• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      Ni元素對微納結(jié)構(gòu)低溫貝氏體鋼組織與力學(xué)性能的影響

      2018-10-08 10:52:48吳開明董航宇
      關(guān)鍵詞:板條貝氏體等溫

      鐘 磊,吳開明,董航宇

      (武漢科技大學(xué)國際鋼鐵研究院,湖北 武漢,430081)

      低溫貝氏體鋼是一種兼具超高強(qiáng)度和良好韌性的鋼種,自Bhadeshia和Caballero等[1-2]學(xué)者成功研發(fā)以來,受到業(yè)界的廣泛關(guān)注,其中合金元素對低溫貝氏體鋼組織演變及力學(xué)性能的影響一直是材料工作者的研究重點(diǎn)。Si作為低溫高碳貝氏體鋼的主要添加元素,其作用是抑制奧氏體相變過程中滲碳體的析出,保證了無碳化物貝氏體組織的形成[3]。Garcia-Mateo等[4]通過在超細(xì)低溫貝氏體鋼中添加Co、Al元素,以增加相變驅(qū)動力的方式加速貝氏體轉(zhuǎn)變,盡管鋼強(qiáng)度略有降低(抗拉強(qiáng)度為1600~1700 MPa),但其塑性和韌性顯著提高。Huang等[5]研究發(fā)現(xiàn),相比于Co含量的增加,Mn含量的降低對加速貝氏體轉(zhuǎn)變具有更大的促進(jìn)作用,這將有利于降低原料成本。Guo等[6]研究指出,低溫貝氏體鋼中添加Mn、Cr元素可以延長貝氏體形核的孕育期,且隨著Mn、Cr含量的增加,貝氏體鐵素體板條寬度減小,殘余奧氏體體積分?jǐn)?shù)增加,其中增加Mn含量可以提高鋼強(qiáng)度至一定值,但其塑韌性會受損,而Cr含量的增加則可以顯著提高鋼的塑韌性。Hu等[7]研究表明,Nb元素的添加會阻礙低碳貝氏體鋼中貝氏體轉(zhuǎn)變,但其可以通過細(xì)化奧氏體晶粒的方式提高鋼的強(qiáng)度,而添加Mo則可以促進(jìn)鋼中貝氏體轉(zhuǎn)變,且其對鋼的強(qiáng)化效果優(yōu)于單獨(dú)添加Nb或同時添加Mo、Nb的情況。

      Yang等[8]設(shè)計(jì)了Ni含量為4%~ 6%的低碳低溫貝氏體鋼,結(jié)果表明,Ni含量的增加可以提高貝氏體轉(zhuǎn)變溫度,但是在高溫下形成的貝氏體鐵素體板條較為粗大。根據(jù)陳雨來等[9]的研究,Ni元素(0.2%~0.4%)對貝氏體鐵素體板條的細(xì)化作用比Mo更加顯著,但組織中仍會出現(xiàn)少量的粗大貝氏體鐵素體板條。理論上,在鋼中添加一定量的Ni元素可以改善其低溫韌性,但Ni含量過高則會影響鋼的熱處理工藝周期和加工成本?;诖?,本文設(shè)計(jì)了不含Ni及Ni含量為1.47%的兩組低溫貝氏體鋼,利用兩步貝氏體等溫轉(zhuǎn)變工藝熱處理后,研究了Ni元素的添加對試驗(yàn)鋼組織及力學(xué)性能的影響。

      1 試驗(yàn)材料與方法

      本研究用鋼為委托武漢科技大學(xué)煉鋼試驗(yàn)基地生產(chǎn)的鍛態(tài)鋼坯,尺寸為50 mm×50 mm×2000 mm,其化學(xué)成分見表1。

