• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      南京長江大橋橋頭堡大堡風(fēng)振性能研究*

      2018-08-20 09:05:36韓宜丹淳慶
      特種結(jié)構(gòu) 2018年4期
      關(guān)鍵詞:風(fēng)振橋頭堡風(fēng)壓

      韓宜丹 淳慶,2

      (1.東南大學(xué)建筑學(xué)院 南京210096;2.東南大學(xué)城市與建筑遺產(chǎn)保護教育部重點實驗室 南京210096)

      引言

      在全球所有自然災(zāi)害中,風(fēng)災(zāi)造成的損失為各種災(zāi)害之首。高層建筑結(jié)構(gòu)的顯著特點之一是側(cè)向荷載在結(jié)構(gòu)設(shè)計中起著決定性的作用,除了地震作用外,高層建筑結(jié)構(gòu)主要的側(cè)向荷載是風(fēng)荷載,隨著建筑高度的增加,以風(fēng)荷載為主的水平荷載影響越來越大。

      南京長江大橋建成于1968年,是長江上架起的第一座由我國自行設(shè)計和建造的雙層式鐵路、公路兩用橋梁,其橋頭堡大堡是一座高達(dá)70m的鋼筋混凝土框架結(jié)構(gòu),2016年9月入選首批中國20世紀(jì)建筑遺產(chǎn)名錄。南京長江大橋橋頭堡大堡作為我國豐碑式的重要建筑物,風(fēng)荷載對其影響更加不容忽視。南京長江大橋橋頭堡大堡在設(shè)計當(dāng)初,設(shè)計師曾對其進(jìn)行過風(fēng)荷載計算分析,計算結(jié)果于南京長江大橋工程簡介[1]中有過介紹,但由于當(dāng)時國內(nèi)尚無成熟的相應(yīng)計算規(guī)范,所以得出的結(jié)果必然與現(xiàn)行方法的計算結(jié)果存在一定差異。

      目前學(xué)界鮮有針對中國建國初期橋頭堡建筑的結(jié)構(gòu)性能研究,僅有莊紹寧[2]通過ANSYS建立泉州火車站站前大橋橋頭堡的有限元模型,計算得到該結(jié)構(gòu)在時程風(fēng)荷載下的位移及應(yīng)力響應(yīng)情況。章萍[3]分析了某橋頭堡鋼筋混凝土巨型塔柱框架結(jié)構(gòu)體系,探討了橋頭堡結(jié)構(gòu)的梁柱剛性節(jié)點設(shè)計、抗震性能措施和抗裂性能措施。Larose[4]以及Siringoringo[5]通過在橋頭堡結(jié)構(gòu)中安裝振動傳感器裝置得到結(jié)構(gòu)的速度、加速度及位移等響應(yīng)結(jié)果,總結(jié)得到橋頭堡的動力特性。本文將根據(jù)南京長江大橋橋頭堡大堡的結(jié)構(gòu)現(xiàn)狀,分別建立不考慮填充墻影響情況和考慮填充墻影響情況下的大堡有限元模型,進(jìn)行橋頭堡大堡的風(fēng)振性能研究,并與設(shè)計之初的計算結(jié)果進(jìn)行比較分析,為南京長江大橋橋頭堡的加固修繕提供科學(xué)依據(jù)。

      1 南京長江大橋橋頭堡大堡概況

      南京長江大橋橋頭堡是位于大橋正橋兩端的橋頭建筑,將正橋與引橋融合成一整體,雄偉壯麗,風(fēng)格新穎。橋頭建筑為復(fù)式橋臺,兩岸各有一座大、小堡。大堡塔樓高達(dá)70m,每座長17m,寬11m,占地面積175m2。除紅旗層外,大堡共十層,七層以下每層高約6.9m,七層以上層高減少。四層與鐵路面相通,七層與公路同一平面,對游人開放,八層為休息室,九層為水箱及電機房,十層為瞭望層,頂上為紅旗平臺。長江大橋的現(xiàn)狀如圖1所示。

