• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      植物工廠水蓄能型地下水源熱泵供熱系統(tǒng)節(jié)能運行特性研究

      2018-11-23 07:06:14石惠嫻任亦可孟祥真陳慧子歐陽三川
      農業(yè)工程學報 2018年23期
      關鍵詞:水蓄源熱泵熱泵

      石惠嫻,任亦可,孟祥真,陳慧子,歐陽三川,周 強

      ?

      植物工廠水蓄能型地下水源熱泵供熱系統(tǒng)節(jié)能運行特性研究

      石惠嫻,任亦可,孟祥真,陳慧子,歐陽三川,周 強

      (同濟大學新農村發(fā)展研究院國家設施農業(yè)工程技術研究中心,上海 200092)

      植物工廠供熱系統(tǒng)中,采用傳統(tǒng)能源存在一次能源利用率低且污染嚴重的問題。地下水源熱泵節(jié)能環(huán)保,如果結合蓄能技術可進一步降低運行能耗。該文以上海崇明自然光植物工廠為例,對水蓄能型地下水源熱泵供能系統(tǒng)進行節(jié)能運行特性研究。結果表明:水蓄能型地下水源熱泵供能系統(tǒng)在冬季運行時,采用基于分時電價政策的間歇運行模式,即在電價低谷時,熱泵機組邊供熱邊蓄熱;在電價高峰期,充分利用蓄熱水箱供熱。典型周內供能系統(tǒng)按照間歇模式運行可以維持室內溫度17~26℃之間,系統(tǒng)穩(wěn)定運行時,熱泵機組制熱功率與耗電功率的比值(coefficient of performance,COP)穩(wěn)定在4.2左右。其中計算典型日水蓄能型地下水源熱泵系統(tǒng)比不蓄能系統(tǒng)節(jié)省30.34%的費用,供能系統(tǒng)COP為3.17,進一步說明系統(tǒng)較為高效平穩(wěn)。系統(tǒng)冬季運行一次能源利用系數(shù)0.99,相對于冷水機組與燃煤鍋爐配套系統(tǒng),節(jié)能率達到81.05%。計算不同能源冬季加熱成本,燃煤、燃氣和燃油方式分別是該系統(tǒng)運行成本的1.25、2.93和5.08倍。實踐表明,水蓄能型地下水源熱泵式供熱系統(tǒng)不僅能夠移峰填谷,降低運行費用,而且充分合理地利用地熱能,節(jié)能減排,具有良好的經(jīng)濟和環(huán)保效益。

      熱能;泵;節(jié)能;自然光植物工廠;地下水源熱泵;水蓄能;供熱系統(tǒng)

      0 引 言

      地下水源熱泵系統(tǒng)高效穩(wěn)定、節(jié)能環(huán)保。與空氣源熱泵相比,以地下水作為冷熱源,全年溫度相對穩(wěn)定,冬季比環(huán)境溫度高,夏季比環(huán)境溫度低,且冬季不存在結霜問題,運行穩(wěn)定性好;與土壤源熱泵相比,地下水源熱泵的初投資較低,不需要敷設埋管而占據(jù)很大的土地資源,運行費用較低;與地表水源熱泵相比,系統(tǒng)更為高效,地表水溫度受氣候影響較大,而且水質不好時換熱器易結垢。所以在政策和地下水水質開發(fā)技術允許的情況下,可利用地下水源熱泵系統(tǒng)對植物工廠供能。

      地下水源熱泵技術在植物工廠領域的應用研究比較廣泛。主要集中在系統(tǒng)設計[1-2]、系統(tǒng)性能[3-6]和技術經(jīng)濟可行性[7-12],系統(tǒng)運行效果[13-15]、系統(tǒng)熱力學分析[16-17]和結合作物產(chǎn)量系統(tǒng)評價[18]以及控制系統(tǒng)研究[19-20]幾個方面。其中有研究者嘗試各種蓄能型地源熱泵應用于植物工廠中的運行特性[21-25]。左睿等[26]在常州15 000 m2的植物工廠中采用地源熱泵供熱進行經(jīng)濟性能分析,結果表明,地源熱泵能耗僅為傳統(tǒng)供熱方式的20%~30%,采用地下蓄能裝置可使其費用相對又降低40%~50%,直接能耗費用只有傳統(tǒng)的10%~20%。Edward Foulds等[27]研究與光伏板和土壤儲能系統(tǒng)結合的地源熱泵機組,利用數(shù)學模型研究能源系統(tǒng)的運行特性;Emanuele Bonamente等[28]分別以水和相變材料為儲熱材料對原地源熱泵蓄能系統(tǒng)進行優(yōu)化,優(yōu)化設計后系統(tǒng)性能系數(shù)可提高20%;Hüseyin Benli[29]設計了一個具有潛熱儲熱水箱的地源熱泵供熱系統(tǒng)為玻璃溫室加熱,并研究了其熱儲能性能。

