黃 松,尹建平,張 斐,王少宏,韓陽陽
?
多層串聯(lián)EFP成型及侵徹對比分析研究
黃 松,尹建平,張 斐,王少宏,韓陽陽
(中北大學(xué)機電工程學(xué)院,山西 太原,030051)
為了研究多層串聯(lián)EFP的成型及侵徹特性,設(shè)計了一種同軸放置的多層球缺藥型罩戰(zhàn)斗部。運用ANSYS/LS-DYNA軟件首先對三層球缺藥型罩的成型和侵徹過程進行仿真分析,然后與相同結(jié)構(gòu)的雙層串聯(lián)EFP的成型及侵徹結(jié)果進行對比。結(jié)果表明:相同結(jié)構(gòu)的兩種串聯(lián)EFP對100mm厚裝甲鋼靶的侵徹深度基本相同(侵深約1.1倍裝藥口徑);兩種EFP獲得的總動能基本不變,但雙層EFP 內(nèi)外層罩各轉(zhuǎn)移了整體動能的15%到三層串聯(lián)EFP的中層罩上,重新分配各層EFP的動能。本研究可為多層串聯(lián)戰(zhàn)斗部設(shè)計提供參考。
藥型罩;串聯(lián)EFP;動能;侵徹
多層串聯(lián)式爆炸成形彈丸( explosively formed penetrators,EFP) 戰(zhàn)斗部是在復(fù)合裝甲、爆炸反應(yīng)裝甲等新型裝甲的基礎(chǔ)上發(fā)展起來的新概念戰(zhàn)斗部。這種聚能戰(zhàn)斗部在一個主裝藥基礎(chǔ)上,同軸放置多層藥型罩,在炸藥爆轟作用下形成多個同軸度很高的分離 EFP 或是單一大長徑比EFP。國內(nèi)外學(xué)者針對多層串聯(lián) EFP 進行了研究,K.Weimann[1]等研究了鉭/鋼雙層藥型罩形成串聯(lián)式爆炸成型侵徹體技術(shù)。R.Fong等[2]對鋼質(zhì)雙層和三層球缺罩戰(zhàn)斗部進行成型實驗,獲得等效長徑比很大的EFP。鄭宇[3-4]對雙層藥型罩毀傷元形成機理及不同材料對雙層藥型罩形成串聯(lián)EFP的影響進行了研究。竇成彪等[5]研究了不同結(jié)構(gòu)參數(shù)對次口徑三層球缺藥型罩形成串聯(lián) EFP 的影響規(guī)律,并沒有進行相關(guān)的侵徹特性研究。可以發(fā)現(xiàn)前人學(xué)者對多層串聯(lián)EFP成型及侵徹的對比研究甚少。本文在前人研究的基礎(chǔ)上,主要分析了三層串聯(lián)EFP的成型和侵徹過程,對比分析了三層串聯(lián)EFP與相同結(jié)構(gòu)的雙層串聯(lián)EFP的成型及侵徹結(jié)果。
裝藥模型的建立參考文獻(xiàn)[5]的成型裝藥結(jié)構(gòu),其中裝藥直徑 80mm,內(nèi)、中、外罩都為球缺型結(jié)構(gòu),曲率半徑為 70mm,且厚度都為2.1mm,共軸放置。內(nèi)罩靠近炸藥,外罩遠(yuǎn)離炸藥。3層相互接觸的藥型罩之間存在自由面,可以自由滑動和碰撞。起爆方式采用點起爆方式,裝藥結(jié)構(gòu)如圖1所示。
圖1 裝藥結(jié)構(gòu)示意圖
模型由高能炸藥、擋環(huán)和藥型罩3部分組成,采用Lagrange算法,該算法能夠真實地看到 EFP彈丸的成型過程[6]。在模型的對稱面上施加約束對稱面上節(jié)點位移和旋轉(zhuǎn)自由度的約束條件。單位制采用 mm-kg-ms。炸藥與藥型罩、炸藥與擋環(huán)、藥型罩與藥型罩、藥型罩與擋環(huán)之間的接觸均采用*CONTACT_ AUTO MATIC_SURFACE_TO_SURFACE 算法。對擋環(huán)PART增加*MAT_ADD_EROSION關(guān)鍵字。由于 30μs 時炸藥爆轟作用對 EFP 的成型影響已經(jīng)很小,因此在 30μs 時采用小型重啟動分析刪除炸藥和擋環(huán)PART。計算到200μs 時結(jié)束,此時EFP速度趨于穩(wěn)定。由于模型具有對稱性,為減少計算時間,運用TrueGrid軟件建立1/4 有限元模型,如圖2所示。
圖2 1/4三維有限元模型示意圖
利用LS-DYNA軟件對其生成的模型文件進行模擬求解計算。
