宋慧芳,張建琴,范云鶴,李濤,馬恩波,張建珍
?
飛蝗雙鏈RNA降解酶的抗體制備及組織定位
宋慧芳1,2,3,張建琴1,4,范云鶴1,2,3,李濤1,3,馬恩波1,3,張建珍1,3
(1山西大學應用生物學研究所,太原 030006;2山西大學生命科學學院,太原 030006;3農(nóng)業(yè)有害生物綜合治理山西省重點實驗室,太原 030006;4山西大學中醫(yī)藥現(xiàn)代研究中心,太原 030006)
【目的】雙鏈RNA降解酶(dsRNA degrading enzyme, dsRNase)是制約RNA干擾(RNAi)技術(shù)在害蟲防治中應用的關(guān)鍵因素之一。本研究旨在利用原核表達系統(tǒng)獲得飛蝗LmdsRNase2和LmdsRNase3的特異抗原,進而制備抗體,對其進行組織定位和蛋白表達量檢測,為進一步解析飛蝗中腸dsRNA降解酶基因的功能分化提供蛋白水平的證據(jù)?!痉椒ā客ㄟ^對LmdsRNase2和LmdsRNase3的氨基酸序列(GenBank: ARW74135.1和ARW74134.1)進行比對,分別選取特異的LmdsRNase2和LmdsRNase3抗原序列(R2’、R3’)進行后續(xù)的研究。根據(jù)和的cDNA全長序列,設(shè)計包含酶切位點HI、dIII的引物,采用PCR技術(shù)擴增目標片段,雙酶切后連接至pET-32a載體。將重組質(zhì)粒轉(zhuǎn)化至大腸桿菌BL21(DE3)感受態(tài)細胞中,加入IPTG至終濃度為0.5 mmol·L-1,37℃下誘導4 h后提取蛋白,采用SDS-PAGE電泳方法檢測蛋白表達。大量培養(yǎng)帶重組質(zhì)粒的大腸桿菌,誘導目的蛋白大量表達,用鎳柱親和層析法分離R2’和R3’蛋白,Bradford法檢測蛋白濃度。經(jīng)兩次免疫新西蘭大白兔后,最終獲得LmdsRNase2和LmdsRNase3的多克隆抗體。利用ELISA法測定多克隆抗體的效價,通過western blot檢測抗體的特異性。提取飛蝗5齡第3天的中腸組織蛋白和中腸液,分別用LmdsRNase2和LmdsRNase3的抗體檢測其表達量。最后制備飛蝗5齡第3天的中腸石蠟切片,通過免疫組化對LmdsRNase2和LmdsRNase3蛋白進行亞細胞定位?!窘Y(jié)果】通過氨基酸序列比對發(fā)現(xiàn),LmdsRNase2和LmdsRNase3具有37%的序列一致度,選取特異的序列R2’和R3’設(shè)計引物,分別包含157和153個氨基酸殘基,理論分子量分別為17.0和16.8 kD。在IPTG濃度為0.5 mmol·L-1條件下,37℃誘導4 h后,目的蛋白在包涵體中大量表達。擴大培養(yǎng)重組菌株后提取蛋白,用鎳親和層析柱分離得到純度為85%的R2’蛋白,可直接用于免疫;而R3’蛋白的純度低于85%,利用電泳切膠純化后免疫新西蘭大白兔,36 d后取抗血清進行檢測,效價均達到1﹕102 400,表明抗體效果良好。用多克隆抗體雜交實驗室保存的His-LmdsRNase2和His-LmdsRNase3融合蛋白,對抗體進行特異性檢測,結(jié)果表明R2和R3的抗體分別特異性識別LmdsRNase2和LmdsRNase3,無交叉雜交現(xiàn)象,且條帶與His抗體雜交到的條帶大小一致。采用western blot方法檢測,發(fā)現(xiàn)LmdsRNase2蛋白在中腸組織中高表達,但在中腸液中未檢測到可見表達,LmdsRNase3蛋白在中腸組織和中腸液中均未檢測到表達。進一步采用免疫組化方法對兩個蛋白進行組織定位,發(fā)現(xiàn)LmdsRNase2和LmdsRNase3均在中腸細胞質(zhì)中表達,但LmdsRNae3的表達量較低?!窘Y(jié)論】成功制備了特異性良好的飛蝗LmdsRNase2和LmdsRNase3抗體,western blot和免疫組化分析表明LmdsRNase2在中腸細胞質(zhì)中高表達,而LmdsRNase3的表達量很低。研究結(jié)果為飛蝗中腸兩個dsRNA降解酶LmdsRNase2和LmdsRNase3的功能分化提供了蛋白水平的證據(jù)。
飛蝗;dsRNA降解酶;多克隆抗體;組織定位
【研究意義】RNA干擾(RNAi)技術(shù)作為高效的反向遺傳手段被廣泛應用于昆蟲學領(lǐng)域[1-3],近年來,隨著研究工作的不斷深入,利用RNAi技術(shù)進行害蟲防治已成為植保領(lǐng)域的新型策略[4-5]。但在通過飼喂雙鏈RNA(dsRNA)防治農(nóng)業(yè)害蟲飛蝗()的過程中,發(fā)現(xiàn)蟲體中腸內(nèi)的雙鏈RNA降解酶(dsRNA degrading enzyme,dsRNase)可快速降解dsRNA,導致RNAi效率極低[6]。因此,制備飛蝗dsRNase抗體,并對其進行組織定位,進而從蛋白水平闡釋飛蝗dsRNA降解酶的生物學功能及分化機制,對RNAi技術(shù)在害蟲防治中的應用具有重要的理論與實踐意義?!厩叭搜芯窟M展】目前,已有很多證據(jù)表明dsRNA在進入細胞前保持完整性是保證RNAi效率的關(guān)鍵因素之一[7-9]。