• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      車輛裝備單部件系統(tǒng)功能檢測間隔期建模

      2018-10-19 08:39:54李慧梅封會娟
      關(guān)鍵詞:間隔期劣化裝備

      周 剛, 李慧梅, 封會娟

      (1. 陸軍軍事交通學(xué)院學(xué)員五大隊, 天津 300161; 2. 陸軍軍事交通學(xué)院投送裝備保障系, 天津 300161)

      車輛裝備故障可分為突發(fā)故障和緩變故障。其中:突發(fā)故障是指車輛裝備在發(fā)生故障前沒有征兆,其發(fā)生過程具有突然性;緩變故障是指車輛裝備在發(fā)生故障前會出現(xiàn)征兆示警(潛在故障),若不及時采取措施消除潛在故障,則發(fā)展成為功能性故障,導(dǎo)致系統(tǒng)因故障而停機(jī)或發(fā)生災(zāi)難性的后果,其發(fā)生過程具有緩變性。

      車輛裝備故障大多數(shù)為緩變故障,通常采用P-F曲線來描述,且采用視情維修方式進(jìn)行維修。在車輛裝備維修實(shí)踐中,通常依據(jù)監(jiān)控和檢測產(chǎn)品狀態(tài)信息進(jìn)行視情維修決策,實(shí)現(xiàn)“以檢定修”的目的,在預(yù)防性維修工作中該類工作稱為功能檢測,因此,若要確定車輛裝備的視情維修時機(jī),只需確定功能檢測間隔期。

      目前,已有諸多學(xué)者對功能檢測間隔期進(jìn)行了研究。如:張向龍等[1]基于武器裝備戰(zhàn)備完好率要求,以技術(shù)準(zhǔn)備完好率為決策目標(biāo),建立了功能檢測間隔期模型,并得到檢測間隔期的最優(yōu)解;葛恩順等[2]基于檢測的不完備性,結(jié)合檢測出現(xiàn)的虛警和漏檢等情況,建立了裝備多級劣化系統(tǒng)的馬爾科夫模型,并以裝備長期使用費(fèi)用為決策目標(biāo),對功能檢測間隔期和維修閾值進(jìn)行了優(yōu)化研究;XU等[3]針對現(xiàn)代裝備結(jié)構(gòu)復(fù)雜、運(yùn)行環(huán)境惡劣、維修耗資大等特點(diǎn),以每個運(yùn)行周期維修費(fèi)用為決策目標(biāo),基于馬爾科夫-蒙特卡羅仿真模型研究了裝備狀態(tài)檢測間隔期;張仕新等[4]根據(jù)狀態(tài)檢測的不完善性,以裝備可用度為決策目標(biāo),基于時間延遲理論模型對有限使用期下的裝備檢測間隔期進(jìn)行了研究。

      然而,針對車輛裝備的相關(guān)研究仍然相對較少,但在部隊車輛維修實(shí)踐中,隨著車輛裝備性能逐漸劣化,為避免出現(xiàn)產(chǎn)品故障或系統(tǒng)停機(jī),應(yīng)及時確定車輛裝備的功能檢測間隔期。因此,筆者利用連續(xù)時間馬爾科夫鏈模型,研究了車輛裝備功能檢測間隔期的確定方法,為部隊維修工作決策提供方法支持。

      1 模型假設(shè)及參數(shù)說明

      根據(jù)車輛裝備維修實(shí)際情況進(jìn)行如下假設(shè):

      1) 研究對象為單故障模式的單部件系統(tǒng)(以下稱為“產(chǎn)品”)。

      2) 產(chǎn)品初始故障率為0,隨著產(chǎn)品工作時間t的增加,其性能劣化情況逐漸加深,直至出現(xiàn)功能性故障。產(chǎn)品性能劣化狀態(tài)可分為k個階段,其在第k個性能劣化階段后發(fā)生功能性故障,相鄰2個劣化狀態(tài)之間的轉(zhuǎn)移時間1/λ服從參數(shù)為λ的指數(shù)分布。