      以上關于蓄能式地源熱泵的研究主要集中在儲能方式的改進,而對植物工廠蓄能式地源熱泵供熱系統(tǒng)運行研究較少[30-34],因此,本文將地下水式地源熱泵技術和水蓄能技術結合,以上海崇明自然光植物工廠為例,進行水蓄能型地下水源熱泵式供熱系統(tǒng)節(jié)能運行特性研究。

      1 植物工廠水蓄能型地下水源熱泵式供熱系統(tǒng)

      上海市崇明國家設施農業(yè)工程技術研究中心共有面積為21 000 m2的大型自然光植物工廠,分為A、B、C三區(qū),如圖1所示。A區(qū)的7小棟植物工廠采用水蓄能型地下水源熱泵空調系統(tǒng),面積5 880 m2,每1小棟植物工廠長35 m,寬24 m,共6跨,每跨4 m,肩高6.5 m,頂高7.5 m,外圍護結構為單層浮法玻璃,厚5 mm,以金屬框架支撐。水蓄能型地下水源熱泵系統(tǒng)冬季典型運行流程如圖2所示。

      圖2為冬季熱泵機組和儲熱罐聯(lián)合供熱工況下系統(tǒng)運行流程圖,圖中箭頭表示工質的流向。圖2中,植物工廠水蓄能型地下水源熱泵式供熱系統(tǒng)包括地下水換熱系統(tǒng)、熱泵機組、空氣處理機組和蓄能系統(tǒng),根據(jù)該系統(tǒng)產(chǎn)能和需能的匹配和當?shù)仉妰r峰谷時段通過閥門控制,確定系統(tǒng)有5種運行模式。當處于電價低谷段并且熱泵機組制熱(冷)量大于植物工廠所需負荷時,采用機組邊儲熱(冷)邊供熱(冷)模式;當熱泵機組制熱(冷)量和蓄熱(冷)水箱可供熱(冷)量均小于植物工廠所需負荷時,采用蓄熱(冷)水箱和機組供熱(冷)模式;當處于電價高峰值時段,采用蓄熱(冷)水箱供熱(冷)模式;當熱泵機組停止運行時,采用冷水井儲冷模式;夏季,當冷水井地下水溫度小于12 ℃時,采用冷水井直供冷模式。供能設備主要采用地下水源熱泵和蓄能罐,如圖3所示。

      圖1 自然光植物工廠外觀圖

      注:箭頭表示工質的流向。

      1. 400 m3蓄熱水箱2. 600 m3蓄冷水箱

      2 植物工廠水蓄能型地下水源熱泵式供熱系統(tǒng)基本運行特性

      至2018年4月,位于上海市崇明國家設施農業(yè)工程技術研究中心的自然光植物工廠,已成功運行5個冬天。本文只針對系統(tǒng)冬季供熱特性進行研究,因此選取2017年冬季2月8日-15日典型周運行數(shù)據(jù)進行分析。

      由植物工廠自動監(jiān)控系統(tǒng)測量分別獲得室外溫度、太陽輻射強度、植物工廠內溫度、相對濕度以及熱泵機組制熱功率與耗電功率的比值(coefficient of performance,COP)。2月8日-15日各參數(shù)變化如圖4所示,橫坐標0時表示2月8日0時。

      注:橫坐標0時表示2月8日0時; COP:制熱功率與耗電功率的比值。

      如圖4c所示,利用水蓄能型地下水源熱泵空調系統(tǒng)為植物工廠加溫,可以將室內溫度較好的維持在17~26 ℃之間,圖上太陽輻射強度為0的時段即為夜間,與室內溫度低谷段對應,溫度相對較低,但能夠滿足作物在夜間的生長需求;白天受到太陽輻射影響,室內溫度基本都在22 ℃以上,甚至能達到28 ℃。由圖4d可知,室內相對濕度基本在60%~88%之間,能夠避免室內高溫高濕現(xiàn)象。由圖4e可知,在系統(tǒng)穩(wěn)定運行時,熱泵機組COP在4.2上下浮動,運行較為高效平穩(wěn)。