Arimatsu等[10]在鱗翅目昆蟲家蠶()腸液中純化得到BmdsRNase蛋白,發(fā)現(xiàn)其具有降解dsRNA的活性;Garbutt等[11]研究發(fā)現(xiàn),煙草天蛾()RNAi效率低下的主要原因是蟲體血淋巴可以快速降解dsRNA,進一步研究發(fā)現(xiàn)其中一個dsRNase在血淋巴和中腸中均表達,另外一個dsRNase只在中腸組織高表達;Wynant等[12]在沙漠蝗()中鑒定出4個腸道高表達的核酸酶基因,經(jīng)RNAi初步研究表明,只有dsRNase 2具有降解dsRNA的活性;隨后,Spit等[13]在馬鈴薯甲蟲()中也鑒定獲得兩個腸道高表達的dsRNase,同時沉默這兩個dsRNase后,提高了飼喂dsRNA介導的RNAi效率;Luo等[14]在煙粉虱()中也發(fā)現(xiàn)存在兩個dsRNase基因,一個在中腸高表達,另一個在全身均有表達,同時沉默這兩個基因之后可提高煙粉虱的RNAi效率。由此可見,眾多學者把提高RNAi效率的研究重點聚焦在昆蟲dsRNase的分子功能方面?!颈狙芯壳腥朦c】雖然越來越多的昆蟲雙鏈RNA降解酶被報道,但大多集中于cDNA序列獲取、mRNA水平的表達特性以及沉默該基因后對RNAi效率的影響,對其蛋白表達特性以及組織定位僅在家蠶中有報道[7,15]。筆者課題組針對飛蝗飼喂dsRNA干擾無效的分子機制開展了深入研究,發(fā)現(xiàn)飛蝗具有4個dsRNase基因,經(jīng)qPCR檢測發(fā)現(xiàn),和在中腸組織高表達,進一步采用RNAi技術(shù)分析發(fā)現(xiàn),LmdsRNase2可導致dsRNA在中腸快速降解,構(gòu)成飛蝗飼喂dsRNA干擾無效的主要影響因素[6]。然而,LmdsRNase2和LmdsRNase3蛋白在昆蟲中腸組織的定位以及表達還未見系統(tǒng)研究。【擬解決的關(guān)鍵問題】分別選取LmdsRNase2和LmdsRNase3特異的抗原序列區(qū)進行原核表達并制備多克隆抗體,隨后對LmdsRNase2和LmdsRNase3進行組織定位與分析,為進一步闡明飛蝗dsRNA降解酶的功能分化提供蛋白水平的證據(jù),促進RNAi技術(shù)在害蟲防治中的應用。
試驗于2016—2017年在山西大學應用生物學研究所完成。
材料:供試飛蝗飼養(yǎng)于山西大學應用生物學研究所養(yǎng)蟲室。溫度28—30℃,光周期14 L﹕10 D,相對濕度15%—25%。取飛蝗5齡第3天中腸進行分析。
試劑:pET-32a原核表達載體由實驗室保存。限制性內(nèi)切酶HI和dIII購于美國New England Biolabs公司;Taq酶、T4連接酶、DNA Marker均購于TaKaRa公司;膠回收試劑盒、質(zhì)粒提取試劑盒購于美國OMEGA公司;引物合成和測序由生工生物工程(上海)有限公司完成;IPTG購于索萊寶公司;His單克隆抗體購于美國Santa Cruz公司;羊抗鼠免疫球蛋白G和羊抗兔免疫球蛋白G購于北京中杉金橋公司;標準蛋白Marker和BCIP/NBT-AP顯色試劑盒購于碧云天生物公司;SYTOX?Green nucleic acid stain熒光染料購于美國Thermo Fisher公司,驢抗兔Cy3熒光二抗購于美國Jackson ImmunoResearch公司。
用MEGA 5軟件對LmdsRNase2和LmdsRNase3的氨基酸序列進行比對,找出差異序列并運用在線軟件(http://web.expasy.org/compute_pi/)預測其分子量大小以及等電點等,進而選取特異的抗原序列(R2’和R3’)。
和的編碼區(qū)已在飛蝗中成功擴增并保存為Blunt-菌株,提取質(zhì)粒作為模板。分別設(shè)計并合成R2’的正向引物CGCGACGGGCAGTCG-TACGAC和R2’的反向引物CCCGCTACGGCGCAGCGTTCA CGTAC;R3’的正向引物CGCCGCAAGAGC CTCCGCCGC和R3’的反向引物CCCGCTA GGCTC- CCGTGAGAGCTAC,其中酶切位點HI和dIII用下劃線表示,引入終止密碼子用粗體標出。PCR擴增得到R2’和R3’抗原序列,用HI和dIII雙酶切后連接至pET-32a載體上,送至生工生物工程(上海)有限公司測序。
將測序正確的重組質(zhì)粒pET-32a-以及空載體pET-32a轉(zhuǎn)化至BL21(DE3)感受態(tài)中,挑取單克隆,接種到3 mL帶氨芐青霉素(50 μg·mL-1)的LB培養(yǎng)基中,37℃下200 r/min振蕩培養(yǎng)至OD600為0.6—1,加入IPTG至終濃度為0.5 mmol·L-1,37℃下誘導4 h。12 000×離心5 min收集菌體,用PBS緩沖液重懸菌體并加入蛋白酶抑制劑(phenylmethanesulfonyl fluoride,PMSF)進行超聲破碎,裂解產(chǎn)物在4℃條件下12 000×離心10 min,分離上清和沉淀。經(jīng)12%的SDS-PAGE凝膠電泳后,用考馬斯亮藍染色檢測。
