• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      灌溉方式和秸稈還田對(duì)設(shè)施番茄田CO2排放的影響

      2018-09-03 03:32:04王亞芳呂昊峰杜九月李英杰廉曉娟王正祥王敬國(guó)
      關(guān)鍵詞:畦灌菜田通量

      王亞芳,呂昊峰,杜九月,李英杰,廉曉娟,王正祥,王敬國(guó),林 杉

      ?

      灌溉方式和秸稈還田對(duì)設(shè)施番茄田CO2排放的影響

      王亞芳1,呂昊峰1,杜九月1,李英杰1,廉曉娟2,王正祥2,王敬國(guó)1,林 杉1※

      (1. 中國(guó)農(nóng)業(yè)大學(xué)資源與環(huán)境學(xué)院,北京 100193;2. 天津農(nóng)業(yè)科學(xué)科學(xué)院資源與環(huán)境研究所,天津 300100)

      中國(guó)北方下沉式設(shè)施菜田表層土壤缺失,以及高溫高濕的環(huán)境條件,導(dǎo)致耕層土壤有機(jī)質(zhì)含量低、礦化快。如何減緩?fù)寥烙袡C(jī)質(zhì)礦化,是該文所關(guān)注的焦點(diǎn)問(wèn)題。該研究采用二因素試驗(yàn)設(shè)計(jì),主因素為灌溉方式(傳統(tǒng)畦灌施肥、滴灌施肥),副因素為秸稈(含C量為0、3 500 kg/hm2)。測(cè)定了48 h內(nèi)每3 h的CO2排放通量,以及全生育期CO2日排放通量、土壤溫度。結(jié)果表明:1)08:00?09:00測(cè)定的土壤CO2排放通量與CO2日均排放通量不存在顯著差異,二者呈極顯著線性正相關(guān)關(guān)系,其決定系數(shù)為0.987;而其他時(shí)段測(cè)定值與日均值均存在顯著差異。2)與傳統(tǒng)畦灌相比,無(wú)論是否添加秸稈,滴灌處理均顯著降低了CO2累積排放量。3)CO2排放高峰出現(xiàn)在定植后8~15 d,隨后逐漸降低并趨于平穩(wěn);定植后40 d內(nèi)能檢測(cè)到處理間CO2日排放通量的差異,此后處理間差異不顯著。4)CO2累積排放通量和土壤積溫呈顯著正相關(guān)關(guān)系。綜上所述,滴灌施肥栽培體系可顯著降低土壤CO2排放量,有利于設(shè)施菜田土壤有機(jī)質(zhì)的積累。

      土壤;灌溉;排放控制;設(shè)施菜田;CO2排放通量;土壤呼吸;秸稈還田

      0 引 言

      中國(guó)設(shè)施蔬菜發(fā)展迅猛,1982年種植面積僅1萬(wàn)hm2,2013年達(dá)到370萬(wàn)hm2,占蔬菜種植面積的18%,總產(chǎn)量高達(dá)2.5億t,占蔬菜總產(chǎn)量的34%[1]。設(shè)施蔬菜反季節(jié)栽培顯著提高了產(chǎn)量和菜農(nóng)的經(jīng)濟(jì)收入。然而,一方面,北方下沉式設(shè)施菜田表層土壤缺失,導(dǎo)致土壤有機(jī)質(zhì)含量低和生產(chǎn)體系穩(wěn)定性差[2];另一方面,菜農(nóng)盲目追求產(chǎn)量和經(jīng)濟(jì)利益,采用大水大肥的栽培模式,以及高溫高濕的環(huán)境條件,可能導(dǎo)致土壤有機(jī)質(zhì)礦化快、積累慢。

      土壤有機(jī)質(zhì)是土壤肥力和作物產(chǎn)量的重要決定因子,可以改善土壤結(jié)構(gòu)和保蓄性[3]。一般認(rèn)為,當(dāng)土壤有機(jī)質(zhì)質(zhì)量分?jǐn)?shù)低于34 g/kg,土壤質(zhì)量下降的潛在風(fēng)險(xiǎn)增加[4]。集約化耕作將加快有機(jī)質(zhì)分解過(guò)程,導(dǎo)致有機(jī)質(zhì)數(shù)量下降,引起有機(jī)質(zhì)組分和質(zhì)量退化[5]。因此,保持和提升土壤有機(jī)質(zhì)含量,更新土壤有機(jī)質(zhì)質(zhì)量,提高活性有機(jī)質(zhì)成分,成為當(dāng)今國(guó)際土壤學(xué)最活躍的研究課題。Lal[6]指出,包括中國(guó)在內(nèi)的發(fā)展中國(guó)家,增加土壤有機(jī)質(zhì)是保障糧食安全的必然選擇。雖然中國(guó)設(shè)施菜田的土壤有機(jī)質(zhì)含量高于露地農(nóng)田系統(tǒng),但是仍然低于歐美國(guó)家設(shè)施蔬菜栽培土壤有機(jī)質(zhì)含量的最低標(biāo)準(zhǔn)[7]。此外,為了降低冬季保溫成本,中國(guó)菜農(nóng)在設(shè)施蔬菜生產(chǎn)上常采用下沉式設(shè)施大棚,將表土移走建造保溫墻,造成富含有機(jī)質(zhì)的表層肥沃土壤缺失[2]。如何快速有效地提高設(shè)施菜田土壤有機(jī)質(zhì)含量,進(jìn)而提升土壤養(yǎng)分的保蓄和供應(yīng)能力,以滿足設(shè)施蔬菜快速生長(zhǎng)對(duì)養(yǎng)分和水分的高需求,是中國(guó)設(shè)施蔬菜生產(chǎn)面臨的技術(shù)瓶頸。

