彭軍輝 陳麗英 程長洪 馮 娟 馬紅玲 郭志勛
?
氨氮對(duì)擬穴青蟹的急性毒性及對(duì)其血清免疫相關(guān)酶活力的影響*
彭軍輝1,2陳麗英3程長洪1馮 娟1馬紅玲1郭志勛1①
(1. 中國水產(chǎn)科學(xué)研究院南海水產(chǎn)研究所 農(nóng)業(yè)農(nóng)村部水產(chǎn)品加工重點(diǎn)實(shí)驗(yàn)室 廣州 510300;2. 水產(chǎn)科學(xué)國家級(jí)實(shí)驗(yàn)教學(xué)示范中心 上海海洋大學(xué) 上海 210306;3. 廣州大學(xué)生命科學(xué)學(xué)院 廣州 510006)
采用靜水法研究氨氮對(duì)擬穴青蟹()的急性毒性及在氨氮初始濃度分別為0(C0,對(duì)照組)、10(C10組)、20(C20組)、30(C30組)、40(C40組)、50 mg/L(C50組),脅迫時(shí)間分別為0、6、24、48、72 h的條件下對(duì)其血清中堿性磷酸酶(AKP)、酸性磷酸酶(ACP)、溶菌酶(LZM)、超氧化物歧化酶(SOD)和酚氧化酶(PO)活力的影響。結(jié)果顯示,總氨氮對(duì)擬穴青蟹24 h和48 h的半致死濃度分別為104.793、66.124 mg/L,安全濃度為7.90 mg/L,非離子氨對(duì)擬穴青蟹24 h和48 h的半致死濃度分別為8.396、5.298 mg/L,安全濃度為0.63 mg/L。在脅迫6、24、48與72 h時(shí),各實(shí)驗(yàn)組的LZM活力均顯著低于對(duì)照組(0.01)。相較于對(duì)照組,C10、C20及C40組在24 h的AKP、ACP活力均顯著升高(0.05)。C20組在24 h的SOD活力則顯著低于其他脅迫時(shí)間點(diǎn)(0.05)。脅迫72 h時(shí),C30、C40及C50組的PO活力顯著高于對(duì)照組(0.05)。該實(shí)驗(yàn)條件下,不高于40 mg/L的氨氮可在24 h內(nèi)使擬穴青蟹血清中的AKP與ACP活力顯著升高,而50 mg/L的氨氮?jiǎng)t對(duì)其具有抑制作用;各實(shí)驗(yàn)組濃度氨氮均在72 h內(nèi)對(duì)擬穴青蟹血清中的LZM活力具有顯著的抑制作用,對(duì)PO活力具有明顯的刺激作用,對(duì)SOD活力無顯著影響。
擬穴青蟹;氨氮;安全濃度;免疫酶活
擬穴青蟹()俗稱青蟹,具有生長迅速、肉鮮味美、營養(yǎng)價(jià)值高等特點(diǎn),是我國東南沿海地區(qū)重要的養(yǎng)殖蟹類之一,2016年我國青蟹養(yǎng)殖總產(chǎn)量達(dá)到了15萬t (2017中國漁業(yè)統(tǒng)計(jì)年鑒)。但隨著青蟹養(yǎng)殖業(yè)的迅猛發(fā)展,其養(yǎng)殖水質(zhì)不斷惡化,致使一些有害的環(huán)境因子激增,從而導(dǎo)致青蟹病害頻發(fā),嚴(yán)重威脅青蟹養(yǎng)殖業(yè)的健康發(fā)展(張迪等, 2013)。氨氮是養(yǎng)殖水體中一種重要的污染因子,其對(duì)養(yǎng)殖水生動(dòng)物的生長代謝及非特異性免疫功能等具有嚴(yán)重影響(Racotta, 2000; Cheng, 2002; Hong, 2007; 王蕓等, 2013; 鄧康裕等, 2015)。研究表明,在30 d的慢性氨氮脅迫下,吉富羅非魚()幼魚的增重率(WGR)和特定生長率(SGR)隨著氨氮濃度的升高而降低(肖煒等, 2015)。奧尼羅非魚()幼魚在低濃度氨氮脅迫24 h后,其肝臟的過氧化氫酶(CAT)活力顯著下降(0.05)(韓春艷等, 2014)。而青魚()、團(tuán)頭魴()和刺參()等水產(chǎn)養(yǎng)殖動(dòng)物的組織器官及部分免疫酶活也會(huì)在長時(shí)間的氨氮脅迫下受到不同程度的損傷及抑制作用(胡毅等, 2012; 張武肖等, 2015; 劉洪展等, 2012)。另外,細(xì)角濱對(duì)蝦()對(duì)氨氮的耐受力會(huì)隨著脅迫時(shí)間的延長不斷降低,其死亡率會(huì)顯著升高(Mugnier, 2008)。而中華絨螯蟹()的血細(xì)胞總數(shù)和吞噬能力、三疣梭子蟹()的血細(xì)胞數(shù)量及酚氧化酶原活力等也會(huì)隨著氨氮濃度的升高而降低(黃鶴忠等, 2006; 岳峰等, 2010)。此外,一些蝦蟹類體內(nèi)的腺苷三磷酸酶(ATPase)、溶菌酶(LZM)、谷胱甘肽合成酶(GPX)等也會(huì)因氨氮脅迫而受到不同程度的影響,而使其正常生長代謝受到嚴(yán)重威脅(艾春香等, 2011; 洪美玲等, 2007; 曾媛媛等, 2011; Wang, 2004)。
該實(shí)驗(yàn)主要研究氨氮對(duì)擬穴青蟹的急性毒性及對(duì)其血清中堿性磷酸酶(AKP)、酸性磷酸酶(ACP)、溶菌酶(LZM)、超氧化物歧化酶(SOD)和酚氧化酶(PO)活力的影響,以期探究養(yǎng)殖水體中的氨氮對(duì)擬穴青蟹的毒理作用及對(duì)其免疫機(jī)能的影響,為青蟹的健康養(yǎng)殖提供理論參考。
實(shí)驗(yàn)所用青蟹購自江門市,選取活力旺盛、體色正常的健康青蟹,平均體重為(29.41±4.12) g,平均殼長為(52.09±2.26) mm,平均殼寬為(37.40±2.28) mm。于直徑0.8 m、高1.2 m的圓柱形塑料桶中暫養(yǎng)7 d,每缸10~15只青蟹,海水鹽度為14.62±1.08,溫度為(27.17±0.14)℃,溶氧為(5.38±0.35) mg/L,pH為8.16±0.06。暫養(yǎng)期間連續(xù)充氧,每天投喂新鮮方形馬珂蛤() 1次并及時(shí)清理食物殘?jiān)团判刮?,每天換水1次,換水量為總水體的50%,暫養(yǎng)階段未見青蟹有蛻殼現(xiàn)象。