將檢測可表達重組蛋白的菌株接種至1 L LB培養(yǎng)基中,采用優(yōu)化條件進行誘導,8 000×離心20 min收集菌體,加入Buffer I(20 mmol·L-1pH 7.4的Tris-HCl緩沖液,10 mmol·L-1咪唑,0.5 mol·L-1NaCl)進行吹懸,加入PMSF后超聲破碎30 min。12 000×離心30 min后留取沉淀,加入Buffer II(20 mmol·L-1pH 7.4的Tris-HCl緩沖液,10 mmol·L-1咪唑,0.5 mol·L-1NaCl,0.5% Triton-100,0.2 mmol·L-1EDTA)清洗3次,加入Buffer III(8 mol·L-1尿素,20 mmol·L-1pH 8.0的Tris-HCl緩沖液,100 mmol·L-1NaCl,5%甘油)吹懸沉淀后4℃振蕩過夜。16 000×離心30 min后收集上清并用0.45 μm的濾膜過濾。用GE公司的AKTA pure系統(tǒng)以及配套的HisPrep FF 16/20預裝柱進行純化。用Buffer III對柱子進行平衡,用Buffer III-10 mmol·L-1咪唑(Buffer III,10 mmol·L-1咪唑)以及Buffer III-500 mmol·L-1咪唑(Buffer III,500 mmol·L-1咪唑)進行連續(xù)梯度洗脫,收集洗脫液共10管(E1—E10),每管5 mL。洗脫組分通過SDS-PAGE檢測。
多克隆抗體的制備以及效價檢測委托北京華大蛋白質(zhì)研發(fā)中心完成。取純化后的目的蛋白400 μg,用生理鹽水稀釋至200—500 μL,與等體積的弗氏佐劑混合,充分混勻,形成油包水。選取2.0 kg左右的新西蘭大白兔進行免疫,將混勻的油包水免疫原對其背部進行皮下注射,完成初次免疫。14 d及26 d后再分別進行一次加強免疫,免疫量為200 μg。36 d時,耳靜脈取血檢測效價,之后頸動脈取血,5 000×離心10 min后,收取血清作為多克隆抗體。
采用ELISA方法測定制備抗體的效價。包被液(Na2CO3-NaHCO3緩沖液,pH 9.6)稀釋重組蛋白抗原至終濃度為2 μg·mL-1,從200倍開始用PBS緩沖液梯度稀釋,設(shè)置PBS為空白對照,200倍PBS稀釋的陰性血清為陰性對照,二抗為稀釋20 000倍的山羊抗兔IgG/HRG,顯色5 min后加50 μL終止液(2 mol·L-1H2SO4)終止反應;雙波長(450/630 nm)測吸光值。免疫前的血清為對照,其OD值為N;免疫后的血清OD值為P,當P/N≥2.1即認為是陽性[16-17]。
取飛蝗5齡第3天的蟲體進行解剖,小心將中腸外面的液體用紙巾吸干,再將中腸內(nèi)容物以及消化液移入離心管中,加入100 μL PBS緩沖液,16 000×離心10 min后取上清即為中腸液,將中腸組織放入離心管中,加入PBS提取中腸蛋白。取Sf9細胞-桿狀病毒系統(tǒng)表達的His-LmdsRNase2和3全長蛋白[6]作為陽性對照,使用Bradford法[18]測定蛋白濃度。制備12%的SDS-PAGE凝膠進行電泳,上樣量為100 μg蛋白。采用濕轉(zhuǎn)法[19]將蛋白轉(zhuǎn)印至硝酸纖維素膜上(100 V,100 min)。用含5% w/v牛血清白蛋白(BSA)的TBST緩沖液(20 mmol·L-1pH 7.4的Tris-HCl,150 mmol·L-1NaCl,0.05% Tween-20)在室溫下封閉2 h,然后與制備的R2和R3多克隆抗體以及His單克隆抗體4℃孵化過夜。TBST洗膜3次,每次10 min,將膜與堿性磷酸酶共價結(jié)合的羊抗兔或羊抗鼠免疫球蛋白G孵育1 h,TBST洗膜3次,每次10 min。使用BCIP/NBT-AP顯色試劑盒進行顯色。
取飛蝗5齡第3天的蟲體進行解剖,中腸組織用4%的多聚甲醛固定2 d后,制備石蠟切片,厚度為5 μm,方法參見Liu等[20]對中腸石蠟切片步驟的描述。切片經(jīng)梯度酒精脫蠟后,用3%雙氧水37℃處理10 min,0.01%檸檬酸緩沖液(pH 6.0)煮沸15 min后冷卻。用10%羊血清37℃封閉30 min,分別滴加1﹕500和1﹕200稀釋的R2和R3抗體,37℃孵育2 h。洗滌后滴加驢抗兔Cy3熒光二抗,避光37℃孵育1 h。PBS沖洗3次,每次5 min。滴加SYTOX?Green nucleic acid stain熒光染料(1﹕1 000稀釋),37℃孵育10 min,沖洗,干燥,中性樹膠封固后,采用LSM 880(Zeiss,Germany)激光共聚焦顯微鏡進行觀察拍照,Cy3和SYTOX?Green熒光的激發(fā)波長分別為561和504 nm。
運用MEGA 5軟件對LmdsRNase2和LmdsRNase3(GenBank:ARW74135.1和ARW74134.1)進行比對后,采用GeneDoc軟件作圖,結(jié)果如圖1所示。飛蝗LmdsRNase2和LmdsRNase3分別編碼405和390個氨基酸,具有37%的序列一致性,僅在序列兩端差異明顯。圖中黑色實線框為選取的LmdsRNase2抗原序列區(qū)R2’,以DGQS開始,NAAP結(jié)尾,共157個氨基酸殘基;黑色虛線框為選取的LmdsRNase3抗原序列區(qū)R3’,以RKSL開始,LTGA結(jié)尾,共153個氨基酸殘基。運用pI/Mw在線軟件分析R2’和R3’的理論分子量,分別為17.0和16.8 kD,理論等電點為4.8和8.3。