      水分和氮肥是影響設(shè)施蔬菜栽培的重要因子,合理施肥灌溉將有利于設(shè)施蔬菜的生長(zhǎng)。然而,過(guò)量水肥投入,一方面將造成土壤酸化和次生鹽漬化、土壤結(jié)構(gòu)破壞;另一方面,高溫高濕的環(huán)境條件將加快土壤有機(jī)質(zhì)分解[8-9],進(jìn)而增加植物對(duì)外源水分和養(yǎng)分投入的依賴性。滴灌施肥一體化是解決上述矛盾的有效技術(shù)手段,除滿足設(shè)施蔬菜對(duì)水肥的高需求外,還可大幅度減少對(duì)環(huán)境的負(fù)面影響。然而,滴灌施肥對(duì)土壤有機(jī)質(zhì)和秸稈礦化的影響,則鮮見(jiàn)報(bào)道。

      土壤有機(jī)碳的收支主要取決于有機(jī)物質(zhì)的投入量和異養(yǎng)呼吸分解消耗量[10]。秸稈進(jìn)入土壤,一部分被微生物異養(yǎng)呼吸分解釋放到大氣中,另一部分轉(zhuǎn)化成土壤有機(jī)碳,土壤呼吸是土壤有機(jī)碳輸出的主要途徑,是陸地生態(tài)系統(tǒng)碳循環(huán)的重要組成部分[11],通常可將土壤呼吸劃分為:微生物分解有機(jī)質(zhì)的基礎(chǔ)呼吸、根呼吸、根際微生物呼吸、激發(fā)效應(yīng)引起的微生物分解植物殘?bào)w及根系分泌物呼吸[12]。通過(guò)檢測(cè)土壤呼吸CO2排放通量和累積排放量,有助于評(píng)價(jià)灌溉方式和添加秸稈對(duì)土壤有機(jī)質(zhì)含量的間接影響。本文將在建立和完善土壤CO2日排放規(guī)律的基礎(chǔ)上,評(píng)價(jià)2種灌溉施肥模式和秸稈還田對(duì)設(shè)施菜田土壤CO2累積排放量的影響。

      1 材料與方法

      1.1 試驗(yàn)設(shè)計(jì)與田間管理

      試驗(yàn)于2016年3月至7月在天津農(nóng)科院現(xiàn)代農(nóng)業(yè)科技創(chuàng)新基地日光溫室進(jìn)行。該日光溫室建于2011年,長(zhǎng)70 m,寬7 m,北墻高3.5 m。表層0~30 cm土壤質(zhì)地為粉砂質(zhì)壤土,砂粒、粉粒和黏粒質(zhì)量分?jǐn)?shù)分別為30%、62%和8%,容重為1.34 g/cm3,pH值8.6,有機(jī)質(zhì)質(zhì)量分?jǐn)?shù)34 g/kg。