1.2.1 急性毒性實(shí)驗(yàn) 以分析純NH4Cl為氨氮源,配制成濃度為4 g/L的母液,根據(jù)實(shí)驗(yàn)要求,再將母液稀釋為40、60、80、100、120和140 mg/L的6個(gè)梯度,每個(gè)梯度設(shè)3個(gè)平行,每個(gè)平行10只蟹,實(shí)驗(yàn)期間不投餌,每天用相應(yīng)氨氮濃度的海水換水,換水量為總水體的50%,及時(shí)清理青蟹排泄物。實(shí)驗(yàn)期間密切觀察青蟹活動(dòng),詳細(xì)記錄48 h內(nèi)的死亡個(gè)體數(shù),并及時(shí)清理死亡青蟹。
根據(jù)實(shí)驗(yàn)結(jié)果,以直線內(nèi)插法求出24 h和48 h的半致死濃度(Median lethal concentration) LC50,根據(jù)Turubell公式(黃鶴忠等, 1998)求出其安全濃度(Safe concentration):
SC=(48 h LC50×0.3)/(24 h LC50/48 h LC50)2
并根據(jù)以下公式計(jì)算所對(duì)應(yīng)的非離子氨的濃度:
NH3=NH3-N/(10pKaS,T-pH+1) (1)
pS,T=9.24+0.003091+0.0324(298-) (2)
(1)、(2)式中,NH3-N表示水體總氨氮濃度,表示絕對(duì)溫度(=273℃+),為攝氏溫度,為鹽度,pS,T為電離常數(shù),pH為水體pH值(錢佳慧等, 2016)。
1.2.2 血清免疫相關(guān)酶實(shí)驗(yàn) 免疫相關(guān)酶實(shí)驗(yàn)所設(shè)氨氮濃度分別為0(C0組,對(duì)照組)、10(C10組)、20(C20組)、30(C30組)、40(C40組)和50 mg/L(C50組),每個(gè)濃度設(shè)3個(gè)平行,每個(gè)平行15只蟹,在氨氮脅迫0、6、24、48與72 h時(shí)采血。采血時(shí),每個(gè)平行組隨機(jī)選取8只蟹,用1 ml的一次性注射器從青蟹的第3步足基關(guān)節(jié)處抽取150~200 μl血液,并將其混勻收集于2 ml的EP管中,4℃、8000 r/min離心10 min,再用移液槍抽取上層血清分裝到1.5 ml的離心管中,于–20℃保存?zhèn)溆谩2赏暄那嘈罚镁凭耷虿潦貌裳课徊⒎呕卦M。
青蟹血清PO活力的測(cè)定采用改進(jìn)的Ashida (1971)方法進(jìn)行測(cè)定,血清中的ACP、AKP、LZM、SOD的測(cè)定則采用南京建成生物試劑盒,參照廠家提供的說明書進(jìn)行測(cè)定。
1.2.3 數(shù)據(jù)處理 實(shí)驗(yàn)數(shù)據(jù)結(jié)果以平均值±標(biāo)準(zhǔn)差(Mean±SD)表示,使用SPSS 18.0軟件對(duì)數(shù)據(jù)進(jìn)行統(tǒng)計(jì)分析,并采用單因素方差分析(One-way ANOVA)和Duncan法進(jìn)行多重比較,取<0.05為顯著性差異水平,<0.01為極顯著性差異水平。
該實(shí)驗(yàn)條件下,對(duì)照組青蟹未出現(xiàn)死亡(表1)。在實(shí)驗(yàn)組中,同一脅迫時(shí)間下,隨著氨氮濃度的升高,青蟹的死亡率不斷增高;而在同一氨氮濃度下,隨著脅迫時(shí)間的延長,青蟹的死亡率也在不斷升高,在脅迫時(shí)間為48 h、氨氮濃度為120 mg/L及以上時(shí)青蟹的死亡率達(dá)到100%。
表1 氨氮對(duì)擬穴青蟹急性毒性實(shí)驗(yàn)
Tab.1 The acute toxicity test of ammonia nitrogen on S. paramamosain
經(jīng)線性回歸分析(圖1),氨氮對(duì)青蟹24、48 h的LC50分別為104.793、66.124 mg/L,SC為7.90 mg/L。并由公式(1)、(2)計(jì)算,得非離子氨對(duì)青蟹24、48 h的LC50分別為8.396、5.298 mg/L,SC為0.63 mg/L。
如圖2所示,對(duì)照組(C0)的PO活力隨時(shí)間無顯著變化;與對(duì)照組相比,C10、C20組的PO活力隨脅迫時(shí)間先上升后下降,而C30、C40及C50組的PO活力則隨脅迫時(shí)間先下降后上升;其中,C10組在24 h顯著高于對(duì)照組(<0.05),C30、C40及C50組在72 h顯著高于對(duì)照組(0.05),且C40組與對(duì)照組有極顯著差異(0.01)。
圖1 氨氮對(duì)擬穴青蟹急性毒性
由圖3可知,C10、C20、C40組的AKP活力均在脅迫24 h達(dá)到最高水平,且與對(duì)照組(C0)差異顯著(0.05),之后持續(xù)下降,至72 h又再次升高;C30組的AKP活力則在脅迫72 h達(dá)到最高水平,且顯著高于C10和C50組(0.05);C50組的AKP活力則隨脅迫時(shí)間先下降后上升,且一直低于對(duì)照組水平(除48 h外)。
如圖4所示,對(duì)照組(C0)的ACP活力隨時(shí)間無顯著變化;與對(duì)照組相比,各實(shí)驗(yàn)組ACP活力均隨脅迫時(shí)間先上升后下降,至72 h又趨于對(duì)照組水平,其中,C10、C20及C40組的ACP活力在24 h達(dá)到最高水平(<0.05),且在24 h顯著高于對(duì)照組(<0.05),而C50組的ACP活力則在24 h顯著低于對(duì)照組及其他各實(shí)驗(yàn)組(<0.05)。
圖2 氨氮對(duì)擬穴青蟹血清PO活力的影響