      3) 產(chǎn)品的性能劣化水平可檢測,且檢測效果是完備的。

      4) 定期對產(chǎn)品狀態(tài)進(jìn)行檢測,其中平均檢測間隔=1/λin,平均檢測時間=1/μin,且二者服從指數(shù)分布。

      5) 若檢測到產(chǎn)品處在第i(0≤i≤k)個劣化狀態(tài),則產(chǎn)品的維修策略為

      (1)

      其中n為維修閾值。

      6) 在檢測時,若發(fā)現(xiàn)產(chǎn)品出現(xiàn)潛在故障,則進(jìn)行預(yù)防性維修,且為完全維修,即“修復(fù)如新”,并記平均維修時間為1/μR;若產(chǎn)品發(fā)生功能性故障,則更換故障件,并記平均更換時間為1/μF。

      7) 產(chǎn)品發(fā)生故障后的送修、返修時間和費(fèi)用忽略不計。

      模型涉及的相關(guān)參數(shù)說明如下:

      1)T為功能檢測間隔期,即T=1/λin;

      2)k為產(chǎn)品性能劣化階段;

      3)R(t)為產(chǎn)品可靠度;

      4)CR、CF分別為每次預(yù)防性維修和更換故障件的平均費(fèi)用,其中包括停機(jī)損失費(fèi);

      5)Cr為因產(chǎn)品檢測而引起的損失費(fèi)用率;

      2 功能檢測間隔期模型建立

      2.1 模型狀態(tài)空間定義

      根據(jù)假設(shè),定義模型狀態(tài)空間如下:

      S(i,0),1≤i≤k,表示車輛裝備的劣化狀態(tài);

      I(i,1),1≤i≤n,表示車輛裝備在第i個狀態(tài)正在進(jìn)行檢測;

      I(m,1),n+1≤m≤k,表示車輛裝備狀態(tài)已超過維修閾值,處于檢測過程中;

      R表示車輛裝備處于預(yù)防性維修狀態(tài);

      SF表示車輛裝備處于功能性故障狀態(tài)。

      對車輛裝備進(jìn)行定期檢測,若未超過維修閾值n則正常工作,超過維修閾值n則進(jìn)行預(yù)防性維修;若發(fā)生功能性故障,則立即進(jìn)行更換。預(yù)防性維修和故障件更換均使產(chǎn)品恢復(fù)至全新狀態(tài)。所有狀態(tài)及轉(zhuǎn)移概率構(gòu)成的馬爾科夫鏈即狀態(tài)轉(zhuǎn)移情況,如圖1所示。

      2.2 模型分析與建立

      根據(jù)決策目標(biāo)可將功能檢測間隔期模型分為可用度模型、費(fèi)用(率)模型、故障風(fēng)險模型和多目標(biāo)優(yōu)化模型。在部隊車輛裝備維修實(shí)踐中,產(chǎn)品的可用度和費(fèi)用是進(jìn)行維修決策需考慮的重要因素,因此,筆者重點(diǎn)以可用度和維修費(fèi)用率為決策目標(biāo)進(jìn)行建模。

      2.2.1 可用度決策目標(biāo)模型

      根據(jù)可靠性相關(guān)理論可知:產(chǎn)品的瞬時可用度為產(chǎn)品在t時刻處于工作狀態(tài)S(i,0)(1≤i≤k)的概率之和。其求解過程十分復(fù)雜,而根據(jù)連續(xù)時間馬爾科夫過程的性質(zhì),產(chǎn)品在長時間工作后會進(jìn)入穩(wěn)定狀態(tài)[5],則產(chǎn)品進(jìn)入某一狀態(tài)的速率等于離開該狀態(tài)的速率,即

      (2)

      式中:pi,j為各狀態(tài)的概率,1≤i≤k,j=0或1;pR為預(yù)防性維修的概率;pF為發(fā)生功能性故障的概率。

      在穩(wěn)態(tài)條件下,產(chǎn)品各狀態(tài)概率之間的關(guān)系:

      (3)

      由于連續(xù)時間馬爾科夫過程的各狀態(tài)概率之和等于1,則

      (4)