      試驗(yàn)采用二因素裂區(qū)設(shè)計(jì),主因素為灌溉施肥方式(傳統(tǒng)畦灌施肥、滴灌施肥一體化),副因素為秸稈還田(含C量為0、3 500 kg/hm2)。共設(shè)4個(gè)處理,分別為畦灌施肥(CIF)、畦灌施肥+秸稈(CIF+S)、滴灌施肥(DIF)、滴灌施肥+秸稈(DIF+S)。重復(fù)3次,共12個(gè)小區(qū)。小區(qū)間埋設(shè)防滲膜隔離至60 cm深,畦灌區(qū)和滴灌區(qū)防滲膜埋深90 cm。供試番茄品種為朝研圣迪,種苗為天津朝研種苗有限公司培育,留4穗果,每穗留果4~5個(gè)。采用當(dāng)?shù)氐湫偷亩翰绾颓锒缫荒陜墒旆N植制度,3~7月為冬春茬,3月11日定植,6月開(kāi)始采收,7月9日收獲完畢。小區(qū)面積6.7 m×3.6 m,每小區(qū)3畦,分別為土壤和植物樣品采集區(qū)(6.7×1.2 m)、監(jiān)測(cè)區(qū)(6.7×1.2 m)、測(cè)產(chǎn)區(qū)(6.7×1.2 m);畦寬1.2 m分寬窄行進(jìn)行種植,寬行70 cm,窄行50 cm,4葉期番茄幼苗雙行定植于窄行。畦灌區(qū)株距0.4 m,滴灌區(qū)株距0.35 m。所有處理基施商品雞糞13 800 kg/hm2(相當(dāng)于施N 200 kg/hm2),施玉米秸稈7 800 kg/hm2(相當(dāng)于施C 3 500 kg/hm2)。在定植前,上述雞糞和經(jīng)粉碎的玉米秸稈均勻撒施地表后,立即旋耕。畦灌處理,按照當(dāng)?shù)剞r(nóng)戶傳統(tǒng)習(xí)慣進(jìn)行施肥灌溉。每季基施NPK復(fù)合肥2 060 kg/hm2(N:P2O5:K2O比例17-17-17,金正大復(fù)合肥料工程研究中心),定植后每15 d追施上述復(fù)合肥300 kg/hm2,全生育期共施用復(fù)合肥4 500 kg/hm2;澆定植水100 mm,每次施肥后澆水60 mm,總灌溉量600 mm。滴灌處理,依據(jù)目標(biāo)產(chǎn)量法估算作物整個(gè)生育期內(nèi)的需肥總量,然后根據(jù)作物不同生育期的需水肥規(guī)律,將其分配到每天進(jìn)行滴灌施肥。在實(shí)際操作過(guò)程中,綜合考慮土壤含水量、氣象等因素進(jìn)行滴灌施肥。通過(guò)在滴灌處理各小區(qū)內(nèi)埋設(shè)張力計(jì)(張力計(jì)陶土頭埋置地下20 cm處)來(lái)指示土壤水分變化,確定是否灌溉施肥;當(dāng)張力計(jì)讀數(shù)(09:00)達(dá)到控制灌溉水下限?20 kPa[13]時(shí),即需要灌溉施肥;陰雨天,不進(jìn)行滴灌施肥。澆定植水100 mm,定植15 d后進(jìn)行滴灌施肥,除陰雨天外,每天灌溉量介于4~6 mm,全生育期灌溉量300 mm;平均每次施肥量14.7 kg/hm2,全生育期施肥量1 300 kg/hm2,滴灌肥N:P2O5:K2O比例19-8-27(圣誕樹(shù)滴灌專用肥,北京富特森公司)。

      1.2 測(cè)定與計(jì)算方法

      每小區(qū)中間種植畦距離走道85 cm處,分別埋設(shè)長(zhǎng)寬高分別為50 cm×50 cm×20 cm的不銹鋼底座(厚度4 mm)。為了確保采樣箱內(nèi)外土壤水分和養(yǎng)分的交換,底座四周高10 cm處共開(kāi)直徑3 cm圓孔20個(gè);為了確保底座與氣體采樣箱密閉,底座上部焊接寬1.5 cm、深1 cm水槽。定植前,底座埋入土壤,使其水槽上沿與地表持平。底座內(nèi)和底座外40 cm范圍內(nèi)不種植植物,全生育期農(nóng)事操作與常規(guī)操作保持一致。氣體采樣箱體積為0.5×0.5×0.5 m3,由厚度4 mm透明PVC板制成。氣體箱兩側(cè)有通氣口(玻璃膠密封),其頂部安裝溫度自動(dòng)記錄儀(EBI-20T,Ebro Instruments,Germany),記錄測(cè)定時(shí)氣體箱內(nèi)的空氣溫度,并且頂部安裝直徑12 cm風(fēng)扇,混勻氣體箱內(nèi)的氣體。此外,每小區(qū)距土表10 cm處,埋設(shè)溫度自動(dòng)記錄儀,精度0.1 ℃,記錄每小時(shí)土壤溫度。番茄果實(shí)轉(zhuǎn)色時(shí)分次采收,將各小區(qū)測(cè)產(chǎn)區(qū)的果實(shí)全部稱質(zhì)量,計(jì)算單位面積番茄累積總產(chǎn)量。

      應(yīng)用CO2紅外分析儀(GXH-3010E1,北京華云分析儀器研究所有限公司),測(cè)定土壤呼吸[14]。紅外分析儀二氧化碳探頭量程為0~1 000×10-6,最小測(cè)量精度為1×10?6。為了驗(yàn)證上午08:00-09:00測(cè)定的CO2排放通量,是否能夠代表全天日均排放通量,于2016年3月27和28日檢測(cè)了所有小區(qū)48 h內(nèi)每3 h的CO2排放通量,進(jìn)行了配對(duì)檢驗(yàn)和相關(guān)性統(tǒng)計(jì)分析。