圖中大寫字母表示同一脅迫時(shí)間點(diǎn)各組間差異,小寫字母表示同組內(nèi)各脅迫時(shí)間點(diǎn)差異,其中,相同字母間表示差異不顯著,不同字母間表示差異顯著(<0.05),“*”表示同一時(shí)間點(diǎn)對(duì)照組與實(shí)驗(yàn)組差異極顯著(<0.01),下同
Capital letters in the figure represent differences between groups at the same stress time, the lowercase indicate the difference of the stress time in the same group, among which the same letters indicate no significant difference, but the different letters indicate significant difference (<0.05), “*” indicates highly significant difference between the control group and test groups at the same stress time, the same below
由圖5可知,與對(duì)照組(C0)相比,各實(shí)驗(yàn)組的LZM活力隨著脅迫時(shí)間的延長而不斷降低,在脅迫6、24、48和72 h時(shí)的LZM活力均顯著低于0 h (<0.05),且在上述時(shí)間段內(nèi)各實(shí)驗(yàn)組的LZM活力均極顯著低于對(duì)照組(<0.01)。
圖3 氨氮對(duì)擬穴青蟹血清AKP活力的影響
圖4 氨氮對(duì)擬穴青蟹血清ACP活力的影響
圖5 氨氮對(duì)擬穴青蟹血清LZM活力的影響
如圖6所示,對(duì)照組(C0)的SOD活力隨脅迫時(shí)間無顯著變化;與對(duì)照組相比,除C20組在24 h的SOD活力顯著低于其他脅迫時(shí)間點(diǎn)(<0.05),其余各組的SOD活力在脅迫周期內(nèi)無顯著變化。
圖6 氨氮對(duì)擬穴青蟹血清SOD活力的影響
養(yǎng)殖水體中的氨氮分為離子氨和非離子氨,能降低機(jī)體的血液載氧能力而引起機(jī)體中毒,對(duì)機(jī)體的免疫系統(tǒng)具有一定的損傷作用(董玉波等, 2011)。邵鑫斌等(2011)報(bào)道,在水體鹽度為30.6、pH為8±1的條件下,當(dāng)氨氮濃度為100 mg/L、脅迫24 h后鋸緣青蟹()開始出現(xiàn)死亡,死亡率為10%。本研究結(jié)果顯示,在氨氮濃度為40 mg/L、脅迫24 h后青蟹即開始出現(xiàn)死亡;而當(dāng)氨氮濃度為100 mg/L時(shí)、脅迫24 h后青蟹的死亡率達(dá)到40%。當(dāng)水體的總氨氮濃度及其他條件不變時(shí),非離子氨的濃度與鹽度成反比。由于該實(shí)驗(yàn)所設(shè)水體鹽度低于上述報(bào)道的鹽度,故在相同氨氮濃度(100 mg/L)下,其所含非離子氨的濃度(8.012 mg/L)比上述水體的非離子氨濃度(3.568 mg/L)更高,而相同濃度下的非離子氨比離子氨對(duì)機(jī)體具有更強(qiáng)的毒性(Ruyet, 1995),因此,該實(shí)驗(yàn)青蟹的死亡率也更高。本研究結(jié)果還顯示,氨氮對(duì)青蟹的SC為7.90 mg/L,高于其對(duì)團(tuán)頭魴(SC=5.649 mg/L)和墨吉明對(duì)蝦(SC=3.531 mg/L)的安全濃度(張武肖, 2015; 錢佳慧等, 2016)。可見,與魚蝦相比,青蟹對(duì)氨氮具有一定的耐受性。
PO受酚氧化酶原(Prophenoloxidase, proPO)激活系統(tǒng)調(diào)控,在甲殼動(dòng)物體內(nèi)發(fā)揮著重要的免疫防御作用(Ashida, 1984)。研究表明,氨氮脅迫凡納濱對(duì)蝦()可使其24 h內(nèi)的血清PO活力明顯上升(Le Moullac, 2000);以20 mg/L的氨氮處理三疣梭子蟹,其酚氧化酶原活力在6 h后顯著低于對(duì)照組,但其酚氧化酶原mRNA的表達(dá)量卻顯著高于對(duì)照組(Yue, 2010)。該結(jié)果顯示,C10、C20組可分別使青蟹的PO活力在24 h和6 h明顯升高,C30、C40及C50組可使其PO活力在72 h顯著升高(<0.05),表明各實(shí)驗(yàn)組氨氮在脅迫周期內(nèi)對(duì)青蟹血清中的PO活力有明顯的促進(jìn)作用(<0.05)。
AKP和ACP是水解酶體系的重要組成部分,AKP能將磷酸基團(tuán)轉(zhuǎn)移到底物分子上,在磷化物的消化與吸收中起著重要作用,同時(shí),也參與機(jī)體的解毒過程;而ACP能增強(qiáng)血細(xì)胞對(duì)異物的識(shí)別和吞噬作用,是機(jī)體殺滅病原體的物質(zhì)基礎(chǔ)(何海琪等, 1992)。艾春香等(2011)研究發(fā)現(xiàn),10 mg/L組的擬穴青蟹鰓中的AKP、ACP比活力在72 h達(dá)到最高水平,之后持續(xù)下降;40 mg/L組的AKP比活力在脅迫周期內(nèi)一直低于對(duì)照組水平。而本研究結(jié)果顯示,C10、C20、和C40組的血清AKP、ACP活力在脅迫24 h即達(dá)到最高水平(<0.05),表現(xiàn)為急性促進(jìn)作用,之后開始顯著下降。本結(jié)果與上述結(jié)果存在部分差異,這可能是因?yàn)橄噍^于鰓組織,磷酸酶及其同工酶主要存在于血細(xì)胞的溶酶體中,而氨氮可導(dǎo)致青蟹血細(xì)胞解體(艾春香等, 2011),故上述濃度的氨氮可在短時(shí)間內(nèi)使血清中的磷酸酶激增,但隨著脅迫時(shí)間的延長及氨氮濃度的升高(C50組),機(jī)體的結(jié)構(gòu)可能受到不可逆的損傷,以致其磷酸酶的活力受到抑制。