      圖1 南京長江大橋橋頭堡大堡現(xiàn)狀Fig.1 Present situation of the major bridgehead

      首先對橋頭堡建筑的幾何尺寸進(jìn)行現(xiàn)場測繪復(fù)核,每座大堡塔樓共布置截面尺寸為50cm×50cm的立柱22根。其在七層及以下的平面布置見圖2a。塔樓的樓梯布置,主層的樓版布置見圖2b,夾層的樓版布置見圖2c??v向剛架第5~6排間,一半為電梯井道,一半為管道間,在管道間的每層均設(shè)有樓版。第8層及以上的平面布置見圖2d。大堡除底層為24mm厚的實心墻外,其余均為20mm厚的空心磚墻。塔頂層紅旗層為鋼桁架結(jié)構(gòu),紅旗旗面長邊長9.3m,短邊長6.6m,旗面為3mm厚鋼板。

      圖2 大堡框架結(jié)構(gòu)示意Fig.2 Frame structure of the major bridgehead

      對大堡進(jìn)行材料強度的現(xiàn)場無損檢測,通過回彈法測得大堡的混凝土強度等級為C15~C25之間,本文對橋頭堡大堡進(jìn)行計算分析時,取混凝土強度等級為C15。

      2 大堡設(shè)計之初的風(fēng)荷載計算結(jié)果

      根據(jù)南京長江大橋工程簡介[1]中的計算方法,當(dāng)時對于長江大橋橋頭堡大堡的塔樓風(fēng)力計算采用靜力計算的方法,計算過程中施加于結(jié)構(gòu)的平均風(fēng)壓為0.5kN/m2,并根據(jù)當(dāng)時的荷載暫行規(guī)范,風(fēng)荷載的計算考慮了以下五個系數(shù)的影響:重要建筑物系數(shù)1.2,超載系數(shù)1.3,振動系數(shù)1.5,空氣動力系數(shù)以及高度影響的折減和增值系數(shù)(具體可參見1970年發(fā)布的《建筑工程部荷載暫行規(guī)范》)。其中,超載系數(shù)是指建筑物在各種未知的不利因素影響下的偶然極大荷載與相應(yīng)的標(biāo)準(zhǔn)荷載間的比值,振動系數(shù)即指現(xiàn)行荷載規(guī)范中定義的風(fēng)振系數(shù),空氣動力系數(shù)即指現(xiàn)行荷載規(guī)范中定義的風(fēng)壓體型系數(shù),高度影響的折減和增值系數(shù)即指現(xiàn)行荷載規(guī)范中定義的風(fēng)壓高度變化系數(shù)。

      計算過程中假定各層樓板是絕對剛性的,風(fēng)力分配由頂層開始往下逐層分配,并假定計算層的下層樓層為固定端,即略去該層的轉(zhuǎn)角對位移的影響。計算是利用“形變分配法”,首先求出各排剛架的代替懸臂的節(jié)點的勁率、主形變系數(shù)及次形變系數(shù)。其次,進(jìn)行風(fēng)力的分配計算,從紅旗層剛架開始逐層往下計算,得橫向各排剛架各層節(jié)點上的風(fēng)力值。用“迭代法”(卡尼法)可解得各桿件的內(nèi)力和結(jié)構(gòu)的位移。通過該方法計算得到頂端位移最大值為7cm。

      在計算位移時沒有考慮四周填充墻對剛度的影響。并且該計算方法略去了各計算層下端的角變的影響,由于在計算時采用逐層往下分配,代替懸臂也同樣逐層往下放松,因此對風(fēng)力的分配值有一定的誤差。另外該計算是在長江大橋施工前完成的,大橋在具體施工時曾做了一定程度的改動,如計算時紅旗層是按照混凝土框架結(jié)構(gòu)考慮的,而施工時支承紅旗的頂部二層剛架已改用鋼結(jié)構(gòu),并且在公路面上增加了一層樓層,后期的改動會給風(fēng)力計算結(jié)果帶來一定的影響,但風(fēng)力計算沒有重算。

      本文根據(jù)長江大橋大堡建成后的結(jié)構(gòu)現(xiàn)狀建立有限元模型,模型中考慮紅旗層為鋼桁架結(jié)構(gòu),并考慮有無填充墻對大橋剛度的影響兩種情況,利用脈動風(fēng)壓時程分析的方法進(jìn)行風(fēng)振性能研究,并與設(shè)計當(dāng)初的風(fēng)荷載計算結(jié)果進(jìn)行比較分析。