      利用Gleeble 3500熱模擬試驗(yàn)機(jī)測定的熱膨脹曲線,并結(jié)合MUCG83.MOD軟件[10]計(jì)算試驗(yàn)鋼的等溫轉(zhuǎn)變(TTT)曲線,得到Ni-free鋼和Ni-bearing鋼的Ac3分別為897、856 ℃,馬氏體相變開始溫度Ms為238、180℃,貝氏體相變溫度Bs為348、303 ℃。據(jù)此,設(shè)計(jì)兩組試驗(yàn)鋼的熱處理工藝如表2所示。由表2可知,兩組試驗(yàn)鋼均采用奧氏體化+兩步貝氏體等溫轉(zhuǎn)變工藝進(jìn)行熱處理,在相同的等溫溫度條件下,為獲得類似轉(zhuǎn)變數(shù)量的貝氏體鐵素體組織,Ni-bearing鋼采用了更長的等溫時間。

      表1 試驗(yàn)鋼的化學(xué)成分(wB/%)

      表2 試驗(yàn)鋼的熱處理工藝

      利用Olympus BM51型光學(xué)顯微鏡(OM)和Nova 400 Nano型場發(fā)射掃描電子顯微鏡(SEM)觀察鋼樣的顯微組織及拉伸斷口形貌。采用THV-1MD型維氏硬度儀測量樣品表面的宏觀硬度,載荷為1 kg,加載時間為10 s,取10次測定結(jié)果的算術(shù)平均值作為試樣的宏觀硬度。根據(jù)GB/T 228.1—2010測定試樣的室溫拉伸性能;根據(jù)GB/T 229—2007測定試樣的室溫沖擊吸收功。采用Rigaku D/max2500PC型X 射線衍射儀(XRD)測定試樣中殘余奧氏體的體積分?jǐn)?shù),工作電壓和電流分別為45 kV和250 mA。在MERLIN Compact型場發(fā)射掃描電鏡下,利用牛津Nordlys MAX型背散射電子衍射分析儀(EBSD)配備的HKL Channel 5 EBSD系統(tǒng),將晶界取向差不小于15°時作為有效起始值,統(tǒng)計(jì)并計(jì)算鋼樣的有效晶粒尺寸,放大倍率為500倍,掃描步長為0.4μm,掃描區(qū)域?yàn)?00μm×60μm。

      2 結(jié)果與分析

      2.1 顯微組織

      圖1和圖2分別為熱處理后Ni-free和Ni-bearing鋼的OM和SEM照片,表3為鋼樣中貝氏體和殘余奧氏體的體積分?jǐn)?shù)。從圖1可以看出,兩組試驗(yàn)鋼的顯微組織均由微納米級的貝氏體鐵素體(黑色)和殘余奧氏體(白色)構(gòu)成,且相比于Ni-free鋼樣,Ni-bearing鋼樣中貝氏體板條束相對較寬,塊狀殘余奧氏體體積分?jǐn)?shù)較高且其尺寸較大。

      由圖2進(jìn)一步看出,兩組試驗(yàn)鋼顯微組織主要由取向不同的貝氏體板條束(Bainite lath)和殘余奧氏體(RA)組成,經(jīng)過二步貝氏體等溫轉(zhuǎn)變后,兩組鋼樣中出現(xiàn)了兩種不同尺寸的貝氏體鐵素體板條,即尺寸較大的一次貝氏體鐵素體板條(B1)和細(xì)小的二次貝氏體鐵素體板條(B2)。另外,鋼樣中殘余奧氏體有兩種形貌:一種是存在于貝氏體鐵素體板條之間的納米級薄膜狀殘余奧氏體(Film-like RA),另一種是存在于不同取向貝氏體束之間的微米級或亞微米級的塊狀殘余奧氏體(Blocky RA),結(jié)合表3可知,Ni-free鋼和Ni-bearing鋼中塊狀殘余奧氏體所占比例分別為27.79%和51.44%。在如圖2(b)和圖2(d)所示的3 μm單位長度內(nèi),Ni-bearing鋼樣明顯具有更多的貝氏體鐵素體和薄膜狀殘余奧氏體,可見,Ni-bearing鋼中貝氏體鐵素體板條更細(xì)小。