      從定植開(kāi)始,每天08:00-09:00采樣測(cè)定箱體內(nèi)CO2排放通量。將底座水槽內(nèi)注入高約0.5 cm的水,將氣體箱進(jìn)氣管以及出氣管(直徑4 mm)分別與紅外分析儀的出氣口和進(jìn)氣口相連,同時(shí)接通風(fēng)扇電源,將氣體箱平穩(wěn)的扣在底座水槽內(nèi),開(kāi)始測(cè)定。每次檢測(cè)箱體內(nèi)8個(gè)時(shí)間段CO2濃度,測(cè)定總時(shí)長(zhǎng)240 s;采樣時(shí)長(zhǎng)20 s,采樣間隔10 s。根據(jù)單位時(shí)間箱體內(nèi)CO2濃度的變化,計(jì)算土壤CO2排放通量和累積排放量,計(jì)算公式如下。

      式中3為CO2-C累積排放量,kg/hm2;為移栽后天數(shù),d。

      1.3 數(shù)據(jù)統(tǒng)計(jì)

      數(shù)據(jù)處理和統(tǒng)計(jì)分析采用Excel 2013 和SAS V8.2軟件,作二因素方差分析,包括灌溉施肥方式和有無(wú)添加秸稈,以及灌溉施肥方式和有無(wú)添加秸稈的交互作用。48 h的CO2排放通量,作配對(duì)檢驗(yàn)和相關(guān)性統(tǒng)計(jì)分析。

      2 結(jié)果與分析

      從27、28日和二日平均值來(lái)看,上午08:00?09:00所測(cè)定的CO2排放通量與日均排放通量間,均不存在顯著差異(表1);而其他時(shí)間段除28日11:00和23:00所測(cè)定排放通量與日均排放通量不存在顯著差異外,均存在顯著差異。此外,上午08:00?09:00所測(cè)定的CO2排放通量與日均排放通量間,存在極顯著正相關(guān)關(guān)系,其決定系數(shù)為0.987(圖1)。

      表1 CO2日均排放通量與各時(shí)段排放通量平均值比較 Table 1 Average daily CO2 emission flux compared with average emission at different time periods

      注:***,**,*分別代表0.001,0.01,0.05水平差異顯著;ns,差異不顯著。對(duì)于27或28日,=15。

      Note: ***, **,* represent a significant difference at levels 0.001, 0.01, and 0.05, respectively; ns, not signification. For 27thor 28th,= 15.

      圖1 08:00-09:00土壤CO2排放通量與日均排放通量的相關(guān)關(guān)系圖

      移栽后30、60、90和120 d時(shí),畦灌和滴灌處理間CO2累積排放量差異顯著(圖2)。與滴灌相比,畦灌顯著增加了土壤CO2累積排放量;與不添加秸稈的處理相比,施用秸稈后各時(shí)間段CO2累積排放量均顯著增加。定植后120 d時(shí),畦灌和滴灌不施用秸稈時(shí)土壤呼吸CO2平均累積排放量分別為5 520和4 780 kg/hm2(圖2)。與畦灌不添加秸稈處理相比(圖3),添加秸稈后畦灌排放增加量為2 000 kg/hm2,而滴灌處理CO2排放增加量?jī)H為1 200 kg/hm2,即畦灌和滴灌處理來(lái)自秸稈的CO2排放增量占秸稈碳投入量的比例分別為58%和36%(圖3)。

      注:CIF、DIF、S分別表示畦灌、滴灌和秸稈。不同大寫字母表示灌溉施肥方式間差異顯著,不同小寫字母表示是否施用秸稈之間差異顯著(P<0.05)。

      注:不同大寫字母表示灌溉方式間差異顯著(P<0.05)。CO2排放增量=(秸稈還田處理CO2排放量–畦灌不加秸稈CO2排放量);CO2累積排放率(%)=秸稈還田處理CO2-C排放增量/秸稈C添加量×100%。

      土壤CO2的排放高峰出現(xiàn)在移栽后10 d左右(圖4),隨后逐漸降低;移栽后40 d內(nèi)可檢測(cè)到處理間的顯著差異,此后未檢測(cè)到處理間的顯著差異。土壤CO2累積排放動(dòng)態(tài)曲線表明(圖4),無(wú)論是否施用秸稈,畦灌處理CO2累積排放量均顯著高于滴灌處理,并且與土壤積溫呈極顯著正相關(guān)關(guān)系(圖5)。