      3 無填充墻的大堡結(jié)構(gòu)模型

      3.1 無填充墻結(jié)構(gòu)有限元模型建立

      本文采用有限元軟件SAP2000建立南京長江大橋大堡在不考慮填充墻影響時的有限元模型。大堡主體為混凝土框架結(jié)構(gòu),其上部的紅旗骨架為鋼結(jié)構(gòu),旗面為鋼板。有限元模型中梁、柱及紅旗骨架用框架單元模擬,樓板及紅旗旗面用殼單元模擬。梁柱節(jié)點、柱與基礎(chǔ)節(jié)點均采用固接節(jié)點。圖3為大堡的有限元計算模型,模型中坐標(biāo)系說明如下:X向為垂直于旗面的方向,Y向為順旗面方向,Z向為豎直方向。

      圖3 橋頭堡大堡有限元模型Fig.3 Finite element model of the major bridgehead

      3.2 模態(tài)分析

      振動模態(tài)是彈性結(jié)構(gòu)固有的、整體的特性。通過模態(tài)分析的方法可以了解這一結(jié)構(gòu)物在某易受影響的頻率范圍內(nèi)的各階主要模態(tài)的特性,就可以對結(jié)構(gòu)在此頻段內(nèi)在外部或內(nèi)部各種振源作用下產(chǎn)生的實際振動響應(yīng)進(jìn)行初步判斷。本文利用有限元軟件SAP2000計算出大堡結(jié)構(gòu)的前12階振型,結(jié)構(gòu)自振周期、自振頻率及振型參與質(zhì)量系數(shù)見表1。

      表1 大堡結(jié)構(gòu)的自振周期、自振頻率及振型質(zhì)量參與系數(shù)Tab.1 Natural vibration period,frequency and model participating mass ratios of the major bridgehead

      由表1可知,大堡結(jié)構(gòu)基頻為f=0.509Hz。結(jié)構(gòu)的振型通過振型參與質(zhì)量系數(shù)可以得到:一階振型UX+UY>RZ且UX>UY,即一階振型為X向水平振動;二階振型UX+UY<RZ,即二階振型為繞Z軸的扭轉(zhuǎn)振動;三階振型UX+UY>RZ且UY>UX,即三階振型為Y向水平振動,結(jié)構(gòu)前三階振型如圖4所示。四階振型為彎曲振動,四階之后是比較復(fù)雜的平、扭耦合振動。結(jié)構(gòu)X向平動自振頻率明顯小于結(jié)構(gòu)Y向平動自振頻率,說明結(jié)構(gòu)剛度方向分布的差異,X向剛度明顯小于Y向剛度。

      為了控制結(jié)構(gòu)扭轉(zhuǎn)效應(yīng)的潛在破壞力,《高層建筑混凝土結(jié)構(gòu)技術(shù)規(guī)程》(JGJ 3-2010)[6]中規(guī)定,對于B級高度的建筑、混合結(jié)構(gòu)高層建筑及復(fù)雜高層建筑,結(jié)構(gòu)扭轉(zhuǎn)為主的第一周期與平動為主的第一周期之比不應(yīng)大于0.85。根據(jù)計算結(jié)果,大堡結(jié)構(gòu)扭轉(zhuǎn)第一周期和平動第一周期之比為0.83,滿足現(xiàn)行規(guī)范要求。