LZM廣泛存在于動(dòng)植物及微生物的多種組織、體液和分泌物中,能破壞革蘭氏陽性細(xì)菌的細(xì)胞壁,使其溶解而失去感染活性,在生物體的非特異性免疫中起著重要作用(Grinde, 1988)。王貞杰等(2017)發(fā)現(xiàn),氨氮脅迫可使圓斑星鰈()的溶菌酶活力在12~96 h內(nèi)持續(xù)下降,且氨氮濃度越高,酶活下降越快。凡納濱對(duì)蝦的溶菌酶活性也會(huì)因?yàn)榘钡{迫而持續(xù)降低(Qiu, 2008)。本研究結(jié)果表明,氨氮對(duì)青蟹血清LZM的活力具有顯著的抑制作用。Yue等(2010)發(fā)現(xiàn),將三疣梭子蟹暴露在氨氮濃度為20 mg/L的水中,其溶菌酶基因的表達(dá)量顯著降低(<0.05),由此說明,氨氮可能是通過抑制機(jī)體中溶菌酶基因的正常表達(dá)而使LZM活力顯著降低。
青蟹血細(xì)胞的吞噬過程會(huì)產(chǎn)生過氧化氫(H2O2)和超氧陰離子自由基(O2·–)等氧化物質(zhì),這些氧化物質(zhì)除了具有殺菌作用外,也會(huì)對(duì)自身細(xì)胞產(chǎn)生一定的損害作用(姚翠鸞等, 2003),而SOD具有清除機(jī)體內(nèi)這些氧化活性物質(zhì)的作用,使機(jī)體免于因氧化作用而產(chǎn)生損傷(孔祥會(huì)等, 2003)。本研究發(fā)現(xiàn),短時(shí)間的氨氮脅迫對(duì)甲殼動(dòng)物血清中SOD活力影響并不顯著。黃鶴忠等(2006)報(bào)道,當(dāng)氨氮濃度為5.0 mg/L、脅迫10 d或3.0~5.0 mg/L、脅迫20 d時(shí),中華絨螯蟹的SOD活性才有明顯下降(<0.05)。而經(jīng)氨氮脅迫4 d,羅氏沼蝦()的SOD活性顯示為增高,至10 d才表現(xiàn)為降低(王玥等, 2006)。由此可見,長時(shí)間的氨氮脅迫才有可能會(huì)導(dǎo)致機(jī)體結(jié)構(gòu)的破壞,致使其免疫系統(tǒng)受損,從而導(dǎo)致SOD活力受到影響。
綜上所述,不同濃度氨氮在實(shí)驗(yàn)周期內(nèi)對(duì)SOD活力無顯著影響,但其會(huì)通過急性促進(jìn)AKP、ACP和PO或顯著抑制LZM等酶活力的方式來影響擬穴青蟹的非特異性免疫反應(yīng),且這種急性促進(jìn)作用通常是血細(xì)胞受到破壞而產(chǎn)生的結(jié)果,是不可逆的,說明略高于安全濃度的氨氮(≥10 mg/L)即會(huì)對(duì)擬穴青蟹產(chǎn)生明顯的毒害作用。因此,該研究建議在擬穴青蟹養(yǎng)殖生產(chǎn)中,要定時(shí)檢測(cè)養(yǎng)殖水體中的氨氮含量并通過適時(shí)更換養(yǎng)殖用水等方式將氨氮控制在安全濃度(NH3-N, 7.90 mg/L;NH3, 0.63 mg/L)以下,從而為青蟹提供持續(xù)健康的養(yǎng)殖環(huán)境。
Ai CX, Zeng YY. The effects of ammonia-N stress on the activities of ATPase, ACP and AKP in different tissues and organs of mud crab. Journal of Xiamen University (Natural Science), 2011, 50(4): 772–778 [艾春香, 曾媛媛. 氨氮脅迫對(duì)擬穴青蟹腺苷三磷酸酶和磷酸酶比活力的影響. 廈門大學(xué)學(xué)報(bào)(自然科學(xué)版), 2011, 50(4): 772–778]
Ashida M, S?derh?ll K. The prophenoloxidase activating system in crayfish. Comparative Biochemistry and Physiology, 1984, 77B(1): 21–26
Ashida M. Purification and characterization of prophenoloxidase from hemolymph of the silkworm. Archives of Biochemistry & Biophysics, 1971, 144(2): 749–762
Cheng W, Chen JC. The virulence of Enterococcus to freshwater prawnand its immune resistance under ammonia stress. Fish & Shellfish Immunology, 2002, 12(2): 97–109
Deng KY, Meng XH, Kong J,. Effects of poly-β- hydroxybutyrate on non-specific immunity and expression of immune gene under the ammonia stress ofProgress in Fishery Sciences, 2015, 36(6): 71–78 [鄧康裕, 孟憲紅, 孔杰, 等. 聚β-羥基丁酸酯對(duì)凡納濱對(duì)蝦()非特異性免疫力及氨氮脅迫后免疫基因表達(dá)量的影響. 漁業(yè)科學(xué)進(jìn)展, 2015, 36(6): 71–78]