以實驗室保存的Blunt-LmdsRNase2和LmdsRNase3菌株為模板,設(shè)計引物,PCR擴增得到的目的條帶約為470 bp,將目的片段雙酶切連接至線性化的pET-32a載體上,得到重組質(zhì)粒pET-32a-/。重組質(zhì)粒經(jīng)HI和dIII雙酶切鑒定。結(jié)果如圖2-A所示,pET-32a質(zhì)粒全長為5 900 bp,以及條帶也與圖中相應條帶位置一致(白色箭頭所示),測序結(jié)果顯示重組質(zhì)粒構(gòu)建成功。
將重組質(zhì)粒轉(zhuǎn)化至菌株BL21(DE3)中,用0.5 mmol·L-1的IPTG 37℃誘導4 h后提取蛋白,分離上清和沉淀,經(jīng)SDS-PAE凝膠電泳檢測,結(jié)果如圖2-B所示。R2’和R3’片段均在包涵體中大量表達(黑色箭頭所示)。R2’和R3’融合蛋白的理論分子量約為33 kD,圖中箭頭所示分子量大小符合預期。
黑色實線框Black solid box:LmdsRNase2抗原序列the sequences of R2’;黑色虛線框Black dotted box:LmdsRNase3抗原序列the sequences of R3’
A:重組質(zhì)粒的雙酶切鑒定Recombinant plasmids digested with BamH I and Hind III;Marker:DNA分子量標準物 DNA standard size markers。B:目的蛋白誘導表達后SDS-PAGE電泳檢測SDS-PAGE analysis of R2’/R3’ proteins induced with IPTG;Marker:標準蛋白Marker Protein standard size markers;32a/-R2’/-R3’-S:上清 Supernatant;32a/-R2’/-R3’-P:沉淀 Precipitate
目的蛋白R2’以及R3’經(jīng)擴大培養(yǎng)并誘導表達后,經(jīng)親和層析柱純化后的組分通過12% SDS- PAGE凝膠電泳進行條帶分析(圖3-A),結(jié)果顯示,R2’在E2組分中純度最高,而R3’在E6組分中所獲得的量雖較少,但純度較高。為進一步制備抗原,將樣品透析除鹽后,檢測R2’-E2和R3’-E6的蛋白濃度約為3和1 mg·mL-1,發(fā)現(xiàn)只有R2’的純度達到85%以上(圖3-B),故R3’樣品進行膠純化后再開展后續(xù)的免疫程序。
A:純化后的R2’/R3’蛋白SDS-PAGE電泳檢測SDS-PAGE analysis of purified protein R2’ and R3’;Marker:標準蛋白Marker Protein standard size markers;R2’/R3’-Bc:柱純化前的粗蛋白組分 Before column fraction;R2’/R3’-Ft:未與柱結(jié)合的組分 Flow through column fraction;R2’/R3’-E1、E2……E6:含不同濃度咪唑的洗脫液對結(jié)合有目的蛋白進行洗脫的組分 Eluted fractions washed by different concentrations of imidazole;箭頭指示為目的蛋白 The arrow points to the target protein。B:目的蛋白免疫兔子前SDS-PAGE電泳檢測SDS-PAGE analysis of R2’/R3’ proteins which were used for injection
純化后的R2’和R3’蛋白經(jīng)兩次免疫兔子之后獲得多抗血清,用ELISA法對抗體效價進行檢測,結(jié)果如表1所示,效價達到了1﹕102 400,顯示抗體效果良好。為進一步檢測抗體的特異性,取實驗室保存的用桿狀病毒-昆蟲細胞表達系統(tǒng)異源表達的His-LmdsRNase2(R2)和His-LmdsRNase3(R3)全長蛋白作為對照。Western blot檢測結(jié)果如圖4-A所示,R2的抗體只能識別His-LmdsRNase2,大小與圖4-B中His抗體檢測到的His-LmdsRNase2大小一致,同樣R3的抗體只能識別His-LmdsRNase3,抗體特異性良好。此外,提取飛蝗中腸組織蛋白和中腸液后,用R2的抗體檢測,可見中腸中LmdsRNase2的表達,但有3條條帶,而在中腸液中未檢測到蛋白表達。用R3的抗體未檢測到中腸和中腸液中LmdsRNase3的表達。
為進一步了解LmdsRNase2和LmdsRNase3在飛蝗中腸組織中的表達情況,利用免疫組化方法分析了其在中腸組織中的定位,結(jié)果如圖5所示。二者均在中腸細胞質(zhì)中表達,但LmdsRNase3的表達量明顯低于LmdsRNase2。
表1 抗體效價檢測
