1) mRNA expression in lipopolysaccharide (LPS)-stimulated astrocytes (AS), and to explore its relationship with α7 subtype of nicotinic acetylcholine receptor (α7nAChR). Methods The new-born 1-2 day SD rats were selected, and the AS of cerebral cortex was isolated and cultivated. The cells were inoculated on cell culture plates, and they were divided into blank control group, LPS group, DEX-pretreatment group, α-bungatotoxin (α-BGT, which was α7nAChR antagonist) group and α-BGT-pretreatment group. The immunocytochemical technique was used to determine the expression of AS specific marker glial fibrillary acidic protein (GFAP). Methyl thiazolyl tetrazolium (MTT) was to used detect cytoactive. Real-time quantitative PCR was used to detect the mRNA expression levels of HMGB1. Results The purity of the 3rd generation of AS reached above 95%. The expression of AS HMGB1 mRNA was up-regulated, which had statistically significant differences compared with those of blank control group (P < 0.01). Compared with LPS group, the expression of HMGB1 mRNA in DEX-pretreatment group was decreased significantly (P < 0.01). Compared with DEX-pretreatment group, α-BGT-pretreatment had significant effects of reversing DEX-pretreatment (P < 0.01), while single application of α-BGT for AS had no significant effects on the expression of HMGB1 gene (P > 0.05). Conclusion Dexmedetomidine pretreatment can reduce the expression of HMGB1, the DEX-pretreatment effect disappears after cutting off α7nAChR, which indicates that the anti-inflammatory action of DEX-pretreatment may be related to activating α7nAChR.
[Key words] Astrocyte; Lipopolysaccharide; Dexmed?鄄etomidine; High mobility group box 1; Neuritis
