楊永利
摘要:提起數(shù)學(xué),很多人愛之恨之,一言難盡。數(shù)學(xué)總被人貼上嚴(yán)肅和枯燥的標(biāo)簽,其實任何事物都不能將其絕對化,數(shù)學(xué)也是如此,數(shù)學(xué)也有其美的一方面,只是缺少了發(fā)現(xiàn)數(shù)學(xué)美的眼睛。這里是我平時聽歌時留意到的兩首和數(shù)學(xué)有關(guān)的流行歌曲加上網(wǎng)上搜索的4首,大家看看數(shù)學(xué)和音樂的融合吧。
關(guān)鍵詞:職教音樂;數(shù)學(xué);思考
數(shù)學(xué)是研究現(xiàn)實世界空間形式的數(shù)量關(guān)系的一門科學(xué),它早已從一門計數(shù)的學(xué)問變成一門形式符號體系的學(xué)問。符號的使用使數(shù)學(xué)具有高度的抽象。而音樂則是研究現(xiàn)實世界音響形式及對其控制的藝術(shù)。它同樣使用符號體系,是所有藝術(shù)中最抽象的藝術(shù)。表面看,音樂與數(shù)學(xué)是“絕緣”的,風(fēng)馬牛不相及,其實不然。
這里引用翁瑞霖教授的一段話:“數(shù)學(xué)是推理中的音樂,而音樂則是感覺中的數(shù)學(xué)。代表理性的數(shù)學(xué),其規(guī)律、和諧與秩序所產(chǎn)生的美感,雖無聲音之傳遞,但與音樂是根本相通的;而代表感性的音樂,其音強(qiáng)、音高、音色、節(jié)奏、旋律、曲式及風(fēng)格,雖無明確之?dāng)?shù)字表達(dá),但數(shù)學(xué)的蹤影卻處處可見”。
樂譜的書寫是表現(xiàn)數(shù)學(xué)對音樂的影響的第一個顯著的領(lǐng)域。且先不談簡譜最直觀的數(shù)字化表現(xiàn);在樂稿上,我們看到速度、節(jié)拍(4/4拍、3/4拍,等等)、全音符、二分音符、四分音符、八分音符、十六分音符……都與數(shù)學(xué)緊緊聯(lián)系。書寫樂譜時確定每小節(jié)內(nèi)的某分音符數(shù),與求公分母的過程相似——不同長度的音符必須與某一節(jié)拍所規(guī)定的小節(jié)相適應(yīng)。作曲家創(chuàng)作的音樂是在書寫出的樂譜的嚴(yán)密結(jié)構(gòu)中非常美麗而又毫不費力地融為一體的。如果將一件完成了的作品加以分析,可見每一小節(jié)都使用不同長度的音符構(gòu)成規(guī)定的拍數(shù)。
你聽《兩只蝴蝶》優(yōu)美動聽的旋律,貝多芬令人激動的交響曲,自然界中鳥兒啁啾的鳴叫……當(dāng)你沉浸在這些美妙的音樂中時,你是否想到了它們與數(shù)學(xué)有著密切的聯(lián)系?
音樂是抒發(fā)人們的情感,是用一種具有個人主體色彩的方式來描述客觀世界的,而數(shù)學(xué)是以一種理性的、抽象的方式來描述世界。二者都是用來描述世界的,只是描述方式有所不同,它們之間存在著必然的內(nèi)在聯(lián)系。
縱觀國內(nèi)外數(shù)學(xué)史,大凡在數(shù)學(xué)領(lǐng)域有所建樹的數(shù)學(xué)家都有一個共同點:很喜歡音樂,甚至近乎癡迷的程度……他們有很高的音樂素養(yǎng),毫不夸張的說:“真正的音樂家大都有很好的數(shù)學(xué)素養(yǎng),而一位數(shù)學(xué)家往往是一位音樂家?!币虼?,音樂與數(shù)學(xué)很早就結(jié)下了不解之緣。
2500年前的一天,古希臘哲學(xué)家畢達(dá)哥拉斯外出散步,經(jīng)過一家鐵匠鋪,發(fā)現(xiàn)里面?zhèn)鞒龅拇蜩F聲響,要比別的鐵匠鋪更加協(xié)調(diào)、悅耳。他走進(jìn)鋪子,量了又量鐵錘和鐵砧的大小,發(fā)現(xiàn)了一個規(guī)律,音響的和諧與發(fā)聲體體積的一定比例有關(guān)。之后,他又在琴弦上做了許多試驗,進(jìn)一步發(fā)現(xiàn)只要按比例去劃分一根振動著弦,就可以產(chǎn)生悅耳的音程。如1:2產(chǎn)生八度,2:3產(chǎn)生四度等等。就這樣,畢達(dá)哥拉斯在世界上第一次發(fā)現(xiàn)了音樂和數(shù)學(xué)的聯(lián)系。
若干世紀(jì)以來,音樂和數(shù)學(xué)一直被聯(lián)系在一起。從基本的阿拉伯?dāng)?shù)字到“黃金分割”,音樂中不僅包含了數(shù)學(xué)中的“數(shù)列”、“變換”、等知識,樂譜的書寫乃至樂器的制作……無不透著數(shù)學(xué)的蹤影。數(shù)學(xué)家們研究音樂,音樂家也和數(shù)學(xué)密切相關(guān)。正因如此,越來越多的人開始關(guān)注音樂,研究數(shù)學(xué)與音樂的聯(lián)系。了解這種關(guān)系無論是在生活中聆聽音樂,感覺數(shù)學(xué),還是利用數(shù)學(xué)知識制作音樂,都會有意想不到的收獲!