A:Western blot檢測 LmdsRNase2/3 在飛蝗中腸中的表達 Western blot analysis of LmdsRNase2/3 expression level in L. migratoria midgut;Marker:標準蛋白Marker Protein standard size markers;Control:Sf9細胞裂解上清 Sf9 cells lysate;R2/R3:Sf9細胞中過表達的His-LmdsRNase2/3全長蛋白 Expressed His-LmdsRNase2/3 proteins by Sf9 cell;MG1/2:中腸組織蛋白 Total protein of L. migratoria midgut;MG-F1/2:中腸液 Midgut fluid。 B:His抗體檢測Sf9 細胞中過表達的His-LmdsRNase2/3 The detection of His-LmdsRNase2/3 by His-tag antibody
綠光指示的為細胞核 Green color indicates the cell nucleus:紅光指示的為LmdsRNase2/3 Red color indicates LmdsRNase2/3;陰性血清作為對照negative serum as the control
RNAi技術(shù)自1998年首次在秀麗線蟲()中報道[21],目前已廣泛應用于多種生物的功能基因研究[22-23]。2007年,Baum等將該技術(shù)應用于轉(zhuǎn)基因玉米中,結(jié)果表明經(jīng)過轉(zhuǎn)基因表達ds的玉米植株可以顯著抵抗玉米根葉甲()對根部的侵害[24]。隨后,由農(nóng)作物介導表達dsRNA進行害蟲防治的方法陸續(xù)在水稻()[25]、棉花()[26]、馬鈴薯()[27]等作物中得以研究報道。近年來,RNAi技術(shù)已被公認為是第4代殺蟲劑的核心技術(shù),基于RNAi的害蟲防治已逐漸成為一種新型的害蟲綠色防控策略[4-5]。但是,目前制約RNAi技術(shù)的主要因素是不同昆蟲間RNAi效率差異明顯,甚至同一種昆蟲dsRNA導入方式不同也可導致RNAi效率不同,如飛蝗注射dsRNA后可以出現(xiàn)目的基因的顯著沉默[28],但飼喂dsRNA卻未出現(xiàn)基因沉默現(xiàn)象[29]。進一步研究發(fā)現(xiàn),飛蝗有4個dsRNase基因,在mRNA水平上LmdsRNase2和LmdsRNase3均在中腸組織高表達[6]。
本研究成功獲得LmdsRNase2和LmdsRNase3的抗體,特異性良好(圖4)。提取中腸組織蛋白和中腸液之后,用R2和R3的抗體分別檢測LmdsRNase2和LmdsRNase3的蛋白表達水平,發(fā)現(xiàn)R2抗體在中腸組織中可以雜交到3條條帶。Arimatsu等[30]研究發(fā)現(xiàn),在家蠶中腸組織中經(jīng)分子篩分離得到3條條帶,一條是45 kD的BmdsRNase前體,一條是43 kD的切除了信號肽的中間體,還有一條是41 kD的BmdsRNase成熟體。因此,筆者推測本文檢測到的3條條帶可能是飛蝗dsRNase2的不同剪切體。在中腸組織中并未檢測到LmdsRNase3的表達,表明LmdsRNase3的表達量很低,這與筆者課題組前期的轉(zhuǎn)錄本檢測結(jié)果一致,中腸組織中的表達豐度是的28倍[6]。同時,采用RNAi技術(shù)沉默后,中腸液不再降解dsRNA,而沉默后,中腸液依然可降解dsRNA;用桿狀病毒-昆蟲細胞表達系統(tǒng)異源表達的LmdsRNas2融合蛋白在體外可以快速降解dsRNA,而LmdsRNase3融合蛋白則不能降解dsRNA。這些結(jié)果均表明,在中腸液中發(fā)揮降解dsRNA功能并最終導致飼喂飛蝗dsRNA干擾無效的主要因子是LmdsRNase2[6]。本文的結(jié)果從蛋白層面為上述結(jié)果提供了有力的佐證。
此外,在飛蝗中腸液中未能檢測到LmdsRNase2和LmdsRNase3蛋白,分析其原因,可能是分泌至中腸液中的LmdsRNase2蛋白占總蛋白量的比例低,而LmdsRNase3由于缺信號肽,推測可能未分泌到中腸液中。Arimatsu等[10]從家蠶中腸液中分離提純得到家蠶dsRNase并對其蛋白降解特性進行了研究,該實驗提取了25 mL家蠶中腸液(總蛋白量93.5 mg)經(jīng)多步純化后得到了11 μg的dsRNase蛋白。而本研究中每個樣品只提取了5頭飛蝗的中腸液,總蛋白量只有約400 μg,按照家蠶中腸液中dsRNase的比例計算,用于檢測的飛蝗中腸dsRNase僅0.05 μg,這可能是中腸液中抗體未檢測到dsRNase的主要原因。目前國際上對昆蟲dsRNase蛋白表達特性以及組織定位僅在家蠶中有報道,Arimatsu等[15]用免疫組化的方法發(fā)現(xiàn)家蠶dsRNase定位于家蠶中腸細胞中。本研究中免疫組化分析結(jié)果可見,LmdsRNase2在中腸細胞中均有大量表達,而LmdsRNase3的表達量較低,這與家蠶中的報道一致。本研究制備得到的LmdsRNase2和LmdsRNase3的抗體可用于LmdsRNase2蛋白抑制劑的篩選或飛蝗兩個中腸特異的核酸酶LmdsRNase2和LmdsRNase3的功能分化等研究,有助于對飛蝗飼喂dsRNA無效的分子機制進行深入解析,促進RNAi技術(shù)在飛蝗及其他害蟲防治中的應用。