Dong YB, Wang K, Wang LT. Research progress in toxicity of ammonia nitrogen to aquatic organisms. Tianjin Fisheries, 2011(Z1): 8–13 [董玉波, 王軻, 王林同. 氨氮對(duì)水生生物毒性的研究進(jìn)展. 天津水產(chǎn), 2011(Z1): 8–13]
Grinde B, Jollés J, Jollés P. Purification and characterization of two lysozymes from rainbow trout (). European Journal of Biochemistry, 1988, 173: 269–273
Han CY, Zheng QM, Chen GD,. Effect of ammonia-N stress on non-specific immunity of tilapia (). South China Fisheries Science, 2014(3): 47–52 [韓春艷, 鄭清梅, 陳桂丹, 等. 氨氮脅迫對(duì)奧尼羅非魚非特異性免疫的影響. 南方水產(chǎn)科學(xué), 2014(3): 47–52]
He HQ, Sun F. Research on acidic and alkaline phosphatase characteristics ofOceanologia et Limnologia Sinica, 1992, 23(5): 555–560 [何海琪, 孫鳳. 中國對(duì)蝦酸性和堿性磷酸酶的特性研究. 海洋與湖沼, 1992, 23(5): 555–560]
Hong M, Chen L, Sun X,. Metabolic and immune responses in Chinese mitten-handed crab () juveniles exposed to elevated ambient ammonia. Comparative Biochemistry & Physiology, Part C: Toxicology & Pharmacology, 2007, 145(3): 363–369
Hong ML, Chen LQ, Gu SZ,. Effects of ammonia exposure on immunity indicators of haemolymph and histological structure of hepatopancreas in Chinese mitten crab (). Journal of Fishery Sciences of China, 2007, 14(3): 412–418 [洪美玲, 陳立僑, 顧順樟, 等. 氨氮脅迫對(duì)中華絨螯蟹免疫指標(biāo)及肝胰腺組織結(jié)構(gòu)的影響. 中國水產(chǎn)科學(xué), 2007, 14(3): 412–418]
Hu Y, Huang Y, Zhong L,. Effects of ammonia stress on the gill Na+/K+-ATPase, microstructure and some serum physiological-biochemical indices of juvenile black carp (). Journal of Fisheries of China, 2012, 36(4): 538–545 [胡毅, 黃云, 鐘蕾, 等. 氨氮脅迫對(duì)青魚幼魚鰓絲Na+/K+-ATP酶、組織結(jié)構(gòu)及血清部分生理生化指標(biāo)的影響. 水產(chǎn)學(xué)報(bào), 2012, 36(4): 538–545]
Huang HZ, Li Y, Song XH,. NH+4-N stress on immune function of. Oceanologia et Limnologia Sinica, 2006, 37(3): 198–205 [黃鶴忠, 李義, 宋學(xué)宏, 等. 氨氮脅迫對(duì)中華絨螯蟹()免疫功能的影響. 海洋與湖沼, 2006, 37(3): 198–205]
Huang HZ, Liang SR. Toxicity treatment of 3 kinds of drugs onlarvae. Reservoir Fisheries, 1998(6): 15–16 [黃鶴忠, 梁守仁. 3種藥物對(duì)河蟹幼體的毒性試驗(yàn). 水生態(tài)學(xué)雜志, 1998(6): 15–16]
Kong XH, Wang GZ, Ai CX,. Comparative research on total antioxidant capacity and SOD activity in different organs and tissues inJournal of Applied Oceanography, 2003, 22(4): 469–474 [孔祥會(huì), 王桂忠, 艾春香, 等. 鋸緣青蟹不同器官組織中總抗氧化能力和SOD活性的比較研究. 應(yīng)用海洋學(xué)學(xué)報(bào), 2003, 22(4): 469–474]
Le Moullac G, Haffner P. Environmental factors affecting immune responses in Crustacea. Aquaculture, 2000, 191: 121–131
Liu HZ, Zheng FR, Sun XQ,. Effect of exposure to ammonia nitrogen stress on immune enzyme of holothurian. Marine Science, 2012, 36(8): 47–52 [劉洪展, 鄭風(fēng)榮, 孫修勤, 等. 氨氮脅迫對(duì)刺參幾種免疫酶活性的影響. 海洋科學(xué), 2012, 36(8): 47–52]