      圖4 大堡結(jié)構(gòu)前三階振型Fig.4 Top three modes of the major bridgehead

      4 不考慮填充墻影響時的結(jié)構(gòu)風(fēng)振分析

      4.1 風(fēng)荷載生成

      建筑結(jié)構(gòu)風(fēng)荷載的計算方法有《建筑結(jié)構(gòu)荷載規(guī)范》(GB 50009-2012)[7](以下簡稱荷載規(guī)范)提供的靜力分析方法和脈動風(fēng)壓時程分析方法。其中,靜力分析方法即把風(fēng)荷載當(dāng)做靜力荷載,風(fēng)的動力效應(yīng)則通過風(fēng)振系數(shù)來體現(xiàn)。脈動風(fēng)壓時程分析法則更加精確,將風(fēng)荷載考慮成動力荷載,即不計風(fēng)振系數(shù),直接利用風(fēng)荷載時程考慮對于結(jié)構(gòu)的脈動作用。我國荷載規(guī)范規(guī)定,對于高度大于30m且高寬比大于1.5的房屋和基本自振周期大于0.25s的各種高層結(jié)構(gòu)以及大跨度屋蓋結(jié)構(gòu),均應(yīng)考慮風(fēng)壓脈動效應(yīng)對結(jié)構(gòu)產(chǎn)生的風(fēng)振影響。因此,大堡需要考慮風(fēng)壓脈動效應(yīng)對結(jié)構(gòu)產(chǎn)生的影響。

      本文根據(jù)文獻(xiàn)[8],采用線性濾波法中的自回歸法(Auto-Regressive,AR)模擬風(fēng)速時程,生成作用于大堡結(jié)構(gòu)的風(fēng)場。風(fēng)速譜采用我國規(guī)范計算采用的Davenport譜,根據(jù)文獻(xiàn)[9],時間步長的最優(yōu)取值范圍為0.1s~0.18s,故本文選取時間步長為0.1s。根據(jù)上述理論,利用MATLAB編制應(yīng)用于大堡結(jié)構(gòu)的風(fēng)速時程曲線,相關(guān)參數(shù)按表2取值。

      據(jù)此生成脈動風(fēng)速時程曲線及模擬功率譜與目標(biāo)功率譜對比如圖5所示。從圖中可以看出在整個模擬頻域范圍內(nèi),模擬功率譜與目標(biāo)功率譜基本吻合。

      表2 風(fēng)速時程模擬時的主要參數(shù)Tab.2 Parameters of simulated fluctuating wind speed

      圖5 脈動風(fēng)速時程曲線及功率譜對比Fig.5 Time history curve of fluctuating wind speed and comparison of power specrum

      風(fēng)壓時程和風(fēng)速時程存在以下關(guān)系:

      式中:W(t)為風(fēng)壓時程,kN/m2;v0為標(biāo)準(zhǔn)風(fēng)壓下的風(fēng)速,m/s;v(t)為程序生成的脈動風(fēng)速時程。依此生成風(fēng)壓時程曲線見圖6。

      圖6 風(fēng)壓時程曲線Fig.6 Time history curve of fluctuating wind pressure

      4.2 大堡風(fēng)壓體型系數(shù)

      作用于大堡結(jié)構(gòu)上的脈動風(fēng)荷載時程函數(shù)為:

      式中:F為結(jié)構(gòu)受到的風(fēng)荷載時程;A為施加風(fēng)荷載的面積;W為風(fēng)壓時程;μs為風(fēng)荷載體形系數(shù)。

      對大堡結(jié)構(gòu)開展風(fēng)振響應(yīng)分析時,考慮風(fēng)荷載沿X向,由模態(tài)分析可知大堡沿X方向剛度薄弱。根據(jù)荷載規(guī)范中的表8.3.1,并參考文獻(xiàn)[1]得到大堡的風(fēng)壓體型系數(shù),見表3。將上述荷載施加于結(jié)構(gòu),大堡的填充墻設(shè)置為虛面,風(fēng)荷載通過虛面導(dǎo)荷至框架結(jié)構(gòu),求解出大堡結(jié)構(gòu)的風(fēng)振響應(yīng)結(jié)果。