在神經(jīng)退行性疾病和腦卒中等疾病中,神經(jīng)炎是其中一個(gè)重要的病理過(guò)程,涉及腦中小膠質(zhì)細(xì)胞和星形膠質(zhì)細(xì)胞(astrocyte,AS)的激活[1]。在神經(jīng)系統(tǒng)與先天免疫系統(tǒng)相互作用對(duì)抗全身炎性反應(yīng)的過(guò)程中,膽堿能抗炎通路起到重要的橋梁作用[2]。越來(lái)越多的證據(jù)表明,煙堿樣乙酰膽堿受體α7亞型(α7nAChR)在介導(dǎo)膽堿能抗炎通路中扮演關(guān)鍵角色[3]。已知α7nAChR激活后抑制高遷移率族蛋白1(high mobility group box 1,HMGB1)的釋放[4]。HMGB1是重要的晚期炎癥介質(zhì),是阿爾茲海默病、帕金森病、脊髓損傷和腦出血等疾病的一個(gè)危險(xiǎn)因子。有研究[5]指出,右美托咪定(DEX)通過(guò)迷走神經(jīng)和α7nAChR依賴(lài)性機(jī)制抑制全身反應(yīng)。我們假設(shè)DEX預(yù)處理通過(guò)激活A(yù)S表面α7nAChR下調(diào)HMGB1表達(dá)以緩解神經(jīng)炎癥,并用細(xì)菌脂多糖(LPS)刺激離體培養(yǎng)AS進(jìn)行驗(yàn)證。
1 材料與方法
1.1 實(shí)驗(yàn)動(dòng)物
SPF級(jí)新生1~2 d雄性Sprague-Dawley(SD)大鼠,由湖北醫(yī)藥學(xué)院動(dòng)物實(shí)驗(yàn)中心提供(湖北省實(shí)驗(yàn)動(dòng)物質(zhì)量合格證號(hào):42000900000625),飼養(yǎng)于標(biāo)準(zhǔn)實(shí)驗(yàn)環(huán)境中。所有動(dòng)物實(shí)驗(yàn)通過(guò)湖北醫(yī)藥學(xué)院實(shí)驗(yàn)動(dòng)物倫理委員會(huì)批準(zhǔn),并嚴(yán)格按照湖北醫(yī)藥學(xué)院動(dòng)物實(shí)驗(yàn)規(guī)范執(zhí)行。
1.2 大鼠皮質(zhì)AS原代培養(yǎng)和傳代
參照文獻(xiàn)[6],取出生1~2 d內(nèi)的SD大鼠,75%酒精浸泡消毒,斷頭取腦組織。在預(yù)冷PBS的培養(yǎng)皿中完整剝除腦膜和血管,獲取大腦皮層。加入2 mL 0.25%的胰蛋白酶溶液,無(wú)菌巴氏吸管輕輕吹打后,37℃恒溫水浴鍋內(nèi)消化30 min。加入2~3 mL完全培養(yǎng)基終止消化,懸液經(jīng)過(guò)200目細(xì)胞濾網(wǎng)過(guò)濾后,4℃、1000 r/min,離心10 min(離心機(jī)型號(hào):Eppendorf 5804R)。細(xì)胞重懸后,接種于T25細(xì)胞培養(yǎng)瓶中,在37℃、5%CO2細(xì)胞培養(yǎng)箱中培養(yǎng)。接種培養(yǎng)30 min后,小心翻轉(zhuǎn)瓶底,吸取上清液至另一無(wú)菌培養(yǎng)瓶以去除成纖維細(xì)胞,繼續(xù)培養(yǎng)。以后每3天換培養(yǎng)液。待培養(yǎng)的第7天左右(細(xì)胞覆蓋率達(dá)80%左右時(shí)),將細(xì)胞培養(yǎng)瓶置于全自動(dòng)恒溫氣浴搖床上,37℃、160 r/min,震蕩16 h,以去除貼壁不牢的少突膠質(zhì)細(xì)胞和小膠質(zhì)細(xì)胞,所得貼壁較牢細(xì)胞即是AS。經(jīng)胰酶消化重懸后,根據(jù)后續(xù)實(shí)驗(yàn)所需密度,接種于細(xì)胞培養(yǎng)瓶或者細(xì)胞培養(yǎng)板中繼續(xù)培養(yǎng)。
1.3 GFAP免疫熒光細(xì)胞化學(xué)染色
用星形膠質(zhì)細(xì)胞特異性標(biāo)志物GFAP免疫熒光細(xì)胞化學(xué)染色法鑒定細(xì)胞。簡(jiǎn)要步驟如下:無(wú)菌鑷子夾取24孔板圓形爬片,每孔1片,每孔接種細(xì)胞密度為5×105。待細(xì)胞覆蓋率達(dá)80%左右,吸棄培養(yǎng)液,用預(yù)冷PBS洗3次,4%多聚甲醛4℃固定15 min。PBS洗滌后0.1% Triton-X-100破膜10 min,PBS漂洗3次,5 min/次。每孔加100 μL 10%山羊血清室溫下封閉1 h。吸走封閉血清,每孔加200 μL一抗(兔抗GFAP抗體,PBS稀釋至1/100)4℃過(guò)夜。PBS洗滌后加羊抗兔FITC-IgG熒光二抗(PBS稀釋至1/400)在37℃避光孵育1 h。吸棄二抗后直接加DAPI染液(PBS稀釋至1/1000),室溫、避光孵育30 min。PBS漂洗后50%甘油-PBS封片。PBS代替一抗作為陰性對(duì)照。熒光顯微鏡下隨機(jī)選擇10個(gè)400×的目鏡視野,進(jìn)行熒光觀察和拍照。計(jì)數(shù)總細(xì)胞數(shù)和GFAP陽(yáng)性細(xì)胞數(shù)量,陽(yáng)性細(xì)胞數(shù)占總細(xì)胞數(shù)的百分?jǐn)?shù)即為AS的純度。