成功獲得飛蝗LmdsRNase2和LmdsRNase3的特異性抗體,進一步采用western blot技術(shù)進行檢測和免疫熒光分析。結(jié)果顯示,LmdsRase2和LmdsRNase3均在飛蝗中腸細胞中表達,但LmdsRNase3表達量較低。據(jù)此分析,在飛蝗中腸中,LmdsRNase3蛋白表達豐度低是該酶不發(fā)揮降解dsRNA的另一主要原因。研究結(jié)果為解析飛蝗中腸LmdsRNase2和LmdsRNase3兩個酶的功能分化提供了蛋白水平的證據(jù)。
[1] BETTENCORT R, TERENIUS O, FAYE I.gene silencing by ds-RNA injected into Cecropia pupae is lethal to next generation embryos., 2002, 11(3): 267-271.
[2] TIAN H G, PENG H, YAO Q, CHEN H X, XIE Q, TANG B, ZHANG W Q. Developmental control of a Lepidopteran pest,, by ingestion of bacteria expressing dsRNA of a non-midgut gene., 2009, 4(7): e6225.
[3] YU R R, LIU W M, LI D Q, ZHAO X M, DING G W, ZHANG M, MA E B, ZHU K Y, LI S, MOUSSIAN B, ZHANG J Z. Helicoidal organization of chitin in the cuticle of the migratory locust requires the function of the chitin deacetylase2 enzyme (LmCDA2)., 2016, 291(47): 24352-24363.
[4] ZHANG J, KHAN S A, HECKEL D G, BOCK R. Next-generation insect-resistant plants: RNAi-mediated crop protection., 2017, 35(9): 871-882.
[5] ZHU K Y, MERZENDORFER H, ZHANG W Q, ZHANG J Z, Muthukrishnan S. Biosynthesis, turnover, and functions of chitin in insects., 2016, 61(1): 177-196.
[6] SONG H F, ZHANG J Q, LI D Q, COOPER A M W, SILVER K, LI T, LIU X J, MA E B, ZHU K Y, ZHANG J Z. A double-stranded RNA degrading enzyme reduces the efficiency of oral RNA interference in migratory locust., 2017, 86: 68-80.
[7] LIU J S, SWEVERS L, IATROU K, HUVENNE H, SMAGGHE G.DNA/RNA non-specific nuclease: expression of isoforms in insect culture cells, subcellular localization and functional assays., 2012, 58(8): 1166-1176.
[8] WANG K X, PENG Y C, PU J, FU W X, WANG J L, HAN Z J. Variation in RNAi efficacy among insect species is attributable to dsRNA degradation., 2016, 77: 1-9.
[9] CAO M, GATEHOUSE J A, FICHES E C. A systematic study of RNAi effects and dsRNA stability inand, following injection and ingestion of analogous dsRNAs., 2018, 19(4): 1079.
[10] ARIMATSU Y, FURUNO T, SUGIMURA Y, TOGOH M, ISHIHARA R, TOKIZANE M, KOTANI E, HAYASHI Y, FURUSAWA T. Purification and properties of double-stranded RNA-degrading nuclease, dsRNase, from the digestive juice of the silkworm,., 2007, 76(1): 57-62.