      不同處理下的番茄產(chǎn)量如表2所示。不添加秸稈時(shí)畦灌和滴灌番茄平均產(chǎn)量分別為(110±4.02)和(114±4.34) t/hm2,添加秸稈時(shí)則分別為(117±0.56)和(114±6.16) t/hm2,4個(gè)處理間均不存在顯著性差異(不添加秸稈值=0.32,值= 0.602 7>0.05,添加秸稈值=0.18,值=0.689 7>0.05)。

      注:圖中箭頭表示所有的畦灌灌溉日期。

      圖5 土壤CO2累積排放量與土壤積溫的擬合

      表2 不同處理下的番茄產(chǎn)量

      3 討 論

      采用CO2紅外分析儀-動(dòng)態(tài)箱法,可方便快捷地檢測(cè)設(shè)施菜田土壤CO2排放[15]。為了了解土壤CO2日變化特征,確定正確的采樣測(cè)定時(shí)間,本試驗(yàn)48 h連續(xù)測(cè)定結(jié)果表明,每天上午08:00-09:00測(cè)定的土壤CO2排放通量與日排放通量的平均值,不存在顯著差異(表1);并且二者之間存在極顯著正相關(guān)關(guān)系(圖1)。這為后續(xù)CO2排放通量的測(cè)定打下了良好的基礎(chǔ)(表1,圖1)。

      下沉式設(shè)施菜田富含有機(jī)質(zhì)的表層土壤缺失、土壤有機(jī)質(zhì)礦化快和積累慢[8],不能滿足設(shè)施蔬菜對(duì)水肥量大和強(qiáng)度高的需求,大水大肥成為中國(guó)設(shè)施菜田水肥管理的傳統(tǒng)模式。定植后1-4個(gè)月,與傳統(tǒng)畦灌相比,無(wú)論是否添加秸稈,滴灌處理均顯著降低了CO2累積排放量(圖2,3),這與曾睿等[16]和Lavigne[17]等的研究結(jié)果一致。傳統(tǒng)畦灌施肥體系土壤含水量高,土壤呼吸速率則隨著土壤含水量增加而提高[17]。滴灌施肥體系有效控制了水肥投入,顯著降低了土壤CO2排放,有利于設(shè)施蔬菜土壤有機(jī)質(zhì)的積累(圖3)。傳統(tǒng)畦灌施肥方式單次灌溉水量大,灌溉后短時(shí)間內(nèi)可能抑制了土壤微生物和植物根系呼吸,隨著水分蒸散,形成了有利于微生物活性的水熱和通氣環(huán)境[18],這從灌溉后第3天傳統(tǒng)畦灌施肥CO2排放通量急劇增加,可以得到很好的驗(yàn)證(圖4)。此外,傳統(tǒng)畦灌后期水分的大量蒸散,表層土壤含水量低,造成干濕交替頻繁發(fā)生,將激發(fā)土壤有機(jī)碳礦化[19]。

      溫度是影響土壤呼吸的主要因子[20],主要通過(guò)影響微生物、根生物量及根際活動(dòng),影響土壤呼吸,二者間具有明顯的相關(guān)關(guān)系。CO2累積排放量與土壤積溫呈顯著正相關(guān)關(guān)系(圖5),這與Adviento-Borbe等的研究結(jié)果一致[21]。不同處理CO2累積排放量與土壤積溫?cái)M合方程中斜率和截距的差異,則恰恰反映了相同溫度條件下土壤水分和秸稈對(duì)土壤CO2排放的影響(圖5)[22-24]。傳統(tǒng)漫灌施肥條件下,添加秸稈為土壤微生物提供了大量碳源物質(zhì),進(jìn)而顯著增加了設(shè)施番茄土壤呼吸累積排放量[24-25];溫度升高,將導(dǎo)致土壤微生物呼吸作用增強(qiáng),CO2排放量增加[25]。

      4 結(jié) 論

      1)08:00-09:00測(cè)定的土壤CO2排放通量與CO2日均排放通量,不存在顯著差異,且二者呈極顯著線性正相關(guān)關(guān)系。CO2排放高峰出現(xiàn)在定植后8~15 d,隨后逐漸降低并趨于平穩(wěn)。

      2)定植后40 d內(nèi)能檢測(cè)到傳統(tǒng)畦灌與滴灌處理間CO2排放通量的差異,此后處理間差異不顯著。

      3)與傳統(tǒng)畦灌相比,無(wú)論是否添加秸稈,滴灌處理均未減少番茄產(chǎn)量,不添加秸稈時(shí)畦灌和滴灌番茄平均產(chǎn)量分別為(110±4.02)和(114±4.34)t/hm2,添加秸稈時(shí)則分別為(117±0.56)和(114±6.16)t/hm2;但顯著降低了土壤CO2排放強(qiáng)度和累積排放量,有利于設(shè)施菜田土壤有機(jī)質(zhì)的積累。

      4)不同處理CO2累積排放通量與土壤積溫的擬合方程中斜率和截距的差異,可以很好地反映水分和秸稈對(duì)土壤CO2排放的影響。

      [1] 董靜,趙志偉,梁斌,等. 我國(guó)設(shè)施蔬菜產(chǎn)業(yè)發(fā)展現(xiàn)狀[J]. 中國(guó)園藝文摘,2017,33(1):75-77.