1.4 實(shí)驗(yàn)分組
按照隨機(jī)數(shù)法將細(xì)胞分為以下幾組:空白對(duì)照組、LPS組、DEX預(yù)處理組、α銀環(huán)蛇毒素(α-BGT)組和α-BGT預(yù)處理組,每組3個(gè)孔??瞻讓?duì)照組AS正常培養(yǎng);LPS組用終濃度為0.10 μg/mL的LPS處理12 h;DEX預(yù)處理組用終濃度1 μmol/L的DEX刺激細(xì)胞30 min后,吸棄培養(yǎng)基加入新鮮完全培養(yǎng)基后,加入終濃度為0.10 μg/mL的LPS作用12 h;α-BGT組預(yù)先加入終濃度10 nmol/L的α-BGT,30 min后加入終濃度為0.10 μg/mL的LPS作用12 h;α-BGT預(yù)處理組的星形膠質(zhì)細(xì)胞用終濃度10 nmol/L的α-BGT孵育30 min,加入1 μmol/L DEX孵育30 min,細(xì)胞換液后用0.10 μg/mL的LPS孵育12 h。
1.5 MTT法檢測(cè)細(xì)胞活力
取第三代細(xì)胞按3×104接種于96孔板,每孔200 μL,置37℃、5%CO2細(xì)胞培養(yǎng)箱中培養(yǎng),至細(xì)胞對(duì)數(shù)期時(shí)加入LPS處理相應(yīng)時(shí)間。每孔加入MTT(貯存液濃度為5 mg/mL)20 μL,每時(shí)相點(diǎn)設(shè)置6個(gè)復(fù)孔,繼續(xù)培養(yǎng)4 h。小心吸棄上清,每孔加入100 μL DMSO,避光震蕩10 min,使結(jié)晶物充分溶解。以調(diào)零孔調(diào)零,在酶聯(lián)免疫檢測(cè)儀上測(cè)定各孔570 nm波長(zhǎng)光吸收值(A570),重復(fù)3次。細(xì)胞活力=A實(shí)驗(yàn)孔/A對(duì)照孔×100%。
1.6 實(shí)時(shí)熒光定量PCR檢測(cè)炎癥介質(zhì)的表達(dá)
按照Trizol法提取各組細(xì)胞總RNA,瓊脂糖凝膠電泳驗(yàn)證總RNA的完整性。再根據(jù)反轉(zhuǎn)錄試劑盒說(shuō)明書(shū)將RNA反轉(zhuǎn)錄成cDNA。反應(yīng)體系中含有1.2 μg RNA、20 U逆轉(zhuǎn)錄酶、RNA酶抑制劑以及隨機(jī)引物。PCR儀上70℃變性5 min,降至37℃后,繼續(xù)程序:42℃、60 min,72℃、10 min。設(shè)計(jì)大鼠HMGB1和GAPDH引物,送上海生工生物工程技術(shù)有限公司合成。以cDNA為模板,HMGB1上游引物5′-CCGGATGCTTCTGTCAACTT-3′,下游引物5′-TTGATTTTTGG?鄄GCGGTACTC-3′,擴(kuò)增產(chǎn)物的長(zhǎng)度是248 bp。管家基因GAPDH用作對(duì)照,上游引物是5′-AGACAGCCGCATCTTCTTGT-3′,下游引物5′-CTTGCCGTGGGTAGAGTCAT-3′,擴(kuò)增片段207 bp。實(shí)時(shí)熒光定量PCR的反應(yīng)條件為:95℃預(yù)變性5 min,95℃變性10 s、60℃退火20 s、72℃延伸20 s進(jìn)行40個(gè)循環(huán),終末72℃延伸5 min。實(shí)驗(yàn)重復(fù)3次。反應(yīng)結(jié)束后記錄所得溶解曲線和擴(kuò)增曲線的Ct值,2-ΔΔCt法計(jì)算所得結(jié)果。
1.7 統(tǒng)計(jì)學(xué)方法