Mugnier C, Zipper E, Goarant C,. Combined effect of exposure to ammonia and hypoxia on the blue shrimpsurvival and physiological response in relation to molt stage. Aquaculture, 2008, 274(2–4): 398–407
Qian JH, Li ZM, Liu JY,. Acute toxicity of ammonia-N and its effect on the immune parameters of. Journal of Applied Oceanography, 2016, 35(2): 211–216 [錢佳慧, 栗志民, 劉建勇, 等. 氨氮對(duì)墨吉明對(duì)蝦的急性毒性及對(duì)其免疫因子的影響. 應(yīng)用海洋學(xué)學(xué)報(bào), 2016, 35(2): 211–216]
Qiu DQ, Zhou XJ, Qiu MS,. Research on anti-disease ability ofand the biological control ofbacteriophage under stresses of ammonia nitrogen. Acta Hydrobiologica Sinica, 2008, 32(4): 455–461 [邱德全, 周鮮嬌, 邱明生. 氨氮脅迫下凡納濱對(duì)蝦抗病力和副溶血弧菌噬菌體防病效果研究. 水生生物學(xué)報(bào), 2008, 32(4): 455–461]
Racotta IS, Hernándezherrera R. Metabolic responses of the white shrimp,, to ambient ammonia. Comparative Biochemistry & Physiology Part A: Molecular & Integrative Physiology, 2000, 125(4): 437–443
Ruyet PL, Chartois H, Quemener L. Comparative acute ammonia toxicity in marine fish and plasma ammonia response. Aquaculture, 1995, 136(1–2): 181–194
Shao XB, Lü YL, Li K,. The acute toxicity of ammonia nitrogen to, and the effects of temperature to the rate of oxygen consumption and suffocation point. Journal of Zhejiang Ocean University (Natural Science), 2011, 30(6): 511–514 [邵鑫斌, 呂永林, 李凱, 等. 氨氮對(duì)鋸緣青蟹的急性毒性和溫度對(duì)其耗氧率、窒息點(diǎn)的影響. 浙江海洋學(xué)院學(xué)報(bào)(自然科學(xué)版), 2011, 30(6): 511–514]
Wang WN, Wang AL, Zhang YJ,. Effects of nitrite on lethal and immune response of. Aquaculture, 2004, 232(1): 679–686
Wang Y, Hu YB, Jiang NC. Effect of ammonia nitrogen and nitrite nitrogen on immune enzymes of. Journal of Zhejiang University (Science Edition), 2005, 32(6): 698–705 [王玥, 胡義波, 姜乃澄. 氨態(tài)氮、亞硝態(tài)氮對(duì)羅氏沼蝦免疫相關(guān)酶類的影響. 浙江大學(xué)學(xué)報(bào)(理學(xué)版), 2006, 32(6): 698–705]
Wang Y, Li J, Zhang Z,. Effect of pH and ammonia-N stresses on HSP90 gene expression ofProgress in Fishery Sciences, 2013, 34(5): 43–50 [王蕓, 李健, 張喆, 等. pH、氨氮脅迫對(duì)中國對(duì)蝦HSP90基因表達(dá)的影響. 漁業(yè)科學(xué)進(jìn)展, 2013, 34(5): 43–50]
Wang ZJ, Chen SQ, Cao DZ,. Effects of acute ammonia nitrogen stress on histopathology of gill and liver and enzyme activities of juvenile. Progress in Fishery Sciences, 2017, 38(2): 61–69 [王貞杰, 陳四清, 曹棟正, 等. 急性氨氮脅迫對(duì)圓斑星鰈 ()幼魚鰓和肝組織結(jié)構(gòu)及相關(guān)酶活性的影響. 漁業(yè)科學(xué)進(jìn)展, 2017, 38(2): 61–69]