      [2] Fan Z B, Lin S, Zhang X M, et al. Conventional flooding irrigation causes an overuse of nitrogen fertilizer and low nitrogen use efficiency in intensively used solar greenhouse vegetable production[J]. Agricultural Water Management, 2014, 144(2): 11-19.

      [3] Fialho R C, Zinn Y L. Changes in soil organic carbon under eucalyptus plantations in Brazil: A comparative analysis[J]. Land Degradation & Development, 2015, 25(5): 428-437.

      [4] Loveland P, Webb J. Is there a critical level of organic matter in the agricultural soils of temperate regions: A review[J]. Soil & Tillage Research, 2003, 70(1): 1-18.

      [5] Reeve J R, Smith J L, Carpenter-Boggs L, et al. Soil-based cycling and differential uptake of amino acids by three species of strawberry (.) plants[J]. Soil Biology & Biochemistry, 2008, 40(10): 2547-2552.

      [6] Lal R. Soil carbon sequestration impacts on global climate change and food security[J]. Science, 2004, 304(5677): 1623-1627.

      [7] Chen Z, Tian T, Gao L, et al. Nutrients, heavy metals and phthalate acid esters in solar greenhouse soils in Round-Bohai Bay-Region, China: Impacts of cultivation year and biogeography[J]. Environmental Science & Pollution Research, 2016, 23(13): 13076.

      [8] 王敬國(guó). 設(shè)施菜田退化土壤修復(fù)與資源高效利用[M]. 北京:中國(guó)農(nóng)業(yè)大學(xué)出版社,2011.

      [9] 巨曉棠,李生秀. 土壤氮素礦化的溫度水分效應(yīng)[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),1998,4(1):37-42.

      Ju Xiaotang, Li Shengxiu. The effect of temperature and moisture on nitrogen mineralization in soils[J]. Plant Nutrition & Fertilizenence, 1998, 4(1): 37-42. (in Chinese with English abstract)

      [10] Jenkinson D S. The turnover of organic carbon and nitrogen in soil[J]. Philosophical Transactions of the Royal Society B Biological Sciences, 1990, 329: 361-367.

      [11] Chang C T, Sabaté S, Sperlich D, et al. Does soil moisture overrule temperature dependency of soil respiration in Mediterranean riparian forests?[J]. Biogeosciences Discussions, 2014, 11(21): 7991-8022.

      [12] Kuzyakov Y. Sources of CO2efflux from soil and review of partitioning methods[J]. Soil Biology & Biochemistry, 2006, 38(3): 425-448.

      [13] 康躍虎. 實(shí)用型滴灌灌溉計(jì)劃制定方法[J]. 節(jié)水灌溉,2004(3):11-12.

      Kang Yuehu. Applied method for drip irrigation scheduling[J]. Water Saving Irrigation, 2004(3): 11-12. (in Chinese with English abstract)

      [14] Pumpanen J, Kolari P, Ilvesniemi H, et al. Comparison of different chamber techniques for measuring soil CO2efflux[J]. Agricultural & Forest Meteorology, 2004, 123(3/4): 159-176.

      [15] 任濤,李俊良,張宏威,等. 設(shè)施菜田土壤呼吸速率日變化特征分析[J]. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào),2013,21(10):1217-1224.

      Ren Tao, Li Junliang, Zhang Hongwei, et al. Analysis of daily dynamics of soil respiration rate in greenhouse vegetable fields[J]. Chinese Journal of Eco-Agriculture, 2013, 21(10): 1217-1224. (in Chinese with English abstract)

      [16] 曾睿,梁銀麗,要曉瑋,等. 不同水分條件下溫室番茄土壤呼吸變異性分析[J]. 灌溉排水學(xué)報(bào),2011,30(6):111-114.

      Zeng Rui, Liang Yinli, Yao Xiaowei, et al. Variation of tomato soil respiration in greenhouse under different soil moisture[J]. Journal of Irrigation & Drainage, 2011, 30(6): 111-114. (in Chinese with English abstract)

      [17] Lavigne M B, Foster R J, Goodine G. Seasonal and annual changes in soil respiration in relation to soil temperature, water potential and trenching[J]. Tree Physiology, 2004, 24(4): 415.

      [18] 楊洋,張玉龍,祁金虎,等. 灌溉方法對(duì)日光溫室土壤呼吸的影響[J]. 生態(tài)學(xué)雜志,2016,35(11):2890-2895.