      3 植物工廠水蓄能型地下水源熱泵供熱系統(tǒng)間歇節(jié)能運行特性分析

      3.1 基于分時電價政策的系統(tǒng)間歇運行模式

      選用系統(tǒng)正式運行期間具有代表性的2017年2月9日對試驗系統(tǒng)進行具體分析。室外溫度和太陽輻射強度如圖5所示,從圖5中可以看出,當日天氣陰,全天 氣溫在4 ℃以下;太陽輻射強度在0~160 W/m2,平均 太陽輻射強度為62 W/m2。上海各時段電價分別為低谷段0.364元/(kW·h),平價段0.752元/(kW·h),高峰段1.222元/(kW·h)。根據(jù)上海市分時電價政策,抽水泵與熱泵機組的啟停狀態(tài)及熱泵系統(tǒng)運行模式如表1所示。

      圖5 2017年2月9日室外環(huán)境參數(shù)變化圖

      從表1可知,系統(tǒng)運行模式基本為:在電力低谷時刻,熱泵機組全開,邊供熱邊儲熱,在電力高峰時刻,熱泵機組停開,利用蓄熱水箱供熱,在用電平段時刻,根據(jù)蓄熱水箱儲能量和植物工廠負荷需求進行合理調控。

      3.2 冬季典型日系統(tǒng)間歇運行特性及熱性能系數(shù)

      基于分時電價政策的植物工廠水蓄能型地下水源熱泵供能系統(tǒng)制熱性能系數(shù)(COPsys)計算如公式(1)所示。

      式中為系統(tǒng)供熱量,kJ;comp為壓縮機輸入功率,kW;pumps為各水泵的輸入功率之和,kW;f為空氣處理機組風機的輸入功率,kW;1、2、3分別為壓縮機、水泵和空氣處理機組風機的運行時間,s。

      植物工廠得熱量為太陽輻射和人工加熱,散熱量為貫流放熱量、空氣交換散熱量、土壤導熱量,考慮作物蒸騰作用、土壤蓄熱作用等影響因素[35],通過熱負荷計算得到系統(tǒng)2017年2月9日全天供熱量為32 185.8 MJ;得到熱泵機組運行13.92 h耗電量為8 024.65 MJ;得到空氣處理機組的全天耗電量1 075.77 MJ;潛水泵運行5.67 h,耗電量為489.89 MJ,水源側循環(huán)水泵運行13.92 h,耗電量為160.36 MJ,儲熱泵運行13.75 h,耗電量為59.4 MJ,用戶側循環(huán)水泵運行24 h,耗電量為332.64 MJ,水泵耗電量共為1 042.29 MJ,系統(tǒng)全天總耗電量為10 142.71 MJ,得到該系統(tǒng)COP(全天供熱量與耗電量比值)為3.17,表明水蓄能型地下水源熱泵式植物工廠空調系統(tǒng)運行高效穩(wěn)定。

      3.3 與不采用蓄能裝置的地下水源熱泵系統(tǒng)典型日運行費用比較

      上海電力高峰時段電價1.222元/(kW·h),平段電價0.752元/(kW·h),低谷時段電價0.364元/(kW·h),根據(jù)2017年2月9日運行模式和分時電價計算全天系統(tǒng)運行費用,結果見表2。

      表2 水蓄能型地下水源熱泵供能系統(tǒng)2017年2月9日運行費用

      將A試驗系統(tǒng)與B不采用蓄能裝置的地下水源熱泵空調系統(tǒng)運行費用進行比較:

      蓄熱水箱的能量變化計算公式為=cmD,計算全天蓄能量時,D為蓄熱水箱0時與全天最高溫度的溫度差;計算全天供能量時,D為最高溫度與24時的溫度差,得到蓄熱水箱全天蓄能量為14 313.76 MJ,全天供能量為17 046.10 MJ。A系統(tǒng)蓄熱水箱全天蓄能量為B系統(tǒng)熱泵機組減少產(chǎn)熱的部分,則熱泵機組在原儲熱階段減少產(chǎn)熱14 313.76 MJ,平均少耗電3 408.04 MJ,即946.68 kW·h,各電價期減少運行費用總和為502.74 元;A系統(tǒng)的蓄熱水箱全天供能量為B系統(tǒng)熱泵機組增加產(chǎn)熱的部分,則熱泵機組在原蓄熱水箱供熱階段多產(chǎn)熱17 046.10 MJ,平均多耗電4 058.60 MJ,即1 127.39 kW·h,各電價期增加運行費用總和為1 163.20元;各水泵運行時間為24 h,水泵運行費用為217.72元。則不采用蓄能裝置的地下水源熱泵空調系統(tǒng)共增加運行費用689.85 元,全天總計為2 273.74 元。