      表3 大堡風(fēng)壓體型系數(shù)Tab.3 Wind pressure coefficients of the major bridgehead

      4.3 大堡位移響應(yīng)分析

      當(dāng)對大堡進(jìn)行風(fēng)荷載時程分析時,結(jié)構(gòu)阻尼比取值0.035。為得到時程風(fēng)壓對大堡結(jié)構(gòu)的脈動效應(yīng),將脈動時程風(fēng)壓下的結(jié)構(gòu)位移與靜風(fēng)荷載下結(jié)構(gòu)的位移進(jìn)行對比分析。首先,根據(jù)現(xiàn)行的《建筑結(jié)構(gòu)荷載規(guī)范》[7]對大堡結(jié)構(gòu)有限元模型施加靜風(fēng)荷載,風(fēng)荷載標(biāo)準(zhǔn)值取0.5kN/m2,同時考慮結(jié)構(gòu)重要性系數(shù)1.1,以及風(fēng)壓高度變化系數(shù),得到大堡結(jié)構(gòu)在靜風(fēng)荷載下的位移響應(yīng)。將上述計算生成的時程風(fēng)壓施加于大堡結(jié)構(gòu)有限元模型,得到大堡在時程風(fēng)荷載下的響應(yīng)結(jié)果。并將靜力風(fēng)壓下的結(jié)構(gòu)位移最值(u0)與時程風(fēng)壓下的結(jié)構(gòu)位移最值(umax)進(jìn)行比較,可以得到結(jié)構(gòu)的風(fēng)振系數(shù)(β=umax/u0),并得到大堡樓層的層間最大位移Δmax,各位移響應(yīng)結(jié)果見表4。

      表4 大堡靜風(fēng)及時程風(fēng)壓下位移值對比Tab.4 Comparison of displacements under static wind and time history wind

      根據(jù)設(shè)計當(dāng)初的靜力計算方法得到的大堡結(jié)構(gòu)頂端位移計算最大值為7cm,而本文中按照現(xiàn)行規(guī)范中靜力計算方法得到的結(jié)構(gòu)位移最大值為6.14cm,時程風(fēng)壓下結(jié)構(gòu)頂端的位移最大值為11.59cm。本文得到的位移結(jié)果與設(shè)計之初得到的位移結(jié)果存在一定差異,這是由于本文中大堡的有限元模型是按照大堡建成后的實際結(jié)構(gòu)建立的,并且紅旗層為鋼結(jié)構(gòu),而設(shè)計之初計算紅旗層是按照混凝土框架結(jié)構(gòu)考慮的。此外,本文研究中所施加的靜風(fēng)荷載是根據(jù)現(xiàn)行規(guī)范得到,而設(shè)計之初計算時施加的荷載是按照當(dāng)時的暫行規(guī)范取值,其中荷載的各個放大系數(shù)與現(xiàn)行荷載規(guī)范的計算方法均不同。本文研究中施加時程風(fēng)荷載能夠更精確地反應(yīng)風(fēng)對結(jié)構(gòu)的脈動效應(yīng),大堡設(shè)計之初計算方法中的考慮振動系數(shù)即風(fēng)振系數(shù)取值為1.5,由表4可以看出本文得到大堡結(jié)構(gòu)的風(fēng)振系數(shù)取值在1.81~1.96之間。

      根據(jù)《高層建筑混凝土結(jié)構(gòu)技術(shù)規(guī)程》[6],對于高度不大于150m的高層框架結(jié)構(gòu)建筑,其樓層層間最大位移與層高之比不宜大于1/550。由表3可知,除一層、九層、十層外,樓層的層間最大位移均超過允許值。

      5 有無填充墻影響時的大堡響應(yīng)對比分析

      上述計算過程未考慮填充墻對結(jié)構(gòu)風(fēng)振性能的影響,僅將砌體填充墻作為豎向恒荷載施加在結(jié)構(gòu)上。在我國《建筑抗震設(shè)計規(guī)范》[10]中規(guī)定填充墻為非結(jié)構(gòu)構(gòu)件,填充墻主要起隔墻和圍護的作用,填充墻不參與結(jié)構(gòu)的抗震計算。但在風(fēng)荷載作用下,填充墻的存在可提高結(jié)構(gòu)的抗側(cè)剛度,從而使結(jié)構(gòu)的自振周期減小。所以,帶填充墻的框架結(jié)構(gòu)在進(jìn)行風(fēng)振性能計算分析時需充分考慮填充墻對框架結(jié)構(gòu)的影響,并不能簡單地將帶填充墻的框架結(jié)構(gòu)的自振周期乘以一定折減系數(shù)。因此本文將在有限元模型中考慮填充墻對結(jié)構(gòu)的作用,并與上述計算結(jié)果進(jìn)行對比分析。