[11] GARBUTT J S, BELLES X, RICHARDS E H, REYNOLDS S E. Persistence of double-stranded RNA in insect hemolymph as a potential determiner of RNA interference success: evidence fromand., 2013, 59(2): 171-178.
[12] WYNANT N, SANTOS D, VERDONCK R, SPIT J, WIELENDAELE P V, BROECK J V. Identification, functional characterization and phylogenetic analysis of double stranded RNA degrading enzymes present in the gut of the desert locust,., 2014, 46: 1-8.
[13] SPIT J, PHILIPS A, WYNANT N, SANTOS D, PLAETINCK G, VANDEN BROECK J. Knockdown of nuclease activity in the gut enhances RNAi efficiency in the Colorado potato beetle,, but not in the desert locust,., 2017, 81: 103-116.
[14] LUO Y, CHEN Q G, LUAN J B, CHUNG S H, VAN ECK J, TURGEON R, DOUGLAS A E. Towards an understanding of the molecular basis of effective RNAi against a global insect pest, the whitefly., 2017, 88: 21-29.
[15] ARIMATSU Y, KOTANI E, SUGMURA Y, FURUSAWA T. Molecular characterization of a cDNA encoding extracellular dsRNase and its expression in the silkworm,., 2007, 37: 176-183.
[16] 趙靜, 孫洋, 譚永安, 肖留斌, 姜義平, 柏立新. 甜菜夜蛾卵黃原蛋白多克隆抗體制備及其在不同發(fā)育時期蛋白表達. 中國農(nóng)業(yè)科學, 2017, 50(22): 4316-4324.
ZHAO J, SUN Y, TAN Y A, XIAO L B, JIANG Y P, BAI L X. Polyclonal antibody preparation ofvitellogenin and its protein expression at different developmental stages., 2017, 50(22): 4316-4324. (in Chinese)
[17] 魏原杰, 王亞美, 黃麗娜, 劉寧, 趙潔, 艾新宇, 劉小寧. 棉蚜P450的克隆、原核表達及多克隆抗體的制備. 中國農(nóng)業(yè)科學, 2017, 50(7): 1351-1360.
WEI Y J, WANG Y M, HUANG L N, LIU N, ZHAO J, AI X Y, LIU X N. Cloning, prokaryotic expression and preparation of the polyclonal antibody againstfrom., 2017, 50(7): 1351-1360. (in Chinese)
[18] BRADFORD M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding., 1976, 72: 248-254.
[19] 宋慧芳, 李應龍, 馬恩波, 張建珍. 飛蝗--乙酰氨基葡萄糖苷酶基因的表達及酶學特性分析. 中國農(nóng)業(yè)科學, 2016, 49(21): 4140-4148.
SONG H F, LI Y L, MA E B, ZHANG J Z. The heterogenous expression and enzymatic characteristics of--acetylglucosaminidase from., 2016, 49(21): 4140-4148. (in Chinese)
[20] LIU X, ZHANG H, LI S, ZHU K Y, MA E, ZHANG J. Characterization of a midgut-specific chitin synthase gene () responsible for biosynthesis of chitin of peritrophic matrix in., 2012, 42(12): 902-910.
[21] FIRE A, XU S Q, MONTGOMERY M K, KOSTAS S A, DRIVER S E, MELLO C C. Potent and specific genetic interference by double-stranded RNA in., 1998, 391(6669): 806-811.
[22] WANG Y B, ZHANG H, LI H C, MIAO X X. Second-generation sequencing supply an effective way to screen RNAi targets in large scale for potential application in pest insect control., 2011, 6(4): e18644.
[23] ZHOU X G, WHEELER M M, OI F M, SCHARF M E. RNA interference in the termitethrough ingestion of double-stranded RNA., 2008, 38: 805-815.
[24] BAUM J A, BOGAERT T, CLINTON W, HECK G R, FELDMANN P, ILAGAN O, JOHNSON S, PLAETINCK G, MUNYIKWA T, PLFEAU M, VAUGHN T, ROBERTS J. Control of coleopteran insect pests through RNA interference., 2007, 25(11): 1322-1326.
[25] ZHA W J, PENG X X, CHEN R Z, DU B, ZHU L L, HE G C. Knockdown of midgut genes by dsRNA-transgenic plant-mediated RNA interference in the hemipteran insect., 2011, 6(5): e20504.
[26] MAO Y B, TAO X Y, XUE X Y, WANG L J, CHEN X Y. Cotton plants expressingdouble-stranded RNA show enhanced resistance to bollworms., 2011, 20(3): 665-673.
[27] ZHANG J, KHAN S A, HASSE C, RUF S, HECKEL D G, BOCK R. Full crop protection from an insect pest by expression of long double-stranded RNAs in plastids., 2015, 347(6225): 991-994.
[28] LI D Q, ZHANG J Q, WANG Y, LIU X J, MA E B, SUN Y, LI S, ZHU K Y, ZHANG J Z. Two chitinase 5 genes from: Molecular characteristics and functional differentiation., 2015, 58: 46-54.