      (a)Ni-free鋼

      (b)Ni-bearing鋼

      (a) Ni-free鋼組織,低倍 (b)Ni-free鋼組織,高倍

      (c) Ni-bearing鋼組織,低倍 (d) Ni-bearing鋼組織,高倍

      圖2鋼樣的SEM照片

      Fig.2SEMimagesofthesteelsamples

      表3鋼樣中貝氏體鐵素體和殘余奧氏體的體積分?jǐn)?shù)

      Table3Volumefractionofbainiteferriteandretainedausteniteinsteelsamples

      鋼樣體積分?jǐn)?shù)/%貝氏體鐵素體薄膜狀殘余奧氏體塊狀殘余奧氏體Ni-free82.8012.424.78Ni-bearing76.4011.4612.14

      2.2 力學(xué)性能

      圖3為室溫拉伸試驗(yàn)條件下Ni-free和Ni-bearing鋼的工程應(yīng)力-應(yīng)變曲線,其各項(xiàng)力學(xué)性能見表4,其中鋼樣的屈服強(qiáng)度取工程應(yīng)變ε=0.2%對應(yīng)的工程應(yīng)力。結(jié)合圖3和表4可知,兩組試驗(yàn)鋼在室溫拉伸過程中未出現(xiàn)明顯的屈服現(xiàn)象,且均表現(xiàn)出了良好的綜合力學(xué)性能,Ni-free鋼樣的硬度HV1和抗拉強(qiáng)度Rm均高于Ni-bearing鋼樣,但Ni-bearing鋼樣的屈服強(qiáng)度Rp0.2、伸長率A、斷面收縮率Z、室溫沖擊韌性KV2明顯優(yōu)于Ni-free鋼樣,其中Ni-bearing鋼樣的強(qiáng)塑積相比于Ni-free鋼樣提高了約26.8%。

      圖3 試驗(yàn)鋼的工程應(yīng)力-應(yīng)變曲線

      Fig.3Tensileengineeringstress-straincurvesofthetestedsteels

      表4 鋼樣的力學(xué)性能

      圖4為試驗(yàn)鋼拉伸斷口的微觀形貌。從圖4中可以看出,經(jīng)過兩步貝氏體等溫轉(zhuǎn)變以后,Ni-free和Ni-bearing鋼樣的拉伸斷口形貌均由大量的微小等軸韌窩和撕裂棱組成,斷裂方式表現(xiàn)為韌性斷裂,但相比于Ni-free鋼樣,Ni-bearing鋼樣中等軸韌窩更加密集,顯示出了更佳的塑性,這與表4中所列出的試驗(yàn)鋼力學(xué)性能測試結(jié)果相符合。

      (a)Ni-free鋼 (b)Ni-bearing鋼

      圖4鋼樣的拉伸斷口形貌

      Fig.4Tensilefracturedmorphologiesofthesteelsamples

      2.3 晶粒尺寸

      圖5為熱處理后Ni-free和Ni-bearing鋼樣的EBSD取向成像圖及晶粒尺寸分布。由圖5可知,經(jīng)Channel 5 軟件計(jì)算得到Ni-free和Ni-bearing鋼樣的平均有效晶粒尺寸分別為0.876±0.646 μm和0.979±1.053 μm。試驗(yàn)結(jié)果可能存在一定的誤差,主要是因?yàn)閷?shí)際測量時有效步長設(shè)置為0.4 μm,將導(dǎo)致板條寬度小于0.4 μm的貝氏體鐵素體板條不能被準(zhǔn)確測量。另外,由于Ni-bearing鋼樣中含有更多的塊狀殘余奧氏體,尺寸分布在1~4 μm,因此其平均有效晶粒尺寸更大,且其標(biāo)準(zhǔn)差達(dá)到1.053 μm,表明該鋼樣晶粒尺寸分布更為不均。