      以2017年2月9日為代表,水蓄能型地下水源熱泵空調系統(tǒng)與不采用蓄能裝置的地下水源熱泵空調系統(tǒng)運行費用降低了689.85元,節(jié)省了約30.34%的費用,經(jīng)濟效益顯著。

      4 植物工廠水蓄能型地下水源熱泵供熱系統(tǒng)周年運行的節(jié)能、經(jīng)濟和環(huán)保效益

      4.1 植物工廠水蓄能型地下水源熱泵供熱系統(tǒng)年運行節(jié)能特性

      將系統(tǒng)與可能適合的冷水機組與燃煤鍋爐配套和冷水機組與燃氣鍋爐配套2個方案進行冬季運行節(jié)能性分析和比較,進一步探討水蓄能型地下水源熱泵式空調系統(tǒng)的優(yōu)越性。

      1)系統(tǒng)一次能源消耗

      式中¢為系統(tǒng)實際功耗,kJ;1為發(fā)電效率,2為輸配電效率,本文根據(jù)中國現(xiàn)有發(fā)電和輸配電平均水平進行估算,1、2分別取35%和90%。

      2)一次能源利用系數(shù)

      供熱季節(jié),不論何種加溫方式均消耗一次能源,用能源利用系數(shù)來反映不同加溫方式的能量轉化效率具有可比性。計算公式如下

      3)節(jié)能率

      節(jié)能率又稱系統(tǒng)一次能耗節(jié)能率,根據(jù)要比較的2種系統(tǒng)的一次能耗,以另一種系統(tǒng)的一次能耗為基礎,可以算出節(jié)能率E

      式中1為水蓄能型地下水源熱泵空調系統(tǒng)一次能耗,kJ;2為待比較系統(tǒng)的一次能耗,kJ。

      通過上述計算公式,分別計算3種不同供能方式一年內的一次能源消耗、一次能源利用系數(shù)和節(jié)能率,計算結果見表3。

      表3 系統(tǒng)節(jié)能性分析(年)

      從表3可以看出,水蓄能型地下水源熱泵空調系統(tǒng)一次能源利用系數(shù)0.99,相對于冷水機組與燃煤鍋爐配套系統(tǒng)和冷水機組與燃氣鍋爐配套系統(tǒng)的節(jié)能率分別為81.05%和74.83%。

      4.2 與傳統(tǒng)供熱方式比較加溫期系統(tǒng)運行能耗、CO2排放量和成本

      為進一步研究水蓄能型地下水源熱泵供熱系統(tǒng)運行能耗優(yōu)勢,以崇明21 000 m2自然光植物工程工廠為例,分別采用水源熱泵、燃煤、柴油、天然氣和電鍋爐的方式為植物工廠供熱,維持加溫期持續(xù)運行,從加溫期運行成本和CO2排放量進行對比分析;經(jīng)運行統(tǒng)計,加熱耗電量195 kW·h/(m2·a)。不同供熱方式的運行能耗、成本與CO2排放量計算結果見表4。

      與水蓄能型地下水源熱泵系統(tǒng)相比,冬季以燃煤(700元/t)、燃氣(4.6元/m3)、燃油(8.8元/kg)方式為植物工廠加熱的成本分別是水蓄能型地下水源熱泵系統(tǒng)的1.25倍、2.93倍、5.08倍,而CO2排放量分別是水蓄能型地下水源熱泵系統(tǒng)2.32、1.19、0.88倍。

      表4 崇明自然光植物工廠加溫期不同供熱方式的運行能耗、成本與CO2排放量

      5 結 論

      本文研究對象水蓄能型地下水源熱泵式供能系統(tǒng),為植物工廠加溫的實際運行穩(wěn)定,具有良好的經(jīng)濟和環(huán)保效益。

      1)冬季利用水蓄能型地下水源熱泵式供熱系統(tǒng)加溫可以維持室內溫度在17~26 ℃之間,白天受太陽輻射影響,甚至可以達到28 ℃;系統(tǒng)穩(wěn)定運行時,熱泵機組全天供熱量與耗電量比值在4.2左右,說明系統(tǒng)運行高效平穩(wěn)。