      由可用度定義可知:產(chǎn)品穩(wěn)態(tài)可用度為

      (5)

      則根據(jù)式(2)-(5)可得產(chǎn)品穩(wěn)態(tài)可用度

      (6)

      式中:a=λin/μin;b=λ/μF;c=λin/μF;d=μin/μR;e=λ/(λ+λin);f=ek-n;g=e(1-f)/(1-e)。

      2.2.2 維修費(fèi)用率決策目標(biāo)模型

      對于長期運(yùn)行的產(chǎn)品,可采用產(chǎn)品長期維修費(fèi)用率作為決策目標(biāo)。產(chǎn)品長期維修費(fèi)用率是指產(chǎn)品總維修費(fèi)用與運(yùn)行總時間的比值,是維修經(jīng)濟(jì)性的重要度量指標(biāo),其計算公式為

      (7)

      將式(2)、(3)代入式(7),并經(jīng)簡化可得

      (8)

      2.3 模型計算

      采用數(shù)值求解方法計算車輛裝備單部件系統(tǒng)功能檢測間隔期模型比較繁瑣,而且在人工計算過程中,容易因計算及操作失誤而導(dǎo)致計算結(jié)果誤差較大。因此,筆者提出了粒子群(Partical Swarm Optimization,PSO)求解算法,PSO算法流程如圖2所示。

      具體實(shí)施步驟如下:

      1) 初始化粒子群,主要包括種群的群體規(guī)模N,單個粒子的初始位置xi和初始速度vi。

      2) 計算種群單個粒子的適應(yīng)度,使種群內(nèi)的每個粒子均有一個確定的適應(yīng)度。

      3) 根據(jù)適應(yīng)度分別比較每個粒子的個體極值和全局極值,使種群個體粒子在變量空間內(nèi)不斷尋優(yōu),而所有粒子可自動追蹤最優(yōu)粒子,并不斷調(diào)整其搜索策略。

      4)單個粒子迭代并不斷更新速度和位置。

      5)判斷算法是否滿足終止條件,若滿足則輸出最優(yōu)解;否則返回步驟2)。

      3 實(shí)例應(yīng)用

      在部隊日常訓(xùn)練中,維修費(fèi)用是車輛裝備維修工作考慮的主要因素。因此,從部隊車輛裝備維修工作的實(shí)際情況出發(fā),在實(shí)例驗(yàn)證中選用維修費(fèi)用率模型進(jìn)行優(yōu)化計算。

      3.1 信息來源

      以某型載重車的離合器分離軸承為例,驗(yàn)證模型、算法的合理性和可行性。該型載重車的信息采集方式主要有如下3個方面:1)從廠家獲取的信息,主要有該型載重車零部件的關(guān)鍵壽命、產(chǎn)品費(fèi)用等信息;2)根據(jù)通用車輛裝備維修分配表(包括該型載重車的維修任務(wù)分配表)以及車輛裝備維修保障領(lǐng)域?qū)<医?jīng)驗(yàn)獲得的信息;3)通過部隊調(diào)研獲取該型載重車的維修保障信息,包括備件實(shí)際維修費(fèi)用及維修時間等。

      該型載重車在工作過程中,其離合器分離軸承的健康情況不斷發(fā)生劣化,其性能劣化狀態(tài)可分為9個階段,即k=9;從當(dāng)前狀態(tài)向下一個狀態(tài)轉(zhuǎn)移的時間1/λ=10 d,平均檢測時間1/μin=0.042 d,平均檢測費(fèi)用率Cr=12元/d;進(jìn)行預(yù)防性維修的平均維修時間1/μR=0.167 d,平均維修費(fèi)用CR=78.7元;進(jìn)行故障件更換時的平均故障件更換時間1/μF=0.25 d,平均更換費(fèi)用CF=153.8元。

      3.2 模型求解

      3.2.1 數(shù)值計算方法

      表1 不同T、n下的計算結(jié)果

      3.2.2 PSO算法計算方法

      設(shè)粒子種群規(guī)模N=20,迭代次數(shù)為200,慣性權(quán)重w=1,學(xué)習(xí)因子c1=c2=2。根據(jù)MATLAB軟件進(jìn)行PSO算法編程,得到PSO算法運(yùn)行結(jié)果,如圖4所示。