      (a)Ni-free鋼,EBSD (b)Ni-bearing鋼,EBSD

      (c)Ni-free鋼,晶粒尺寸分布 (d) Ni-bearing鋼,晶粒尺寸分布

      圖5鋼樣的EBSD取向分布及晶粒尺寸分布

      Fig.5EBSDorientationimagingmapsandgrainsizedistributionofthesteelsamples

      3 討論

      3.1 Ni元素對低溫貝氏體鋼相變動力學(xué)的影響

      圖6為計(jì)算所得試驗(yàn)鋼的相變自由能變化和過冷奧氏體等溫轉(zhuǎn)變TTT曲線。由圖6(a)可見,添加Ni元素會降低該低溫貝氏體鋼由奧氏體向貝氏體轉(zhuǎn)變的自由能,從而降低貝氏體轉(zhuǎn)變速率;由圖6(b)可知,Ni元素的加入會使C曲線往右下移,降低貝氏體開始轉(zhuǎn)變溫度,低溫下碳在奧氏體中的擴(kuò)散速率降低,因此延長了奧氏體向貝氏體轉(zhuǎn)變的時間。本研究中,由于熱處理采用的貝氏體相變溫度相同,但依據(jù)相變動力學(xué),Ni-bearing鋼完成貝氏體轉(zhuǎn)變所需要的時間更長。

      (a) 相變自由能曲線 (b) TTT曲線

      圖6試驗(yàn)鋼的相變自由能和等溫轉(zhuǎn)變TTT曲線

      Fig.6FreeenergyandTTTtransformationcurvesofthetestedsteels

      3.2 Ni元素對低溫貝氏體鋼組織與力學(xué)性能的影響

      Ni-free和Ni-bearing鋼在兩步貝氏體等溫相變過程中,均形成了兩種尺寸不同的納米結(jié)構(gòu)貝氏體鐵素體板條,其中一次貝氏體鐵素體板條(B1)是在250 ℃等溫過程中通過形核長大而形成的,二次貝氏體鐵素體板條(B2)則是在較低溫度(200 ℃)長時間等溫時,由第一步貝氏體轉(zhuǎn)變后保留的塊狀殘余奧氏體轉(zhuǎn)化形成的,由于形核溫度較低,晶粒長大受到限制,故二次貝氏體鐵素體板條更加細(xì)小。此外,從圖2中還可以觀察到,Ni-bearing鋼樣中的貝氏體鐵素體板條比Ni-free鋼樣更加細(xì)小,這與文獻(xiàn)[9]所得的結(jié)論相符。根據(jù)Mao等[11]研究可知,Ni元素(質(zhì)量分?jǐn)?shù)不高于4%)可起到細(xì)化原始奧氏體晶粒的作用,而原始奧氏體晶粒越細(xì)小,晶界對貝氏體板條長大的阻礙越大,最終形成的貝氏體鐵素體組織越細(xì)小。根據(jù)Hall-Petch關(guān)系式,鋼的屈服強(qiáng)度與晶粒尺寸有關(guān),即晶粒越細(xì),單位體積內(nèi)阻礙位錯運(yùn)動的晶界越多,鋼的屈服強(qiáng)度相對越高。本研究中,Ni-bearing鋼樣的屈服強(qiáng)度比Ni-free鋼樣高了83 MPa。

      另一方面,熱處理后Ni-free鋼樣的抗拉強(qiáng)度和維氏硬度均大于Ni-bearing鋼樣。這是因?yàn)樵诩{米結(jié)構(gòu)低溫貝氏體鋼中,貝氏體鐵素體為高位錯密度硬質(zhì)相,強(qiáng)度相對較高,而奧氏體為面心立方結(jié)構(gòu)相,在較大應(yīng)力作用下會發(fā)生相變而誘發(fā)塑性效應(yīng)(TRIP效應(yīng)),起到吸收和消耗能量、延緩裂紋擴(kuò)展、增強(qiáng)材料強(qiáng)韌性的作用。根據(jù)表3可知,Ni-free鋼樣中貝氏體鐵素體的體積分?jǐn)?shù)相對較高而塊狀殘余奧氏體含量相對較低,故其硬度及抗拉強(qiáng)度相對Ni-bearing鋼樣較高。但鋼材的塑性(如延伸率A、斷面伸縮率Z)主要受殘余奧氏體含量及分布的影響,而Ni-bearing鋼樣中殘余奧氏體的體積分?jǐn)?shù)相對較高,故Ni合金化后鋼樣在拉伸過程中具有更好的塑性變形能力,從而獲得了更高的強(qiáng)塑積。