應(yīng)用SPSS 22.0對(duì)數(shù)據(jù)進(jìn)行分析,計(jì)量資料采用均數(shù)±標(biāo)準(zhǔn)差(x±s)表示,組間比較采用單因素方差分析,兩兩比較采用SNK法,以P < 0.05為差異有統(tǒng)計(jì)學(xué)意義。
2 結(jié)果
2.1 AS培養(yǎng)與鑒定
取原代培養(yǎng)的AS,在倒置相差顯微鏡下觀察,AS貼壁生長(zhǎng),細(xì)胞之間互相交聯(lián),折光度低。見(jiàn)圖1a(封三)。GFAP主要定位在胞漿,染色陽(yáng)性信號(hào)呈綠色,DAPI復(fù)染胞核呈藍(lán)色激發(fā)光。結(jié)果顯示星形膠質(zhì)細(xì)胞的純度達(dá)到95%以上。見(jiàn)圖1b~d(封三)。
2.2 LPS處理對(duì)細(xì)胞增殖的影響
分別用0.01、0.10 μg/mL和1.00 μg/mL的LPS處理細(xì)胞6、12、24 h,結(jié)果如圖2所示。0.01 μg/mL LPS對(duì)細(xì)胞增殖無(wú)明顯影響;0.10 μg/mL的LPS處理后細(xì)胞活力明顯降低,超過(guò)12 h后細(xì)胞活力顯著降低;1.00 μg/mL的LPS對(duì)細(xì)胞損害明顯。故后續(xù)實(shí)驗(yàn)中采用0.1 μg/mL的LPS處理細(xì)胞12 h。
2.3 DEX預(yù)處理降低HMGB1 mRNA水平
與空白對(duì)照組比較,LPS刺激后HMGB1 mRNA表達(dá)明顯升高,差異有高度統(tǒng)計(jì)學(xué)意義(P < 0.01);與LPS組比較,DEX預(yù)處理組HMGB1 mRNA的表達(dá)顯著降低(P < 0.01)。見(jiàn)圖3。
與空白對(duì)照組比較,*P < 0.01;與LPS組比較,#P < 0.01;HMGB1:高遷移率族蛋白1;LPS:脂多糖;DEX:右美托咪定
2.4 DEX預(yù)處理降低HMGB1 mRNA水平與α7n?鄄AChR相關(guān)
與空白對(duì)照組比較,LPS組HMGB1 mRNA表達(dá)明顯上調(diào)(P < 0.01)。與LPS組比較,DEX預(yù)處理組HMGB1 mRNA水平顯著下降(P < 0.01),而α-BGT組和α-BGT預(yù)處理組HMGB1 mRNA水平與LPS組比較差異無(wú)統(tǒng)計(jì)學(xué)意義(P > 0.05);與DEX預(yù)處理組比較,α-BGT預(yù)處理組HMGB1 mRNA水平顯著升高(P < 0.01)。見(jiàn)圖4。
與空白對(duì)照組比較,*P < 0.01;與LPS組比較,#P < 0.01;與DEX預(yù)處理組比較,△P < 0.01;HMGB1:高遷移率族蛋白1;LPS:脂多糖;DEX:右美托咪定;α-BGT:α銀環(huán)蛇毒素
3 討論
神經(jīng)炎被認(rèn)為是Alzheimer病、帕金森病等慢性神經(jīng)退行性疾病和腦卒中等的突出病理特征,主要由小膠質(zhì)細(xì)胞和AS引起[1,7]。
HMGB1是一種非組蛋白染色體結(jié)合蛋白,正常情況下有兩個(gè)主要來(lái)源:一是由受損或者壞死細(xì)胞釋放,二是由巨噬細(xì)胞和小膠質(zhì)細(xì)胞分泌[8]。在腦損傷和神經(jīng)退行性疾病中,缺血神經(jīng)元[9]、中樞小膠質(zhì)細(xì)胞[10]和活化的單核/巨噬細(xì)胞[8]釋放HMGB1,加速疾病進(jìn)程[1],維持和延長(zhǎng)炎癥[8]。研究發(fā)現(xiàn),星形膠質(zhì)細(xì)胞也能釋放HMGB1[11]。被動(dòng)釋放的HMGB1可作為神經(jīng)炎癥因子,引發(fā)神經(jīng)細(xì)胞凋亡[12]。而在PD模型中的研究發(fā)現(xiàn),HMGB1單克隆抗體可抑制HMGB1的易位,抑制小膠質(zhì)細(xì)胞的激活、血腦屏障的損傷和炎癥因子IL-6和IL-1β等的表達(dá),保護(hù)多巴胺能神經(jīng)元[13]。研究顯示AS是Aβ下游神經(jīng)毒性事件(如神經(jīng)元死亡)的重要調(diào)節(jié)因素[14]。HMGB1特異性抗體能顯著抑制神經(jīng)元突起變性,模型小鼠認(rèn)知障礙完全恢復(fù)[15]。近來(lái)發(fā)現(xiàn),隨著年齡增加,HMGB1在神經(jīng)元中表達(dá)逐漸減少,而在AS中逐漸增加[16]。由此推測(cè)調(diào)控AS的HMGB1表達(dá)水平可能成為治療以神經(jīng)炎為病理特征的疾病的手段之一。