      5.1 填充墻模擬方法

      目前,帶填充墻框架結(jié)構(gòu)的計算分析模型主要有兩種:一種是通過將結(jié)構(gòu)劃分成大量的單元來分析結(jié)構(gòu)細(xì)部性能的微觀有限元模型,但由于模型中較多參數(shù)的不確定性和較高的計算代價,微觀有限元模型難以得到應(yīng)用;另一種是宏觀模型,宏觀模型是基于在水平荷載作用下填充墻表現(xiàn)出對角受壓桿的受力機制而提出的,即利用斜支撐模擬填充墻對框架的作用。等效斜撐模型是將填充墻模擬為與梁柱交點鉸接的,受壓不受拉力的,與框架共同工作的抗側(cè)力構(gòu)件。該等效斜撐如圖7a所示,其與墻體材性相同,截面為矩形,長度為梁柱間對角線長度,厚度同填充墻厚度,等效斜撐具有一定寬度,其寬度由式(4)和式(5)確定。本文采用Buonopane[11]提出的開洞填充墻的斜支撐模型來模擬大橋大堡的填充墻,如圖7b所示,單根斜壓桿寬度按照尺寸由洞口兩側(cè)墻肢尺寸的非開洞填充墻確定[12-14]。

      其中:λ為剛度系數(shù);Ew為填充墻的彈性模量;tw為填充墻的厚度;θ為填充墻對角線與框架梁之間的夾角;Ec為框架柱的彈性模量;Ic為框架柱的慣性矩;Hw為填充墻體的髙度;Dc為等效斜撐寬度;H為框架柱高度;L為框架梁長度。本文計算模型中,一層填充墻Ew0取值為2704MPa,其余層Ew取值為1984MPa;墻厚一層tw0取值為240mm,其余層tw取值為200mm;Ec取值為2.6×104MPa。斜撐的材料屬性與填充墻的材料屬性一致。依據(jù)上述理論建立長江大橋大堡的有開洞填充墻混凝土框架結(jié)構(gòu)的有限元模型。

      圖7 等效斜撐模擬及Buonopane模型Fig.7 Equivalent inclined bracing simulation and Buonopane model

      5.2 考慮填充墻影響后的模態(tài)分析

      考慮填充墻影響后,結(jié)構(gòu)的剛度、周期、承載力、層間位移、塑性發(fā)展和結(jié)構(gòu)構(gòu)件內(nèi)力都會發(fā)生較大的變化,考慮填充墻影響后的有限元模型能夠更加準(zhǔn)確地反應(yīng)大堡的結(jié)構(gòu)特性。表5為考慮填充墻影響的結(jié)構(gòu)周期及振型質(zhì)量參與系數(shù),可以看出與未考慮填充墻作用的結(jié)構(gòu)模型相比,結(jié)構(gòu)的自振周期、自振頻率和振型發(fā)生明顯變化,自振周期減小,結(jié)構(gòu)剛度增大,一階振型為X向水平振動,二階振型為Y向水平振動,三階振型為繞Z軸的扭轉(zhuǎn)振動。由于通過斜支撐模擬填充墻使結(jié)構(gòu)的整體扭轉(zhuǎn)效應(yīng)大大減小,結(jié)構(gòu)扭轉(zhuǎn)第一周期和平動第一周期之比為0.62,滿足荷載規(guī)范要求。

      表5 考慮填充墻影響的結(jié)構(gòu)周期及振型質(zhì)量參與系數(shù)Tab.5 Natural vibration period and model participating mass ratios of the major bridgehead considering infilled walls

      5.3 加速度響應(yīng)分析

      將同樣的時程風(fēng)荷載作用于考慮填充墻影響的結(jié)構(gòu)模型,得到時程風(fēng)振響應(yīng)結(jié)果。結(jié)構(gòu)的位移及最大層間位移等結(jié)果見表6。其中,u′0為靜風(fēng)荷載下考慮填充墻影響的結(jié)構(gòu)位移最大值,u′max為時程風(fēng)壓下的考慮填充墻影響的結(jié)構(gòu)位移最大值,Δ′max為考慮填充墻影響的結(jié)構(gòu)最大層間位移。結(jié)構(gòu)的位移及最大層間位移均明顯減少,其樓層層間最大位移與層高之比均在允許值之內(nèi)??紤]填充墻影響的結(jié)構(gòu)最大層間位移折減為不考慮填充墻影響的結(jié)構(gòu)最大層間位移的46%~74%,結(jié)構(gòu)的風(fēng)振系數(shù)取值在1.79~2.10之間。