      Yang Yang, Zhang Yulong, Qi Jinhu, et al. Effects of irrigation methods on soil respiration rate in sunlight greenhouse[J]. Chinese Journal of Ecology, 2016, 35(11): 2890-2895. (in Chinese with English abstract)

      [19] 王健波. 耕作方式對(duì)旱地冬小麥土壤有機(jī)碳轉(zhuǎn)化及水分利用影響[D]. 北京:中國(guó)農(nóng)業(yè)大學(xué),2014.

      Wang Jianbo. Effect of Different Tillage Practices on Soil Organic Carbon Transformation and Water use in Dryland Winter Wheat[D]. Beijing: China Agricultural University, 2014. (in Chinese with English abstract)

      [20] Kechavarzi C, Dawson Q, Bartlett M, et al. The role of soil moisture, temperature and nutrient amendment on CO2efflux from agricultural peat soil microcosms[J]. Geoderma, 2010, 154(3/4): 203-210.

      [21] Adviento-Borbe M A A, Haddix M L, Binder D L, et al. Soil greenhouse gas fluxes and global warming potential in four high-yielding maize systems[J]. Global Change Biology, 2007, 13(9): 1972-1988.

      [22] 宋秋來(lái),趙澤松,龔振平,等. 東北黑土區(qū)旱作農(nóng)田土壤CO2排放規(guī)律[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(23):200-207.

      Song Qiulai, Zhao Zesong, Gong Zhenping, et al. CO2emission law of dry farmland soil in black soil region of Northeast China[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2012, 28(23): 200-207. (in Chinese with English abstract)

      [23] 陳玉章. 不同覆蓋和秸稈還田方式對(duì)旱作小麥土壤溫度的影響[D]. 蘭州:甘肅農(nóng)業(yè)大學(xué),2013.

      Chen Yuzhang. Effects of Different Mulching and Straw Returning Methods of Wheat on Soil Temperatures in Dryland Area[D]. Lanzhou: GanSu Agricultural University, 2013. (in Chinese with English abstract)

      [24] 張慶忠,吳文良,王明新,等. 秸稈還田和施氮對(duì)農(nóng)田土壤呼吸的影響[J]. 生態(tài)學(xué)報(bào),2005,25(11):2883-2887.

      Zhang Qingzhong, Wu Wenliang, Wang Mingxin, et al. The effects of crop residue amendment and N rate on soil respiration[J]. Acta Ecologica Sinica, 2005, 25(11): 2883-2887. (in Chinese with English abstract)

      [25] 劉軍,黃金花,楊志蘭,等. 長(zhǎng)期連作及秸稈還田棉田土壤呼吸變化特征[J]. 生態(tài)環(huán)境學(xué)報(bào),2015(5):791-796.

      Liu Jun, Huang Jinhua, Yang Zhilan, et al. Soil respiration variation characteristics of continuous cropping and straw incorporation cotton field[J]. Ecology & Environmental Sciences, 2015(5): 791-796. (in Chinese with English abstract)

      Effect of irrigation and straw returning on soil CO2emissions in greenhouse tomato

      Wang Yafang1, Lü Haofeng1, Du Jiuyue1, Li Yingjie1, Lian Xiaojuan2, Wang Zhengxiang2, Wang Jingguo1, Lin Shan1※

      (1.,,100193,; 2.,300100,)