      2)系統(tǒng)連續(xù)運行階段,在電價低谷時,熱泵機組邊供熱邊蓄熱,在電價高峰期,充分利用蓄熱水箱供熱,在電價平端時,根據(jù)蓄能水箱蓄能量和植物工廠負荷調控。水蓄能型地下水源熱泵式供熱系統(tǒng)典型日全天供熱量與耗電量比值為3.17;系統(tǒng)比不蓄能地下水源熱泵系統(tǒng)可以節(jié)省30.34%的費用。說明此系統(tǒng)可以移峰填谷,避免電價高峰期高負荷運行,大大降低運行費用。

      3)水蓄能型地下水源熱泵式供熱系統(tǒng)一次能源利用系數(shù)0.99,相對于燃煤鍋爐系統(tǒng)和燃氣鍋爐系統(tǒng),節(jié)能率分別為81.05%和74.83%;計算不同能源冬季加熱成本和CO2排放量,燃煤、燃氣和燃油的運行成本分別是該系統(tǒng)的1.25、2.93和5.08倍,CO2排放量分別是該系統(tǒng)的2.32、1.19、0.88倍,說明該系統(tǒng)具有很好的節(jié)能減排效益。

      [1] 曲云霞,張林華,方肇洪,等. 地下水源熱泵及其設計方法[J]. 可再生能源,2002(6):11-14. Qu Yunxia, Zhang Linhua, Fang Zhaohong, et al. The study and design on ground water heat pumps[J]. Renewable Energy Resouce, 2002(6): 11-14. (in Chinese with English abstract)

      [2] 王吉慶. 水源熱泵調溫溫室研制及試驗研究[D]. 鄭州:河南農業(yè)大學,2003.

      Wang Jiqing. Development and Experimental Study of Water Source Heat Pump Temperature Control Greenhouse[D]. Zhengzhou: Henan Agricultural University, 2003.

      [3] Van Ooteghem R J C. Optimal Control Design for a Solar Greenhouse[D]. Wageningen:Wageningen University, 2007.

      [4] Chai L, Ma C, Ni J. Performance evaluation of ground source heat pump system for greenhouse heating in northern China[J]. Biosystems Engineering, 2012, 111(1): 107-117.

      [5] 王吉慶,張百良. 水源熱泵在溫室加溫中的應用研究[J]. 中國農學通報,2005,21(6):415-419. Wang Jiqing, Zhang Bailiang. Experiment of water heat pump in greenhouse heating[J]. Chinese Agricultural Science Bulletin, 2005, 21(6): 415-419. (in Chinese with English abstract)

      [6] Andrew Chiasson, Design P E. Installation of a new down hole heat exchanger for direct use space heating[R]. Ghc Bulletin, 2005: 20-24.

      [7] 方慧,楊其長,王柟,等. 淺層地熱源節(jié)能技術及其在設施農業(yè)中的應用[J]. 農業(yè)工程學報,2008,24(10):286-290. Fang Hui, Yang Qichang, Wang Nan, et al. Geothermal technology and its applications in protected agriculture[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of CSAE), 2008,24(10): 286-290. (in Chinese with English abstract)

      [8] 田豐果,賀榮,孫鐵方,等. 水源熱泵在溫室大棚溫度調節(jié)中的應用[J]. 北方園藝,2008(12):91-93. Tian Fengguo, He Rong, Sun Tiefang, et al. Water source heat pump applied to thermoregulation of greenhouse[J]. Northern Horticulture, 2008(12): 91-93. (in Chinese with English abstract)

      [9] 方慧,楊其長,孫驥. 地源熱泵—地板散熱系統(tǒng)在溫室冬季供暖中的應用[J]. 農業(yè)工程學報,2008,24(12):145-149. Fang Hui, Yang Qichang, Sun Ji. Application of ground-source heat pump and floor heating system to greenhouse heating in winter[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of CSAE), 2008, 24(12): 145-149. (in Chinese with English abstract)

      [10] 柴立龍,馬承偉,張曉蕙,等. 地源熱泵溫室降溫系統(tǒng)的試驗研究與性能分析[J]. 農業(yè)工程學報,2008,24(12):150-154.Chai Lilong, Ma Chengwei, Zhang Xiaohui, et al. Experimental investigation and performance analysis on ground source heat pump system for greenhouse cooling[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(12): 150-154. (in Chinese with English abstract)

      [11] 趙建成,張海濤,安愛明,等. 地下水地源熱泵與水蓄能設計實例的經(jīng)濟分析[C]//全國暖通空調制冷2006年學術年會,合肥,2006.