AS作為腦內(nèi)最豐富的膠質(zhì)細(xì)胞類(lèi)型,介導(dǎo)神經(jīng)炎起始和隨后神經(jīng)退行性疾病(如PD)的發(fā)展過(guò)程[17]。本研究使用LPS刺激體外培養(yǎng)的AS模擬神經(jīng)炎,發(fā)現(xiàn)激活后的AS上調(diào)晚期炎性細(xì)胞因子HMGB1。因此,調(diào)控AS活化的藥物可能發(fā)揮對(duì)神經(jīng)的保護(hù)作用。有研究[18]報(bào)道腎缺血再灌注時(shí)DEX預(yù)處理有效抑制HMGB1表達(dá),減輕缺血組織損傷。另外在心肌缺血再灌注中DEX預(yù)處理也下調(diào)HMGB1水平[19]。本研究發(fā)現(xiàn)DEX預(yù)處理下調(diào)LPS激活的AS中HMGB1的表達(dá)。
關(guān)于DEX預(yù)處理下調(diào)HMGB1表達(dá)的機(jī)制尚不是很清楚。研究[20]指出α7nAchR在膽堿能抗炎通路發(fā)揮重要作用。尼古丁,一種α7nAchR的強(qiáng)效激動(dòng)劑,能顯著降低盲腸結(jié)扎穿刺誘導(dǎo)的敗血癥模型小鼠血清HMGB1[21]。Kim等[22]研究發(fā)現(xiàn)尼古丁通過(guò)α7nAchR選擇性降低促炎細(xì)胞因子和HMGB1水平。本研究中使用α7nAchR的拮抗劑α-BGT,DEX預(yù)處理下調(diào)HMGB1水平的作用被剝奪,提示DEX激活α7nAChR發(fā)揮抗炎作用。研究[23]指出,在脊髓損傷模型中,DEX預(yù)處理激動(dòng)α7nAChR,從而下調(diào)HMGB1的分泌,動(dòng)物運(yùn)動(dòng)評(píng)分增高;同時(shí)α7nAChR的拮抗劑上調(diào)HMGB1表達(dá)。因脛骨骨折導(dǎo)致神經(jīng)炎的大鼠,DEX預(yù)先腹腔注射顯著抑制炎性反應(yīng);而預(yù)先切斷迷走神經(jīng)或者應(yīng)用該受體的拮抗劑,該效應(yīng)即消失[24]。Xiang等[25]早期在內(nèi)毒素血癥模型發(fā)現(xiàn)拮抗α7nAChR后DEX對(duì)炎性細(xì)胞因子無(wú)抑制作用,說(shuō)明α7nAChR是DEX發(fā)揮抗炎作用所必須的。由此推斷DEX預(yù)處理發(fā)揮抗炎效應(yīng)需要α7nAChR信號(hào)轉(zhuǎn)導(dǎo)。
本研究為進(jìn)一步認(rèn)識(shí)DEX緩解神經(jīng)炎提供了一定的證據(jù),進(jìn)一步帶我們了解了DEX預(yù)處理與HMGB1表達(dá)之間的關(guān)系以及該聯(lián)系與α7nAchR下游信號(hào)轉(zhuǎn)導(dǎo)之間的關(guān)系,尚存在一些不足之處。已知大鼠皮層AS表達(dá)α2腎上腺素受體[26],研究[25]報(bào)道DEX激活中樞神經(jīng)系統(tǒng)α2腎上腺素受體,激活膽堿能抗炎通路。因此我們不能排除DEX預(yù)處理下調(diào)HMGB1的表達(dá)可能與其激活α2腎上腺素受體相關(guān)這一可能性。此外,HMGB1能與Toll樣受體(TLR2和TLR4)和晚期糖基化終產(chǎn)物受體(RAGE)結(jié)合,加劇炎性反應(yīng)[27]。因此這些受體是否參與DEX預(yù)處理抑制HMGB1表達(dá)仍需進(jìn)一步探索。
綜上,本研究發(fā)現(xiàn)DEX預(yù)處理通過(guò)激活α7n?鄄AChR進(jìn)而下調(diào)LPS激活后的AS炎性細(xì)胞因子HMGB1的水平。因此,DEX不僅作為鎮(zhèn)靜藥物,而且還可調(diào)控AS炎性細(xì)胞因子表達(dá),發(fā)揮對(duì)神經(jīng)炎的抑制作用,DEX可能對(duì)一些以神經(jīng)炎為主要病理特征的疾病發(fā)揮有益的作用。