紫銅材料是聚能裝藥戰(zhàn)斗部藥型罩應(yīng)用最為廣泛的材料[7]。在數(shù)值模擬中,藥型罩內(nèi)中外層材料都選為紫銅,擋環(huán)材料選用45#鋼,并均采用Johnson- cook材料模型和Gruneisen狀態(tài)方程來描述藥型罩及擋環(huán)在爆轟波作用下的動力響應(yīng)行為。計算中使用8701炸藥,選用HIGH_ EXPLOSIVE_BURN材料模型和JWL狀態(tài)方程。JWL狀態(tài)方程可以精確描述爆炸驅(qū)動過程中爆轟氣體產(chǎn)物的壓力、體積和能量特性。材料模型的主要參數(shù)取自經(jīng)過試驗驗證過的參數(shù),具體參數(shù)見表1~2。
表1 擋環(huán)及藥型罩材料參數(shù)[8]
Tab.1 Parameter of the liner and retaining ring material
表2 裝藥材料參數(shù)[9]
Tab.2 Parameters of the charge
對前面所建立的裝藥結(jié)構(gòu)進行數(shù)值模擬。起爆后不同時刻三層串聯(lián)EFP形成的物理過程如圖3所示。
圖3 三層串聯(lián)EFP形成過程
由圖3可以看出:炸藥起爆后,爆轟波首先到達(dá)藥型罩中間部分,使3個藥型罩相互碰撞,靠近軸線的微元具有足夠的徑向速度,在軸線發(fā)生碰撞并產(chǎn)生了厚度方向(垂直于藥型罩外表面法線方向)的速度差,3層相互接觸的藥型罩之間由于存在自由面,所以在速度差的作用下而開始分離,此時藥型罩頂部軸向速度均大于底部軸向速度,各藥型罩向后翻轉(zhuǎn)。
藥型罩底部由于徑向速度低,相互接觸而未發(fā)生分離。最后由于藥型罩碰撞微元和翻轉(zhuǎn)微元之間的相互牽連作用,尾部速度提高,各接觸的藥型罩在翻轉(zhuǎn)過程中逐漸分離。150μs 后 EFP 不再互相接觸,分離后的藥型罩成型與單層藥型罩形成 EFP 類似。200μs時成型的3個EFP具有穩(wěn)定的速度差,形成共軸的三層串聯(lián) EFP。此時,內(nèi)、中、外3個EFP的速度云圖及所具有的動能變化曲線圖分別如圖4~5所示,各層EFP頭部速度及長徑比值如表3所示。
表3 200μs時各EFP頭部速度及長徑比值
Tab.3 The head speed and long diameter ratio of each EFP at 200 μs
圖4 200μs時三層串聯(lián)EFP速度云圖
圖5 三層串聯(lián)EFP中各層串聯(lián)EFP動能變化曲線
為了觀察三層藥型罩 EFP 戰(zhàn)斗部毀傷元終點毀傷的侵徹效果,進行侵徹裝甲鋼靶板的數(shù)值仿真。侵徹靶板仿真中裝甲鋼靶模型尺寸為200mm×200mm×100mm。炸高選取5倍的裝藥口徑尺寸。計算過程中通過完全重啟動技術(shù)將靶板加入到計算模型中。計算中靶板采用等效失效應(yīng)變方法刪除失效單元和節(jié)點模擬靶板被破壞的效果[10]。三層串聯(lián)EFP侵徹裝甲鋼靶的數(shù)值模擬結(jié)果如圖6所示。在EFP侵徹初始時,外層EFP頭部開始與靶板碰撞,在其周圍迅速形成塑性變形區(qū)和高溫區(qū),并在靶體中產(chǎn)生較強的沖擊波。外層EFP對靶板的侵徹過程同單層EFP侵徹過程類似,都具有開坑和侵徹階段,如圖6(a)~6(b)。在270μs時,外層EFP達(dá)到最大侵徹深度,此時外層EFP出現(xiàn)嚴(yán)重變形和侵蝕,侵徹能力降低,中層EFP開始接觸靶板,如圖6(c)所示。
圖6 三層串聯(lián)EFP侵徹靶板過程
隨后中層EFP開始在外層EFP的侵徹基礎(chǔ)上繼續(xù)侵徹靶板,由于中層EFP直徑較大,其一方面增加侵徹深度,另一方面擴大侵徹孔徑。隨著侵徹進行,中層EFP外表面部分受到高溫和磨蝕的作用,彈體速度和質(zhì)量不斷減小,動能降低,侵徹孔徑逐漸減小,如圖6(c)~6(d)。內(nèi)層EFP的侵徹過程同中層EFP相同,隨著侵徹的進行,孔徑逐漸減小,如圖6(e)~6(f)。在400μs時,達(dá)到最大侵徹深度,侵徹深度為89.8mm,約為1.1倍的裝藥口徑。