      The greenhouse vegetable production has become one of the most promising agricultural industry in China with a rapid increase of planting area during the last two decades. Over-fertilization combined with improper irrigation dramatically increases nutrient losses and environmental pollution. However, the absence of surface soil, high temperature and moisture usually lead to low content on soil organic carbon and rapid soil mineralization in the sunken greenhouse vegetable production, northern China. Accumulation of soil organic carbon is slow even when straw is applied for a long period with conventional flooding irrigation. Promoting the sustainability of intensive used solar greenhouse vegetable production by optimizing irrigation and straw application management may have a positive impact. Our study in this paper focused on 1) whether straw returning can decrease mineralization rate of soil organic carbon and increase its accumulation with drip irrigation; and 2) suitable sampling schedule to measure daily CO2emission flux. A two-factor field experiment with three replicates was carried out which included two irrigation methods, i.e. conventional flooding irrigation fertilization and drip irrigation. Fertilization was combined with straw application rate of 0 and 3 500 kg/hm2. The four treatments are: conventional flooding irrigation with over-fertilization according to farmer’s practice (CIF); CIF + maize straw (CIF+S), drip irrigation with optimizing fertilization (DIF); and DIF + maize straw (DIF+S). Each plot (6.7 m × 3.6 m) consisted of three raised beds (0.7 m in width) and the walk way was 0.5 m in width between the raised beds. One of the three raised beds was used for measuring the fruits yield, one for monitoring CO2emission and other one for collecting soil and plant samples. In order to minimize lateral seepage of water and nutrients, we separated the plots with impermeable film to the depth of 0.6 m. One-month-old tomato seedlings were transplanted on raised beds with a handheld transplanting tool. Four fruit clusters were retained at each growing season and each cluster reserved four fruits. Gas flux chambers were composed of a permanent frame (50 cm width × 50 cm length × 20 cm depth) that was pre-installed in each plot before transplanting, and the height of top sampling chambers was 50 cm. The CO2fluxes were on line determined daily by using of CO2infrared spectrometer over the growth period between 08:00 am and 09:00 am at 30-second intervals during the closure time of 4 min (i.e., at time 0 and after 30, 60, 90, 120, 150, 180, and 240 s). The CO2gas fluxes were calculated from the slope of linear regressions of gas concentrations against the chamber closure time. The results showed that no significant difference on soil CO2emission flux was found between the measurements from 08:00-09:00 am and the daily average, and they were significant positively correlated, the coefficient of determination between was 0.987, while CO2emission measured in other time intervals were significantly different from daily average. Moreover, compared with conventional irrigation fertilization, the accumulated CO2emissions was significantly decreased in drip irrigation fertilization without reduction of the tomato fruit yield, regardless of whether straw was applied or not. In addition, the peak of CO2emission occurred during 8-15 d after transplanting, then CO2emission decreased and then stabilized. The difference of daily CO2emission flux among treatments can only be detected within 40 days after transplanting, and afterward there was no significant difference among treatments. Finally, there was a significant positive correlation between cumulative CO2emission and soil temperature. Our results demonstrated that drip irrigation fertilization can significantly reduce soil CO2emission and potentially improve the soil organic matter accumulation in the sunken solar greenhouse vegetable production.

      soils; irrigation; emission control; greenhouse vegetable production; CO2emission flux; soil respiration; straw returning

      2018-04-23

      2018-07-11

      國(guó)家科技支撐計(jì)劃項(xiàng)目(2015BAD23B01-4);國(guó)家自然科學(xué)基金項(xiàng)目(41761134087)

      王亞芳,博士生,主要從事菜田土壤碳氮轉(zhuǎn)化的研究。Email:15701574181@163.com

      林 杉,教授,博士生導(dǎo)師,主要從事植物營(yíng)養(yǎng)生理生態(tài)研究。Email:linshan@cau.edu.cn

      10.11975/j.issn.1002-6819.2018.17.011

      S152.6

      A

      1002-6819(2018)-17-0076-06

      王亞芳,呂昊峰,杜九月,李英杰,廉曉娟,王正祥,王敬國(guó),林 杉. 灌溉方式和秸稈還田對(duì)設(shè)施番茄田CO2排放的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(17):76-81. doi:10.11975/j.issn.1002-6819.2018.17.011 http://www.tcsae.org

      Wang Yafang, Lü Haofeng, Du Jiuyue, Li Yingjie, Lian Xiaojuan, Wang Zhengxiang, Wang Jingguo, Lin Shan. Effect of irrigation and straw returning on soil CO2emissions in greenhouse tomato[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(17): 76-81. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.17.011 http://www.tcsae.org

      猜你喜歡
      畦灌菜田通量
      冬小麥田N2O通量研究
      灌溉方式對(duì)溫室土壤理化性狀的影響
      蔬菜(2021年7期)2021-07-20 06:23:10
      不同灌溉方式對(duì)油菜生理特性的影響
      蔬菜(2021年6期)2021-06-19 06:26:58
      液施肥不同畦灌方式對(duì)土壤水氮分布及夏玉米生長(zhǎng)性狀影響
      不同灌溉集成模式對(duì)冬小麥產(chǎn)量形成特點(diǎn)的影響
      緩釋型固體二氧化氯的制備及其釋放通量的影響因素
      福建菜田氮、磷積累狀況及其淋失潛力研究
      春、夏季長(zhǎng)江口及鄰近海域溶解甲烷的分布與釋放通量
      有機(jī)無(wú)機(jī)肥料配合施用對(duì)設(shè)施菜田土壤N2O排放的影響
      基于幾種土壤測(cè)試方法的華南菜田磷素豐缺指標(biāo)研究
      晋江市| 竹北市| 石景山区| 三河市| 怀安县| 千阳县| 日喀则市| 阿图什市| 阿鲁科尔沁旗| 宜兰县| 伊宁市| 左贡县| 南京市| 合江县| 洛南县| 济阳县| 宝兴县| 平乡县| 上饶县| 府谷县| 广德县| 平远县| 巍山| 无为县| 含山县| 梅州市| 扶沟县| 永川市| 永定县| 革吉县| 伽师县| 泸定县| 通州区| 永嘉县| 扶沟县| 武清区| 恩施市| 河北省| 玉环县| 平定县| 泗水县|