      設(shè)迭代次數(shù)分別為100,120,…,200,統(tǒng)計不同迭代次數(shù)下PSO算法的運(yùn)行時間,結(jié)果如表2所示。

      表2 PSO算法不同迭代次數(shù)的運(yùn)行時間

      3.3 結(jié)果分析

      由數(shù)值計算和PSO算法計算結(jié)果可知:決策目標(biāo)的最優(yōu)值是在維修閾值和功能檢測間隔期共同約束下得到的,雖然計算方法、工作量不同,但二者計算結(jié)果一致。具體分析如下:

      1) 數(shù)值計算和PSO算法的計算結(jié)果是可信的,精度也較高,是在產(chǎn)品長期維修費(fèi)用率取得最小值情況下的最佳功能檢測間隔期。

      2) 數(shù)值計算工作量較大,耗時較長,計算過程中容易出現(xiàn)誤差;而PSO算法運(yùn)行速度快,耗時少,平均耗時約0.350 s,收斂性強(qiáng),在迭代80次時決策目標(biāo)已收斂,取得最佳結(jié)果。

      3) 基層部隊在平時的車輛裝備維修實(shí)踐中,若只考慮長期維修費(fèi)用率的影響,應(yīng)將該產(chǎn)品的功能檢測間隔期由160 d調(diào)整為125 d。

      4) 維修閾值顯著影響功能檢測間隔期的計算結(jié)果,因此,在確定功能檢測間隔期時需加以考慮。

      4 結(jié)論

      1) 通過對車輛裝備維修過程的描述,建立了基于連續(xù)時間馬爾科夫鏈的車輛裝備功能檢測間隔期模型,并通過該型載重車離合器分離軸承實(shí)例,以長期維修費(fèi)用率模型為例,將計算結(jié)果與維修實(shí)踐經(jīng)驗(yàn)間隔期進(jìn)行對比驗(yàn)證,結(jié)果表明功能檢測間隔期模型是有效、合理的。

      2) 利用數(shù)值計算方法和PSO算法進(jìn)行了功能檢測間隔期的優(yōu)化計算,雖然二者的結(jié)果一致,但是數(shù)值計算方法計算量大,過程繁雜,耗時耗力,而PSO算法運(yùn)行速度較快,耗時較少,計算精度也較高。因此,在解決此類問題時,PSO算法具有更好的優(yōu)化性能。

      猜你喜歡
      間隔期劣化裝備
      關(guān)于儲糧防護(hù)劑安全間隔期的問題
      好裝備這樣造
      獻(xiàn)血間隔期,您了解清楚了嗎?
      人人健康(2022年13期)2022-07-25 07:14:30
      港警新裝備
      防曬裝備折起來
      基于S形試件五軸數(shù)控機(jī)床動態(tài)性能劣化評價
      跨海橋梁混凝土劣化分析及預(yù)養(yǎng)護(hù)
      上海公路(2017年1期)2017-07-21 13:38:33
      八鋼2500m3高爐適應(yīng)焦炭質(zhì)量劣化的生產(chǎn)實(shí)踐
      新疆鋼鐵(2016年3期)2016-02-28 19:18:52
      裂紋齒輪嚙合剛度的劣化特性
      定時維修間隔期的優(yōu)化計算方法
      安宁市| 大埔县| 花莲市| 固始县| 合川市| 万载县| 名山县| 思南县| 木兰县| 涿州市| 通道| 清新县| 龙胜| 涞水县| 哈尔滨市| 西华县| 曲麻莱县| 八宿县| 曲水县| 修武县| 会泽县| 永平县| 曲靖市| 山西省| 黑龙江省| 上饶市| 新乡市| 五华县| 溆浦县| 香格里拉县| 彭泽县| 衡东县| 浦东新区| 鹤岗市| 社会| 金沙县| 瑞安市| 凌源市| 即墨市| 科技| 武川县|