本節(jié)通過仿真比較了相同結(jié)構(gòu)的三層串聯(lián)EFP和雙層串聯(lián)EFP的侵徹特性。
本節(jié)建立相同結(jié)構(gòu)的雙層藥型罩(藥型罩的整體尺寸及質(zhì)量與三層藥型罩相同)形成串聯(lián)EFP(藥型罩曲率半徑為 70mm,且厚度都為3.15mm,共軸放置)。雙層藥型罩采用紫銅材料,其參數(shù)與三層藥型罩材料的參數(shù)一致。
前人學(xué)者[3-4,11-12]已對雙層串聯(lián)EFP的成型及侵徹過程進行了大量的研究,本文給出了200μs時雙層串聯(lián)EFP速度云圖和各層EFP所具有的動能變化圖,如圖7~8所示。同樣計算到400μs,此時已達(dá)到最大侵徹深度,約為91.7mm。雙層串聯(lián)EFP侵徹靶板過程同三層串聯(lián)EFP侵徹靶板過程類似,外層EFP進行開孔和侵徹,之后的EFP在外層EFP侵徹的基礎(chǔ)上繼續(xù)進行侵徹過程,400μs時都未穿透100mm厚的裝甲鋼靶板。由于兩種藥型罩結(jié)構(gòu)完全相同,從圖5和圖8可以看出,兩類EFP所具有的總動能基本相等。三層串聯(lián)EFP侵徹靶板總深度為89.8mm,比雙層串聯(lián)EFP侵徹靶板總深度91.7mm減小2%。這是由于中、內(nèi)層EFP在增加侵徹深度的同時也在擴大侵徹孔徑,在擴大侵徹孔徑上消耗的能量比雙層串聯(lián)EFP內(nèi)層多。
圖7 200 μs時雙層串聯(lián)EFP速度云圖
圖8 雙層串聯(lián)EFP各層串聯(lián)EFP動能變化
表4為兩種串聯(lián)EFP各層動能百分比,從表4中可以看到,三層串聯(lián)EFP外層動能約占其總動能的44%,中層和內(nèi)層分別占其總動能的30%和26%。雙層串聯(lián)EFP外層和內(nèi)層分別占其總動能的60%和40%??梢园l(fā)現(xiàn),若將三層串聯(lián)EFP中層的動能一分為二,分別給到外層和內(nèi)層上,則外層和內(nèi)層所具有的動能和雙層串聯(lián)EFP外層和內(nèi)層所具有的動能基本相同。即增加藥型罩層數(shù)后,兩種EFP所獲得的總動能基本不變,但雙層EFP 內(nèi)、外層罩各轉(zhuǎn)移了整個EFP動能的15%到三層串聯(lián)EFP的中層罩上,對各層EFP動能進行了重新分配。
表4 兩種串聯(lián)EFP各層動能百分比 (%)
Tab.4 Percentage of kinetic energy of each layer of two series EFPs
本文通過數(shù)值仿真研究了三層串聯(lián)EFP的成型及侵徹靶板過程,最后對比分析了相同結(jié)構(gòu)的三層串聯(lián)EFP與雙層串聯(lián)EFP對裝甲鋼靶的侵徹結(jié)果,得出以下結(jié)論:(1) 3層相同材料的等壁厚藥型罩同軸貼合放置可以形成3個獨立共軸的串聯(lián) EFP,三層串聯(lián)EFP的成型過程同雙層串聯(lián)EFP的成型過程類似。(2)相同結(jié)構(gòu)的三層串聯(lián)EFP與雙層串聯(lián)EFP對100mm厚裝甲鋼靶的侵徹能力基本相同,侵徹深度相差約2%。增加藥型罩層數(shù)后,兩種EFP所獲得的總動能基本不變,但雙層EFP 內(nèi)外層罩的動能各轉(zhuǎn)移了整個EFP動能的15%到三層串聯(lián)EFP的中層罩上。
[1] Weiman K, Blache A. Explosively formed projectile with tantalum penetration and steel stabilization base[C]//18th International Symposium on Ballistics. San Antonio, USA: International Ballistics Committee,1999.