      Ni-bearing鋼的常溫夏比V型沖擊吸收功比Ni-free鋼高出5.3 J。這是因?yàn)殇摬牡臎_擊韌性不僅取決于硬相的組織形貌,還與軟相殘余奧氏體的形貌、含量密切相關(guān)。殘余奧氏體在應(yīng)力作用下可以使裂紋尖端發(fā)生鈍化和塑性變形,提高鋼的沖擊韌性[12]。Ni-free和Ni-bearing鋼樣的顯微組織均由貝氏體鐵素體板條和殘余奧氏體構(gòu)成,由于Ni-bearing鋼的貝氏體鐵素體板條更細(xì)小,且殘余奧氏體含量更高,因此具有更好的沖擊韌性。

      4 結(jié)論

      (1)經(jīng)過兩步等溫貝氏體轉(zhuǎn)變后,Ni-free鋼和Ni-bearing鋼的顯微組織均由納米級貝氏體鐵素體板條和殘余奧氏體組成。在相同的相變溫度下,為獲得近似的貝氏體體積分?jǐn)?shù),Ni-bearing鋼需要更長的貝氏體等溫轉(zhuǎn)變時間,但得到的貝氏體鐵素體板條更為細(xì)小,塊狀殘余奧氏體體積分?jǐn)?shù)較多且尺寸相對較大。

      (2)相比于Ni-free鋼,Ni添加量為1.47%的低溫貝氏體鋼的硬度和抗拉強(qiáng)度略有降低,但塑性和沖擊韌性明顯提高,且其強(qiáng)塑積提高了約26.8%。

      猜你喜歡
      板條貝氏體等溫
      Mn-Cr-Mo系貝氏體軌鋼連續(xù)冷卻轉(zhuǎn)變的原位觀察
      金屬熱處理(2022年8期)2022-09-05 08:38:30
      低碳淬火貝氏體鋼的回火組織和力學(xué)性能研究
      山東冶金(2022年2期)2022-08-08 01:51:02
      EPDM/PP基TPV非等溫結(jié)晶行為的研究
      一種新型表層增益Zig-Zag板條的設(shè)計(jì)與分析
      激光與紅外(2018年3期)2018-03-23 09:23:33
      重載轍叉用貝氏體鋼的疲勞性能研究
      快速檢測豬鏈球菌的環(huán)介導(dǎo)等溫?cái)U(kuò)增方法
      回火對低碳貝氏體鋼組織和性能的影響
      山東冶金(2015年5期)2015-12-10 03:27:46
      SA508-3 鋼夾雜物誘導(dǎo)貝氏體形成的原位觀察
      上海金屬(2015年6期)2015-11-29 01:08:59
      納米CaCO3對FEP非等溫結(jié)晶動力學(xué)的影響
      中國塑料(2015年3期)2015-11-27 03:41:54
      舊木板變“森”相框架
      女友·家園(2014年3期)2014-11-26 22:24:31
      吴堡县| 灵璧县| 墨脱县| 胶州市| 桃园县| 廊坊市| 秦皇岛市| 三台县| 霸州市| 历史| 漾濞| 香港 | 汝阳县| 邢台市| 普兰店市| 武平县| 仙游县| 阜南县| 横峰县| 漳浦县| 扎赉特旗| 崇礼县| 民丰县| 左贡县| 兴文县| 高青县| 札达县| 南漳县| 深州市| 康定县| 东平县| 葫芦岛市| 平远县| 新乐市| 垫江县| 绥宁县| 枣强县| 常州市| 四川省| 井研县| 乳源|