      對風(fēng)荷載作用下考慮填充墻影響和不考慮填充墻影響下的結(jié)構(gòu)紅旗層最大位移與設(shè)計當(dāng)初的計算結(jié)果進(jìn)行比較分析,結(jié)果如表7所示。結(jié)果表明:在有無填充墻影響的情況下,按照荷載規(guī)范中靜載法計算得到的最大位移均小于設(shè)計當(dāng)初的計算結(jié)果;按照時程法計算得到的最大位移均大于設(shè)計之初的計算結(jié)果。由此可以看出,本文的風(fēng)振響應(yīng)結(jié)果與大堡設(shè)計之初計算結(jié)果存在一定差異,風(fēng)對大堡產(chǎn)生的脈動效果以及填充墻對于結(jié)構(gòu)抗側(cè)剛度的貢獻(xiàn)均不可忽略??傮w而言,在考慮填充墻影響時采用荷載規(guī)范中風(fēng)荷載時程法的計算結(jié)果更加接近于大堡設(shè)計之初的風(fēng)荷載計算結(jié)果。另外,九、十層層高明顯低于一到八層層高,對于考慮填充墻與不考慮填充墻影響的最大層間位移之比Δ′max/Δmax,第九、十層的數(shù)值明顯比其它層大,填充墻(斜撐)對九、十層抗側(cè)剛度的影響比對其他層的影響小。

      表6 大堡靜風(fēng)及時程風(fēng)壓下位移值對比Tab.6 Comparison of displacements under static wind and time history wind

      表7 風(fēng)荷載作用下的紅旗層最大位移計算比較Tab.7 Comparison of the maximum displacements of flag floor under wind pressure

      5.4 加速度響應(yīng)分析

      此外,本文也對風(fēng)荷載作用下的結(jié)構(gòu)加速度響應(yīng)進(jìn)行了分析,表8中列出了在時程風(fēng)荷載作用下,有無填充墻影響的結(jié)構(gòu)各層加速度峰值。結(jié)果表明:考慮填充墻影響后結(jié)構(gòu)各層的加速度峰值顯著減小。另外,風(fēng)荷載作用下結(jié)構(gòu)的振動還應(yīng)滿足人體的舒適度要求。大堡的一層及七層平臺對游人開放,對于大堡而言,無論是供游人觀景還是供工作人員辦公,風(fēng)荷載作用下引起的結(jié)構(gòu)振動或造成建筑內(nèi)人員的不適都應(yīng)予以避免。結(jié)構(gòu)的振動持續(xù)時間、振動頻率以及結(jié)構(gòu)振動的加速度是影響人體感覺舒適度的主要因素。其中,結(jié)構(gòu)振動的持續(xù)時間取決于風(fēng)荷載作用持續(xù)時間,對于既有建筑而言,調(diào)整結(jié)構(gòu)的頻率是很難實現(xiàn)的,因此一般采用限制結(jié)構(gòu)振動加速度的方法來滿足人體舒適度的要求,結(jié)構(gòu)加速度的控制界限可以通過人體振動舒適界限標(biāo)準(zhǔn)得到,當(dāng)結(jié)構(gòu)加速度達(dá)到0.15m/s2就會使人煩惱,當(dāng)結(jié)構(gòu)加速度達(dá)到0.5m/s2就會達(dá)到讓人非常煩惱的程度,結(jié)構(gòu)加速度達(dá)到1.5m/s2會讓人無法忍受[15]。由表8可以看出,即使考慮填充墻影響后,除一層外,各層的加速度峰值都達(dá)到了使人煩惱甚至讓人非常煩惱的程度。故應(yīng)采取適當(dāng)措施對風(fēng)振作用下的加速度峰值進(jìn)行控制,盡量使之符合人體舒適度要求。