[參考文獻(xiàn)]
[1] Ransohoff RM. How neuroinflammation contributes to neurodegeneration [J]. Science,2016,353(6301):777-783.
[2] Gallowitsch-Puerta M,Pavlov VA. Neuro-immune interactions via the cholinergic anti-inflammatory pathway [J]. Life Sci,2007,80(24/25):2325-2329.
[3] Wang H,Yu M,Ochani M,et al. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation [J]. Nature,2003,421(6921):384-388.
[4] Wang H,Liao H,Ochani M,et al. Cholinergic agonists inhibit HMGB1 release and improve survival in experimental sepsis [J]. Nat Med,2004,10(11):1216-1221.
[5] Xiang H,Hu B,Li Z,et al. Dexmedetomidine Controls Systemic Cytokine Levels through the Cholinergic Anti-inflammatory Pathway [J]. Inflammation,2014,37(5):1763-1770.
[6] McCarthy KD,Vellis J. Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue [J]. J Cell Biol,1980,85(3):890-902.
[7] Carson MJ,Thrash JC,Walter B. The cellular response in neuroinflammation:The role of leukocytes,microglia and astrocytes in neuronal death and survival [J]. Clin Neurosci Res,2006,6(5):237-245.
[8] Gao HM,Zhou H,Zhang F,et al. HMGB1 acts on microglia Mac1 to mediate chronic neuroinflammation that drives progressive neurodegeneration [J]. J Neurosci,2011,31(3):1081-1092.
[9] Lee JH,Yoon EJ,Seo J,et al. Hypothermia inhibits the propagation of acute ischemic injury by inhibiting HMGB1 [J]. Mol Brain,2016,9(1):81.
[10] Xiong XX,Gu LJ,Shen J,et al. Probenecid Protects Against Transient Focal Cerebral Ischemic Injury by Inhibiting HMGB1 Release and Attenuating AQP4 Expression in Mice [J]. Neurochem Res,2014,39(1):216-224.
[11] Hayakawa K,Pham LD,Katusic ZS,et al. Astrocytic high-mobility group box 1 promotes endothelial progenitor cell-mediated neurovascular remodeling during stroke recovery [J]. Proc Natl Acad Sci U S A,2012,109(19):7505-7510.