      [12] 柴立龍,馬承偉,張義,等. 北京地區(qū)溫室地源熱泵供暖能耗及經(jīng)濟性分析[J]. 農業(yè)工程學報,2010,26(3):249-254. Chai Lilong, Ma Chengwei, Zhang Yi, et al. Energy consumption and economic analysis of ground source heat pump used in greenhouse in Beijing[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(3): 249-254. (in Chinese with English abstract)

      [13] 曹文龍,程希. 水源熱泵系統(tǒng)在日光溫室中的應用效益分析[J]. 農業(yè)科技與裝備,2010(4):38-39.

      Cao Wenlong, Cheng Xi. Beneficial analysis of the application of water source heat pump in sunlight greenhouse[J]. Agriculturl Science & Technology Equipment, 2010(4): 38-39.

      [14] 柴立龍,馬承偉,袁小艷,等. 基于Exergy研究的地源熱泵降溫系統(tǒng)性能分析[J]. 農業(yè)機械學報,2009,40(2):146-150. Chai Lilong, Ma Chengwei, Yuan Xiaoyan, et al. Performance analysis on ground source heat pump cooling system based on energy research[J]. Transactions of The Chinese Society for Agricultural Machinery, 2009, 40(2): 146-150. (in Chinese with English abstract)

      [15] Mehmet Esen, Tahsin Yuksel. Experimental evaluation of using various renewable energy sources for heating a greenhouse[J]. Energy and Buildings, 2013, 65: 340-351.

      [16] 柴立龍,馬承偉. 玻璃溫室地源熱泵供暖性能與碳排放分析[J]. 農業(yè)機械學報,2012,43(1): 185-191. Chai Lilong, Ma Chengwei. Performance and carbon emission analysis on glass-covering greenhouse heating with ground source heat pump technology[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(1): 185-191. (in Chinese with English abstract)

      [17] 孫維拓,張義,楊其長,等. 溫室主動蓄放熱-熱泵聯(lián)合 加溫系統(tǒng)熱力學分析[J]. 農業(yè)工程學報,2014,30(14):179-188. Sun Weituo, Zhang Yi, Yang Qichang, et al. Thermodynamic analysis of active heat storage-release associated with heat pump heating system in greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(14): 179-188. (in Chinese with English abstract)

      [18] Bartzanas T, Tchamitchian M, Kittas C. Influence of the heating method on greenhouse microclimate and energy consumption[J]. Biosystems Engineering, 2005, 91(4): 487-499.

      [19] 蔡軍. 基于CFD的溫室水源熱泵控制系統(tǒng)研究[D]. 杭州:浙江工業(yè)大學,2010. Cai Jun. Research on Water-source Heat Pump Control System of Greenhouse based on CFD[D]. Hangzhou: Zhejiang University of Technology, 2010. (in Chinese with English abstract)

      [20] 吳曼玲,陳一飛,李琦,等. 基于灰色預測的溫室地源熱泵系統(tǒng)溫度變頻調控及驗證[J]. 農業(yè)工程學報,2016,32(16):183-187. Wu Manling, Chen Yifei, Li Qi, et al. Frequency transformation and its validation of ground source heat pump system based on grey predicti[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(16): 183-187. (in Chinese with English abstract)

      [21] 錢堃,張欽. 結合水蓄能的地源熱泵系統(tǒng)經(jīng)濟性分析[J]. 制冷與空調,2013,13(7):96-102. Qian Kun, Zhang Qin. Economic analysis of ground-source heat pump combined with water energy storage system[J]. Refrigeration and Air-donditioning, 2013, 13(7): 96-102. (in Chinese with English abstract)

      [22] 李馳,余岳峰. 地源熱泵與蓄能系統(tǒng)優(yōu)化配置的設計[J]. 電力與能源,2011,32(5):413-417. Li Chi, Yu Yuefeng. Design and research on optimum distribution of the system of ground source heat pump and energy storage[J]. Power & Energy, 2011, 32(5): 413-417. (in Chinese with English abstract)

