季凱源,熊天武
(中國(guó)船舶重工集團(tuán)公司第七二三研究所,江蘇 揚(yáng)州225101)
雷達(dá)穩(wěn)定平臺(tái)伺服控制中經(jīng)常采用慣性測(cè)量元件(如加速度計(jì)、陀螺儀)對(duì)平臺(tái)的姿態(tài)信息進(jìn)行檢測(cè),但由于成本以及加工工藝等原因,慣性測(cè)量元件的測(cè)量精度并不完全滿足要求,需要進(jìn)行數(shù)據(jù)濾波與補(bǔ)償。數(shù)字濾波無(wú)需硬件,采用算法實(shí)現(xiàn),具有可靠性高且通過(guò)適當(dāng)改變?yōu)V波算法參數(shù)即能調(diào)整濾波特性的優(yōu)點(diǎn)。利用Allan方差法[1]對(duì)陀螺儀信號(hào)噪聲進(jìn)行分析,主要為零偏不穩(wěn)定性和速率隨機(jī)游走噪聲等隨機(jī)誤差成分。隨機(jī)誤差常用的濾波方式[2-6]有中值濾波、均值濾波、卡爾曼濾波等。中值濾波與均值濾波不能有效處理參數(shù)快速變化的被測(cè)量。本文設(shè)計(jì)基于ARMA模型的卡爾曼濾波器對(duì)慣性測(cè)量元件信號(hào)進(jìn)行處理,抑制噪聲干擾,提高測(cè)量精度。
卡爾曼濾波是一系列遞歸數(shù)學(xué)公式的描述,以最小均方誤差作為估計(jì)最佳準(zhǔn)則,提供一種高效可計(jì)算的方法來(lái)估計(jì)過(guò)程的狀態(tài)[7]。
對(duì)于離散系統(tǒng),線性狀態(tài)方程可以描述為:
系統(tǒng)實(shí)際測(cè)量值:
利用系統(tǒng)模型,預(yù)測(cè)下一時(shí)刻系統(tǒng)狀態(tài):
卡爾曼濾波包括預(yù)估與校正兩部分,預(yù)估是指根據(jù)模型建立當(dāng)前時(shí)刻狀態(tài)的先驗(yàn)估計(jì),推算當(dāng)前時(shí)刻狀態(tài)變量及誤差協(xié)方差的估計(jì)值,為下一時(shí)刻狀態(tài)構(gòu)建先驗(yàn)估計(jì)值;校正是指利用預(yù)估過(guò)程得到的先驗(yàn)估計(jì)值對(duì)當(dāng)前時(shí)刻測(cè)量值進(jìn)行最優(yōu)估計(jì),得到最優(yōu)的濾波值??柭鼮V波器設(shè)計(jì)過(guò)程中模型的選取與建立以及模型的精度是關(guān)鍵,直接影響濾波效果[8-12]。
ARMA模型是時(shí)間序列分析的一種重要方法,以AR模型(自回歸模型)與MA模型(滑動(dòng)平均模型)為基礎(chǔ)構(gòu)成。
式中:p、q為模型階次;φt、θt為模型系數(shù)。
建立ARMA模型需要隨機(jī)時(shí)間序列是平穩(wěn)、零均值的,所以對(duì)靜態(tài)的陀螺儀測(cè)量信號(hào)要進(jìn)行預(yù)處理,去除野值和趨勢(shì)項(xiàng),進(jìn)行平穩(wěn)性檢驗(yàn)、正態(tài)性檢驗(yàn),保證該時(shí)間序列為平穩(wěn)的零均值序列,然后再建立模型。
(1)去除趨勢(shì)項(xiàng)和野值
數(shù)據(jù)采集過(guò)程中,可能是數(shù)據(jù)采集、傳輸故障產(chǎn)生的錯(cuò)誤數(shù)據(jù),部分測(cè)量值明顯區(qū)別于其他數(shù)據(jù),需要剔除。
(2)隨機(jī)誤差建模
一個(gè)平穩(wěn)、正態(tài)分布的隨機(jī)序列可以用ARMA(p,q)模型表示:
式中:εi~W(0,σ2);ai<1(i=1,2,…,p),為自回歸系數(shù);bi<1(i=1,2,…,q),為自回歸滑動(dòng)系數(shù);W(0,σ2)表示均值為零、方差為σ2的離散白噪聲序列。
(3)模型階次確定