[12] Kim SW,Lim CM,Kim JB,et al. Extracellular HMGB1 Released by NMDA Treatment Confers Neuronal Apoptosis via RAGE-p38 MAPK/ERK Signaling Pathway [J]. Neurotox Res,2011,20(2):159-169.
[13] Sasaki T,Liu K,Agari T,et al. Anti-high mobility group box 1 antibody exerts neuroprotection in a rat model of Parkinson's disease [J]. Exp Neurol,2016,275(Pt 1):220-231.
[14] Garwood CJ,Pooler AM,Atherton J,et al. Astrocytes are important mediators of Aβ-induced neurotoxicity and tau phosphorylation in primary culture [J]. Cell Death Dis,2011, 2(6):e167.
[15] Fujita K,Motoki K,agawa K,et al. HMGB1,a pathogenic molecule that induces neurite degeneration via TLR4-MARCKS,is a potential therapeutic target for Alzheimer's disease [J]. Sci Rep,2016,6:31895.
[16] Enokido Y,Yoshitake A,Ito H,et al. Age-dependent change of HMGB1 and DNA double-strand break accumulation in mouse brain [J]. Biochem Biophys Res Commun,2008, 376(1):128-133.
[17] Farina C,Aloisi F,Meinl E. Astrocytes are active players in cerebral innate immunity [J]. Trends Immunol,2007, 28(3):138-145.
[18] Gu J,Sun P,Zhao H,et al. Dexmedetomidine provides renoprotection against ischemia-reperfusion injury in mice [J]. Crit Care,2011,15(3):R153.
[19] Zhang JJ,Peng K,Zhang J,et al. Dexmedetomidine preconditioning may attenuate myocardial ischemia/reperfusion injury by down-regulating the HMGB1-TLR4-MyD88-NF-кB signaling pathway [J]. PLoS One,2017, 12(2):e0172006.
[20] Cui WY,Li MD. Nicotinic modulation of innate immune pathways via α7 nicotinic acetylcholine receptor [J]. J Neuroimmune Pharmacol,2010,5(4):479-488.
[21] Tsoyi K,Jang HJ,Kim JW,et al. Stimulation of alpha7 nicotinic acetylcholine receptor by nicotine attenuates inflammatory response in macrophages and improves survival in experimental model of sepsis through heme oxygenase-1 induction [J]. Antioxid Redox Signal,2011,14(11):2057-2070.
[22] Kim TH,Kim SJ,Lee SM. Stimulation of the α7 nicotinic acetylcholine receptor protects against sepsis by inhibiting Toll-like receptor via phosphoinositide 3-kinase activation [J]. J Infect Dis,2014,209(10):1668-1677.
[23] Rong H,Zhao Z,F(xiàn)eng J,et al. The effects of dexmedetomidine pretreatment on the pro- and anti-inflammation systems after spinal cord injury in rats [J]. Brain Behav Immun,2017,64:195-207.
[24] Zhu YJ,Peng K,Meng XW,et al. Attenuation of neuroinflammation by dexmedetomidine is associated with activation of a cholinergic anti-inflammatory pathway in a rat tibial fracture model [J]. Brain Res,2016,1644:1-8.
[25] Xiang H,Hu B,Li Z,et al. Dexmedetomidine controls systemic cytokine levels through the cholinergic anti-inflammatory pathway [J]. Inflammation,2014,37(5):1763-1770.
[26] Hinojosa AE,García-Bueno B,Leza JC,et al. Regulation of CCL2/MCP-1 production in astrocytes by desipramine and atomoxetine:involvement of α2 adrenergic receptors [J]. Brain Res Bull,2011,86(5/6):326-333.
[27] Beijnum JR,Buurman WA,Griffioen AW. Convergence and amplification of toll-like receptor(TLR)and receptor for advanced glycation end products(RAGE)signaling pathways via high mobility group B1(HMGB1)[J]. Angiogenesis,2008,11(1):91-99.
(收稿日期:2017-12-18 本文編輯:張瑜杰)