      [23] 孫行健,石惠嫻,陳慧子,等. 蓄能型地源熱泵式植物工廠供能系統(tǒng)[J]. 節(jié)能技術,2015,33(2):125-130. Sun Xingjian, Shi Huixian, Chen Huizi, et al. Ground source heat pump with storage system of the plant factory[J]. Energy Conservation Technology, 2015, 33(2): 125-130. (in Chinese with English abstract)

      [24] 盧晗. 地源熱泵與水蓄能復合系統(tǒng)的研究[D]. 濟南:山東建筑大學,2012. Lu Han. Study on Ground-Source Heat Pump Combined with Water Storage Air-Conditioning System[D]. Jinan:Shandong University of Architecture,2012. (in Chinese with English abstract)

      [25] 齊月松,岳玉亮,劉天一. 地源熱泵結合水蓄能系統(tǒng)應用分析[J]. 暖通空調,2010,40(5):94-97. Qi Yuesong, Yue Yuliang, Liu Yitian. Application analysis of combined ground-source heat pump and water energy srorage systems[J]. Heating Ventilating & Air Conditioning. 2010, 40(5): 94-97. (in Chinese with English abstract)

      [26] 左睿,蔣綠林,高偉,等. 地熱技術在溫室供暖中的應用[J]. 安徽農業(yè)科學,2009,37(13):6139-6140. Zuo Rui, Jiang Lülin, Gao Wei, et al. Application of geothermal technology in greenhouse heating[J]. Journal of Anhui Agricultural Sciences,2009, 37(13): 6139-6140. (in Chinese with English abstract)

      [27] Edward Foulds, Muditha Abeysekera, Wu Jianzhong. Modelling and analysis of a ground source heat pump combined with a PV-T and earth energy storage system[J]. Energy Procedia, 2017, 142: 886-891.

      [28] Emanuele Bonamente, Andrea Aquino, Franco Cotana. A PCM thermal storage for ground-source heat pumps: Simulating the system performance via CFD approach[J]. Energy Procedia, 2016, 101: 1079-1086.

      [29] Hüseyin Benli. Energetic performance analysis of a ground-source heat pump system with latent heat storage for a greenhouse heating[J] Energy Conversion and Management, 2011, 52(1): 581-589.

      [30] 胡濤,周群,肖仁政,等. 水蓄能地源熱泵系統(tǒng)的一種在線優(yōu)化運行控制[J]. 太陽能學報,2018,39(2):496-503. Hu Tao, Zhou Qun, Xiao Renzheng, et al. An online optimal operation control of ground source heat pump system with water heat storage[J].Acta Energiae Solaris Sinica, 2018, 39(2): 496-503. (in Chinese with English abstract)

      [31] 呂藝青,傅允準. 地源熱泵系統(tǒng)夏季制冷間歇運行特性實驗研究[J]. 太陽能學報,2018,39(2):453-460. Lü Yiqing, Fu Yunzhun. Experimental research of performance for refrigation intermittent operation in summer of GSHP system[J]. Acta Energiae Solaris Sinica, 2018, 39(2): 453-460. (in Chinese with English abstract)

      [32] Li Huai, Xu Wei, Yu Zhen, et al. Discussion of a combined solar thermal and ground source heat pump system operation strategy for office heating[J]. Energy and Buildings, 2018, 162: 42-53.

      [33] Yang Weibo, Zhang Heng, Liang Xingfu. Experimental performance evaluation and parametric study of a solar-ground source heat pump system operated in heating modes[J]. Energy, 2018, 149: 173-189.

      [34] Lü Junxin, Wei Zhang, Zhang Jiaqi. Running and economy performance analysis of ground source heat pump with thermal energy storage devices[J]. Energy and Buildings, 2016, 127: 1108-1116.