Xiao W, Li DY, Xu Y,. Effects of chronic external ammonia stress on growth, immunity and metabolism of juvenile GIFT tilapia (). South China Fisheries Science, 2015, 11(4): 81–87 [肖煒, 李大宇, 徐楊, 等. 慢性氨氮脅迫對(duì)吉富羅非魚幼魚生長、免疫及代謝的影響. 南方水產(chǎn)科學(xué), 2015, 11(4): 81–87]
Yao CL, Wang WN, Wang AL. Research progress of superoxide dismutase in aquatic animals. Marine Science, 2003, 27(10): 18–21 [姚翠鸞, 王維娜, 王安利. 水生動(dòng)物體內(nèi)超氧化物歧化酶的研究進(jìn)展. 海洋科學(xué), 2003, 27 10): 18–21]
Yue F, Pan LQ, Xie P,. Effects of ammonia exposure on prophenoloxidase system and immune parameters of swimming crab. Journal of Fishery Sciences of China, 2010, 17(4): 761–770 [岳峰, 潘魯青, 謝鵬, 等. 氨氮脅迫對(duì)三疣梭子蟹酚氧化酶原系統(tǒng)和免疫指標(biāo)的影響. 中國水產(chǎn)科學(xué), 2010, 17(4): 761–770]
Yue F, Pan LQ, Xie P,. Immune responses and expression of immune-related genes in swimming crabexposed to elevated ambient ammonia-N stress. Comparative Biochemistry & Physiology Part A: Molecular & Integrative Physiology, 2010, 157(3): 246–251
Zeng YY, Jiang YX, Ai CX7. Effects of ammonia-N stress on the activities of superoxide dismutase and glutathione peroxidase in different tissues and organs of. Journal of Applied Oceanography, 2011, 30(2): 210–215 [曾媛媛, 蔣云霞, 艾春香. 氨氮脅迫對(duì)擬穴青蟹組織器官中SOD及GPX活性的影響. 應(yīng)用海洋學(xué)學(xué)報(bào), 2011, 30(2): 210–215]
Zhang D, Yang K, Su YL,. A duplex nested-PCR assay for detection of mud crab reovirus and mud crab dicistrovirus-1. Journal of Fishery Sciences of China, 2013, 20(4): 808–815 [張迪, 楊鏗, 蘇友祿, 等. 青蟹呼腸孤病毒和青蟹雙順反子病毒-1雙重巢式PCR檢測(cè)方法的建立. 中國水產(chǎn)科學(xué), 2013, 20(4): 808–815]
Zhang WX, Sun SM, Ge XP,. Acute effects of ammonia exposure on histopathology of gill, liver and kidney in juvenileand the post-exposure recovery. Journal of Fishery Sciences of China, 2015, 39(2): 233–244 [張武肖, 孫盛明, 戈賢平, 等. 急性氨氮脅迫及毒后恢復(fù)對(duì)團(tuán)頭魴幼魚鰓、肝和腎組織結(jié)構(gòu)的影響. 水產(chǎn)學(xué)報(bào), 2015, 39(2): 233–244]
Acute Toxicity of Ammonia Nitrogen toand Its Influence on Immune Factors in Serum
PENG Junhui1,2, CHEN Liying3, CHENG Changhong1, FENG Juan1, MA Hongling1, GUO Zhixun1①
(1. Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300; 2. National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 210306; 3. College of Life Science, Guangzhou University, Guangzhou 510006)