[29] LUO Y, WANG X, WANG X, YU D, CHEN B, KANG L. Differential responses of migratory locusts to systemic RNA interference via double-stranded RNA injection and feeding., 2013, 22(5): 574-583.
[30] ARIMATSU Y, SUGIMURA Y, FURUSAWA T.processing of the dsRNase precursor isolated from silkworm midgut tissue,., 2011, 79(3): 125-127.
(責任編輯 岳梅)
Antibody Preparation and Subcelluar Localization of dsRNA Degrading Enzyme in
SONG HuiFang1,2,3, ZHANG JianQin1,4, FAN YunHe1,2,3, LI Tao1,3, MA EnBo1,3, ZHANG JianZhen1,3
(1Institute of Applied Biology, Shanxi University, Taiyuan 030006;2College of Life Science, Shanxi University, Taiyuan 030006;3Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan 030006;4Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006)
【Objective】The dsRNA degrading enzyme (dsRNase) is an important obstacle of using RNAi technology for pest control. The objective of this study is to obtain specific antigens of LmdsRNase2 and LmdsRNase3 by using prokaryotic expression system, and then to prepare antibodies, and to detect the protein expression level of midgut and subcelluar localization. The results will provide strong evidence from protein level to further analysis of functional differentiation of LmdsRNase2 and LmdsRNase3 in the midgut of.【Method】The specific antigen sequences (R2’ and R3’) of LmdsRNase2 and LmdsRNase3 (GenBank: ARW74135.1, ARW74134.1) were chosen by alignment analysis. The primers withHI,dIII restriction sites were designed according to the complete cDNA sequences. The target sequences were amplified by PCR and ligated to pET-32a vector through double enzyme digestion. The recombinant plasmids were transformed intoBL21 (DE3) competent cells, and then the cells were induced with 0.5 mmol·L-1IPTG for 4 hours at 37℃. SDS-PAGE electrophoresis was performed to examine the target proteins. After that, large amounts ofcells were cultured for protein extraction. The target proteins R2’ and R3’ were purified through Ni-NTA agarose chromatography, and the protein concentration was determined according to the method of Bradford.The anti-LmdsRNase2 and 3 polyclonal antibodies were obtained after immunizing New Zealand white rabbit. The specificity of antibody was detected by western blot analysis, the recombinant LmdsRNase2 and LmdsRNase3 proteins were used as antigens. The titers of two antibodies were determined by ELISA. Furthermore, the total proteins were extracted frommidgut and midgut fluid on day 3 of 5th instar nymph, and western blot was used to test the expression level of LmdsRNase2 and LmdsRNase3. Finally, the paraffin sections of the midgut on day 3 of 5th instar nymph were prepared, the subcellular localization of LmdsRNase2 and LmdsRNase3 proteins in the midgut ofwas conducted by immunofluorescence.【Result】LmdsRNase2 and LmdsRNase3 showed 37% sequence identity by full-length amino acid sequence alignment, and the variant sequence regions (named as R2’ and R3’ for LmdsRNase2 and LmdsRNase3, respectively) were selected for PCR primer design. The length of R2’ and R3’ is 157 and 153 a.a., respectively, and the calculated molecular mass of them is 17.0 and 16.8 kD, respectively. The protein expression was induced with 0.5 mmol·L-1IPTG for 4 hours at 37℃, finally the expressed proteins were only detected in inclusion bodies. The recombinant proteins R2’ and R3’ were purified using Ni-NTA agarose chromatography, and the purity of R2’ is 85%, it is suitable to directly immune New Zealand white rabbit. But the purity of R3’ is under 85%. To further obtain highly purified R3’, R3’was loaded on a gel and the expected band was cut for protein extraction and following immunization. After 36 days, ELISA results indicated that the titer of LmdsRNase2 and LmdsRNase3 antibodies was 1﹕102 400. Western blot demonstrated that anti-LmsRNase2 and 3 polyclonal antibodies could specifically detect LmdsRNase2 or LmdsRNase3 proteins, respectively, no cross hybridization was observed. The molecular weight was consistent with the predicted size. LmdsRNase2 protein was highly expressed inmidgut by western blot, nevertheless, there was no detectable signal in midgut fluid. However, LmdsRNase3 could not be detected in both midgut and midgut fluid. Immunofluorescence results showed that both LmdsRNase2 and LmdsRNase3 were expressed in cytoplasm ofmidgut cells, but the expression level of LmdsRNase3 protein was much lower than that of LmdsRNase2.【Conclusion】Anti-LmdsRNase2 and 3 specific polyclonal antibodies were successfully prepared, western blot and immunofluorescence showed that LmdsRNase2 protein was highly expressed in midgut, whereas the expression of LmdsRNase3 was very low. These results provide evidence of protein level for the functional differentiation of LmdsRNases in the midgut of.
; dsRNA degrading enzyme (dsRNase); polyclonal antibody; subcelluar localization
2018-04-21;
2018-06-26
國家自然科學基金(31601697,31730074)
宋慧芳,E-mail:songhuifang88@126.com。 通信作者張建珍,E-mail:zjz@sxu.edu.cn
10.3864/j.issn.0578-1752.2018.19.008