ARMA模型階次選擇,采用Box和Jenkins提出的利用序列自相關(guān)系數(shù)函數(shù)與偏相關(guān)系數(shù)函數(shù)方法進(jìn)行定階。圖1為陀螺儀信號(hào)時(shí)間序列的自相關(guān)系數(shù)和非相關(guān)性系數(shù)函數(shù)列表。圖1中上下2條橫線分別表示自相關(guān)系數(shù)、偏相關(guān)系數(shù)的上下界,超出邊界的部分表示存在相關(guān)關(guān)系。
圖1 時(shí)間序列自相關(guān)、偏相關(guān)性分析
由圖1可知,AR階次低于3階,MA階次低于4階。因?yàn)閷?duì)于實(shí)際隨機(jī)系統(tǒng),ARMA模型中AR階次大于等于 MA階次,可得模型為AR(1)、AR(2)、ARMA(1,1)、ARMA(2,1)。
利用Eviews軟件對(duì)各階次ARMA模型的參數(shù)進(jìn)行計(jì)算以及有效性檢驗(yàn),模型參數(shù)及檢驗(yàn)結(jié)果見(jiàn)表1。表中系數(shù)有效性檢驗(yàn)認(rèn)為小于5%為系數(shù)顯著,越小越好;AIC和SBC是選擇模型的重要指標(biāo),數(shù)值越小越好。由表1可以看出,不同階次的模型AIC與SBC參數(shù)有細(xì)微差別,但并無(wú)本質(zhì)變化,說(shuō)明幾種階次的模型精度相差不大。就實(shí)際情況而言,模型階次越低,實(shí)現(xiàn)越簡(jiǎn)單,故此選擇AR(1)模型。
表1 模型階次及其有效性檢驗(yàn)
根據(jù)Nyquist采樣定理,采樣頻率至少是傳感器帶寬的2倍才能保證采集信息不失真[15]。對(duì)于Allan方差處理,文獻(xiàn)[15]提出采樣頻率至少為陀螺儀帶寬的3~6倍才能保證數(shù)據(jù)處理的準(zhǔn)確性。陀螺儀嵌在穩(wěn)定平臺(tái)內(nèi)部,盡量保證在旋轉(zhuǎn)過(guò)程中,穩(wěn)定平臺(tái)與陀螺儀同軸,這樣可以減少系統(tǒng)誤差。陀螺儀帶寬為40~140 Hz可調(diào),考慮到轉(zhuǎn)速環(huán)實(shí)際控制周期(1 ms),故采樣頻率選擇2 k Hz,采樣時(shí)間5小時(shí),靜態(tài)、動(dòng)態(tài)數(shù)據(jù)均為實(shí)驗(yàn)室室溫下采集。
參考相關(guān)文獻(xiàn)[16]以及陀螺儀數(shù)據(jù)分析結(jié)果,卡爾曼濾波器主要參數(shù)選擇如表2所示。圖2、圖3為基于AR(1)模型的卡爾曼濾波實(shí)現(xiàn)的濾波效果。
表2 濾波器主要參數(shù)
圖2中原始數(shù)據(jù)為實(shí)驗(yàn)室室溫下陀螺儀靜態(tài)數(shù)據(jù),噪聲主要為隨機(jī)噪聲,圖2(a)為原始信號(hào)與濾波后信號(hào)對(duì)比圖,圖2(b)為濾波前后頻譜分析對(duì)比圖,圖2(c)為濾波前后Allan方差分析對(duì)比圖,表3為濾波前后陀螺儀信號(hào)噪聲系數(shù)Allan分析結(jié)果。通過(guò)濾波前后頻譜圖、Allan方差分析結(jié)果對(duì)比均可以看出噪聲幅值明顯下降,卡爾曼濾波能夠較好地濾除陀螺信號(hào)中的隨機(jī)干擾噪聲。
表3 濾波前后靜態(tài)數(shù)據(jù)分析
本文針對(duì)MEMS陀螺儀隨機(jī)噪聲建立ARMA模型進(jìn)行卡爾曼濾波算法設(shè)計(jì),并對(duì)濾波前后信號(hào)進(jìn)行Allan分析和頻譜分析。分析結(jié)果顯示設(shè)計(jì)的卡爾曼濾波算法能夠較好地抑制隨機(jī)噪聲干擾,濾波后信號(hào)各項(xiàng)隨機(jī)噪聲衰減明顯。
圖2 濾波前后靜態(tài)數(shù)據(jù)分析