      6 結(jié)論

      1.大堡在不考慮填充墻影響時,結(jié)構(gòu)基頻為f=0.509Hz;一階振型為X向水平振動,二階振型為繞Z軸的扭轉(zhuǎn)振動,三階振型為Y向的水平振動。結(jié)構(gòu)扭轉(zhuǎn)第一周期和平動第一周期之比為0.83,滿足現(xiàn)行規(guī)范要求。

      2.在不考慮填充墻影響時,靜力計算得到結(jié)構(gòu)位移最值為6.14cm,時程風(fēng)壓下結(jié)構(gòu)頂端的位移最值為11.59cm,時程風(fēng)壓計算得到的風(fēng)振系數(shù)取值在1.81~1.96之間。大堡除一層、九層、十層外,樓層層間最大位移與層高之比均超過允許值1/550。

      3.在考慮填充墻影響時,結(jié)構(gòu)的自振周期和振型發(fā)生明顯變化,結(jié)構(gòu)基頻為f=0.580Hz,自振周期減小,結(jié)構(gòu)剛度增大;一階振型為X向水平振動,二階振型為Y向水平振動,三階振型為繞Z軸的扭轉(zhuǎn)振動。結(jié)構(gòu)扭轉(zhuǎn)第一周期和平動第一周期之比為0.62,滿足現(xiàn)行規(guī)范要求。

      4.考慮填充墻影響時,結(jié)構(gòu)在時程風(fēng)壓下的位移及最大層間位移等結(jié)果均顯著減少,其樓層層間最大位移與層高之比均在允許值1/550之內(nèi)??紤]填充墻影響時的結(jié)構(gòu)最大層間位移折減為不考慮填充墻的46%~74%。填充墻對于結(jié)構(gòu)抗側(cè)剛度的貢獻(xiàn)不可忽略。時程風(fēng)壓計算得到的風(fēng)振系數(shù)取值在1.79~2.10之間。

      5.考慮填充墻影響時,除一層外各層的加速度峰值都達(dá)到了使人煩惱甚至讓人非常煩惱的程度。故應(yīng)采取適當(dāng)措施對風(fēng)振作用下的加速度峰值進(jìn)行控制,盡量使之符合人體舒適度要求。

      猜你喜歡
      風(fēng)振橋頭堡風(fēng)壓
      劉沛:深中牽手!東西岸融合橋頭堡——馬鞍島
      打造轉(zhuǎn)型升級“橋頭堡” 推動礦井高質(zhì)量發(fā)展
      張力對接觸網(wǎng)系統(tǒng)風(fēng)振響應(yīng)影響的風(fēng)洞試驗研究
      高塔設(shè)備風(fēng)振失效原因分析及改善措施
      低風(fēng)壓架空導(dǎo)線的風(fēng)洞試驗
      電線電纜(2017年5期)2017-10-18 00:52:03
      低風(fēng)壓導(dǎo)線的發(fā)展和測試
      電線電纜(2016年5期)2016-02-27 09:02:06
      “橋頭堡”的新機遇與新發(fā)展
      大跨屋蓋結(jié)構(gòu)MTMD風(fēng)振控制最優(yōu)性能研究
      高層建筑風(fēng)荷載有哪些計算要求
      重慶建筑(2014年10期)2014-03-27 02:20:07
      復(fù)合屋面板鋼構(gòu)體系風(fēng)振特性試驗
      和硕县| 兴隆县| 文安县| 湘潭县| 海林市| 林芝县| 昌宁县| 林口县| 缙云县| 九江县| 囊谦县| 丹东市| 龙州县| 台南县| 巨鹿县| 阿拉善左旗| 峨眉山市| 永昌县| 留坝县| 曲沃县| 辽源市| 齐齐哈尔市| 镇平县| 永康市| 莆田市| 汉寿县| 万源市| 雅江县| 伊吾县| 礼泉县| 洪雅县| 扶绥县| 浦县| 台前县| 开封市| 青阳县| 壶关县| 攀枝花市| 平山县| 民丰县| 镇平县|