[2] Fong R, Ng W, Weiman K. Testing and analysis of multi-liner EFP warheads[C]//20th International Symposium on Ballistics. Orlando, USA: International Ballistics Committee, 2002.
[3] 鄭宇.雙層藥型罩毀傷元形成機理研究[D].南京:南京理工大學(xué),2008.
[4] 鄭宇,王曉鳴,李文彬,等.基于雙層藥型罩成型裝藥的串聯(lián)EFP[J].爆炸與沖擊,2012,32(01):29-33.
[5] 竇成彪,尹建平,徐全振,等.次口徑三層球缺藥型罩形成串聯(lián)EFP數(shù)值模擬[J].兵器裝備工程學(xué)報,2017,(04):63-67.
[6] 吳國東,孫華,王志軍,等.算法轉(zhuǎn)換在串聯(lián)EFP成型以及侵徹過程中的應(yīng)用[J].彈箭與制導(dǎo)學(xué)報,2013(03):73-76.
[7] 樊雪飛.藥型罩材料性能對雙模毀傷元成型影響研究[D].南京:南京理工大學(xué),2017.
[8] Li W B,Wang X M,Li W B.The effect of annular multi-point initiation on the formation and penetration of an explosively formed penetrator[J].International Journal Impact Engineer- ing,2010,37( 4) : 414-424.
[9] 伊建亞,王志軍,尹建平,徐永杰,王芳.復(fù)合雙藥型罩結(jié)構(gòu)沖擊ERA及其后效作用研究[J].爆破器材,2017,46(03):45-51.
[10] 林加劍,任輝啟,沈兆武,等.Lagrange法在EFP成型和侵徹模擬中的應(yīng)用[J].兵器材料科學(xué)與工程,2013(02):27-30.
[11] 門建兵,蔣建偉,楊軍.串聯(lián)EFP形成與侵徹的數(shù)值模擬及實驗研究[J].北京理工大學(xué)學(xué)報,2010(04):383-386.
[12] 龍源,劉健峰,紀(jì)沖,等.多點起爆對雙層藥型罩爆炸成型彈丸成型及侵徹特性的數(shù)值模擬研究[J].兵工學(xué)報,2016,(12):2 226-2 234.
Comparative Analysis on Shaping and Penetration of the Multi-layer EFP
HUANG Song,YIN Jian-ping,ZHAN Fei,WANG Shao-hong,HAN Yang-yang
(School of Mechanical Engineering, North University of China, Taiyuan, 030051)
In order to study the shaping and penetration performance of the multi-layer EFP, a multi-layer hemispherical liner was designed with coaxially placed. Using ANSYS/LS-DYNA to simulate the formation and penetration of tandem EFP, and the forming process of three tandem EFP was analyzed, meanwhile, the penetration ability of three tandem EFP was compared to that of double tandem EFP on target. The results show that the penetration ability of two series EFP with the same structure is basically same on the armor steel(the penetration depths are about 1.1 times the caliber), the total kinetic energy of the two series EFP did not change much, however, the inner and outer liner of double tandem EFP each transfer 15% of the overall kinetic energy to the middle liner of the three tandem EFP, and redistribute the kinetic energy of each layer of EFP. The results can provide reference for the design of multi-layer warhead.
Liner;Tandem EFP;Kinetic energy;Penetration
1003-1480(2018)05-0025-04
TJ410.3+33
A
10.3969/j.issn.1003-1480.2018.05.007
2018-08-05
黃松(1993-),男,在讀碩士研究生,從事彈藥毀傷技術(shù)與仿真研究。
國家自然科學(xué)基金(11572291);山西省研究生聯(lián)合培養(yǎng)基地人才培養(yǎng)項目資助(20160033);中北大學(xué)第十四屆研究生科技立項項目資助(20171403)。