德國著名哲學(xué)家、數(shù)學(xué)家萊布尼茲曾說過:“音樂,就它的基礎(chǔ)來說,是數(shù)學(xué)的;就它的出現(xiàn)來說,是直覺的。”而愛因斯坦說得更為風(fēng)趣:“我們這個世界可以由音樂的音符組成,也可以由數(shù)學(xué)公式組成?!睌?shù)學(xué)是以數(shù)字為基本符號的排列組合,它是對事物在量上的抽象,并通過種種公式,揭示出客觀世界的內(nèi)在規(guī)律;而音樂是以音符為基本符號加以排列組合,它是對自然音響的抽象,并通過聯(lián)系著這些符號的文法對它們進(jìn)行組織安排,概括我們主觀世界的各種活動罷了,正是在抽象這一點上將音樂與數(shù)學(xué)連結(jié)在一起,它們都是通過有限去反映和把握無限。
十九世紀(jì)的一位著名數(shù)學(xué)家約瑟夫*傅里葉(Joseph Fourier),他證明了所有的樂聲,不管是器樂還是聲樂,都可以用數(shù)學(xué)式來表達(dá)和描述,而且證明了這些數(shù)學(xué)式是簡單的周期正弦函數(shù)的和。每一個聲音有三個性質(zhì),即音高、音量和音質(zhì),將它與其他樂聲區(qū)別開來。傅里葉的發(fā)現(xiàn)使聲音的這三個性質(zhì)可以在圖形上清楚地表示出來。音高與曲線的頻率有關(guān),音量和音質(zhì)分別與周期函數(shù)的振幅和形狀有關(guān)。音樂中出現(xiàn)數(shù)學(xué)、數(shù)學(xué)中存在音樂并不是一種偶然,而是數(shù)學(xué)和音樂融和貫通于一體的一種體現(xiàn)。音樂能詮釋人們的喜怒哀樂,我們通過音樂把自己對大自然、人生的態(tài)度等表現(xiàn)出來,即音樂抒發(fā)人們的情感。我們也可以不用語言,單是通過音樂與他人甚至是不能動物、植物來進(jìn)行簡單或是復(fù)雜的情感上的溝通和交流。而數(shù)學(xué)則是以一種理性的、抽象的方式來描述世界,使人類對世界有一個客觀的、科學(xué)的理解和認(rèn)識。數(shù)學(xué)貫穿人類文明的始終,無論是生老病死,還是日常的工作生活,都不能脫離數(shù)學(xué)。數(shù)學(xué)和音樂的結(jié)合是一種感性和理性的融通,如果我們能將這種關(guān)系加以完善和利用,那么一定可以演繹出一種無與倫比的“完美境界” !
我一直認(rèn)為, 不僅數(shù)學(xué)和音樂是相同的,世上萬事萬物之間也都必有其內(nèi)在聯(lián)系,。所以我們只有全面發(fā)展,才會達(dá)到一個最佳的境界。數(shù)學(xué)是美,音樂是美,在這片二者交融的天空下,讓我們高唱著數(shù)學(xué)與音樂的交響詩,踏入更神秘、更輝煌的殿堂。