Using the toxicity method, we studied the acute toxicity of ammonia nitrogen toand its influence on phenol oxidase (PO), alkaline phosphatase (AKP), acid phosphatase (ACP), superoxide dismutase (SOD) , and lysozyme (LZM) in the conditions of different ammonia nitrogen concentrations of 0 (C0, control group), 10 (C10), 20 (C20), 30 (C30), 40 (C40), 50 mg/L (C50) and different times of 0, 6, 24, 48, and 72 h. The results showed that the semi-lethal concentration (LC50) at 24 and 48 h of ammonia-N were 104.793 and 66.124 mg/L respectively, and the safe concentration (SC) was 7.90 mg/L. The LC50at 24 and 48 h of NH3-N were 8.396 and 5.298 mg/L respectively, and the SC was 0.63 mg/L. The LZM activity of each treatment group was significantly lower than that of C0 group (<0.01) at 6, 24, 48, and 72 h. AKP and ACP activity of C10, C20, and C40 groups was significantly higher than that of control group at 24 h (<0.05), while the SOD activity of the C20 group was significantly lower than that of other stress times (<0.05). At 72 h, the PO activity of C30, C40, and C50 groups were significantly higher than that of C0 group (<0.05). Under the experimental conditions, ammonia nitrogen that was lower than 40 mg/L could significantly enhance the AKP and ACP activity ofover a 24 h period, while 50 mg/L ammonia nitrogen had inhibitory effects. Ammonia nitrogen in all groups had significant inhibitory effects on LZM activity of, which had no significant effect on SOD activity, but had an obvious enhancement effect on activity of PO by 72 h.
; Ammonia nitrogen; Safe concentration; Immune-related enzyme
* 中國水產(chǎn)科學(xué)研究院中央級(jí)公益性科研院所基本科研業(yè)務(wù)費(fèi)專項(xiàng)資金(2016TS32)、廣東省海洋漁業(yè)科技與產(chǎn)業(yè)發(fā)展專項(xiàng)科技攻關(guān)與研發(fā)項(xiàng)目(A201501B04)、廣東省漁港建設(shè)和漁業(yè)發(fā)展專項(xiàng)資金魚病防治項(xiàng)目(2016-11)和廣東省科技計(jì)劃項(xiàng)目(2013B090300009)共同資助[This work was supported byCentralLevel Public Welfare Special Funds for Basic Research and Business Expenses of Scientific Research Institutions (2016TS32); Special Scientific Research and Development Projects for Marine Fishery Science and Technology and Industry Development of Guangdong Province (A201501B04); Fishing Port Construction and Fishery Development Special Funds for Fish Disease Prevention and Control of Guangdong Province (2016-11); Science and Technology Program Project of Guangdong Province (2013B090300009)]. 彭軍輝,E-mail: pengjhpeng@163.com
郭志勛,研究員,E-mail: guozhixun1@163.com
GUO Zhixun, E-mail: guozhixun1@163.com
2017-09-07,
2017-10-22
10.19663/j.issn2095-9869.20170907001
彭軍輝, 陳麗英, 程長洪, 馮娟, 馬紅玲, 郭志勛. 氨氮對(duì)擬穴青蟹的急性毒性及對(duì)其血清免疫相關(guān)酶活力的影響. 漁業(yè)科學(xué)進(jìn)展, 2018, 39(5): 114–121 Peng JH, Chen LY, Cheng CH, Feng J, Ma HL, Guo ZX. Acute toxicity of ammonia nitrogen toand its influence on immune factors in serum. Progress in Fishery Sciences, 2018, 39(5): 114–121
X503.225
A
2095-9869(2018)05-0114-08
(編輯 馮小花)