      [35] 劉振,秦朝葵. 上海地區(qū)溫室供暖耗氣量計算[J]. 城市燃氣,2016(10):9-14. Liu Zhen, Qin Chaokui. Gas consumption of greenhouse heating in Shanghai[J]. Chengshi Ranqi, 2016(10): 9-14. (in Chinese with English abstract)

      Research on energy-saving operating characteristics of water storage groundwater source heat pump heating system in plant factory

      Shi Huixian, Ren Yike, Meng Xiangzhen, Chen Huizi, Ouyang Sanchuan, Zhou Qiang

      (,200092,)

      The groundwater source heat pump has high efficiency and environmental protection in greenhouse temperature control. The operating energy consumption can be further reduced if the water storage technology were combined. It was researched which energy-saving operating characteristics a water storage groundwater source heat pump heating system has in this study, taking the example of the natural light plant factory in Shanghai. The total area was 21 000 m2, of which the heating area was 5 880 m2. The heating system included a groundwater heat exchange system, a heat pump unit, an air handling unit, and an energy storage system. Considering the change in electricity price and the change in heat load over time, the operating mode of the heating system is intermittent operation. At the time of power trough, the heat pump unit was fully open and energy was stored in the tank while heating. At the peak of power, the heat pump unit was stopped and the system made full use of the hot water tank for heating. At the time of the level section, reasonable regulation was carried out according to the stored energy of the hot water storage tank and the plant heat load demanded. The typical operating week,F(xiàn)ebruary 8th to 15th in 2017,was selected from the winter heating months. The operation data of the typical week was recorded and analyzed. The outdoor temperature,the solar radiation intensity,the indoor temperature,the indoor relative humidity and the COP(ratio of heat supply to power consumption) of the heat pump were all tested every 5 minutes on the typical week. The result shows that in winter, the groundwater source heat pump with energy storage tank heating system could better maintain the indoor temperature between 17 and 26 ℃. The indoor temperature was relatively low at night, but it could meet the growth demand of the crop at winter. The influence of solar radiation was large, and the indoor temperature was basically above 22 ℃, and even reached 28 ℃. The indoor relative humidity was always between 60% and 88%, which could avoid indoor high temperature with high humidity. When the system was in stable operation, the heat pump unit COP(coefficient of performance)was about 4.2. The day of February 9th, 2017 was selected from the typical week. On the typical day,it was cloudy and the temperature was below 4 ℃ throughout the day; the solar radiation intensity was 0-160 W/m2and the average solar radiation intensity was 62 W/m2. The total power consumption of the system was 10 142.71 MJ, and the COP of the system was 3.17. It was further explained for the system characteristics of high efficiency and good stability. Compared with non-storage ground source heat pump system,the groundwater source heat pump with water energy storage system saved 30.34% of the cost on the typical day. The significant economic benefit of the test system was showed. During the continuous heating period in winter, for the test heating system, the primary energy utilization coefficient was 0.99. And compared with cold water unit and coal-fired boiler supporting system and chiller and gas boiler supporting system, energy saving rate were respectively 81.05% and 74.83%. Different energy heating costs were compared. For the operating cost, the coal, gas and fuel methods are 1.25, 2.93 and 5.08 times of the test heating system. And for the CO2emission, they were 2.32, 1.19, and 0.88 times of the test heating system. Practice shows that the groundwater source heat pump with water energy storage system has good economic and environmental benefit, which can not only reduce the operating costs, but also make full use of geothermal energy and be beneficial to energy conservation.

      thermal energy; pumps; energy saving; natural light plant factory; groundwater source heat pump; water storage; heating system

      石惠嫻,任亦可,孟祥真,陳慧子,歐陽三川,周 強.植物工廠水蓄能型地下水源熱泵供熱系統(tǒng)節(jié)能運行特性研究[J]. 農業(yè)工程學報,2018,34(23):157-163. doi:10.11975/j.issn.1002-6819.2018.23.019 http://www.tcsae.org

      Shi Huixian, Ren Yike, Meng Xiangzhen, Chen Huizi, Ouyang Sanchuan, Zhou Qiang. Research on energy-saving operating characteristics of water storage groundwater source heat pump heating system in plant factory[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(23): 157-163. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.23.019 http://www.tcsae.org

      2018-06-22

      2018-10-05

      國家高技術研究發(fā)展計劃(863計劃)項目(2013AA103006-02)

      石惠嫻,副教授,博士,主要從事農業(yè)設施領域可再生能源應用研究。Email:huixian_shi@#edu.cn

      10.11975/j.issn.1002-6819.2018.23.019

      S215;S625.4

      A

      1002-6819(2018)-23-0157-07

      猜你喜歡
      水蓄源熱泵熱泵
      燃氣機熱泵與電驅動熱泵技術經(jīng)濟性實測對比
      煤氣與熱力(2022年4期)2022-05-23 12:44:44
      暖通空調設計中地源熱泵實踐
      空氣源熱泵用于天然氣加熱的經(jīng)濟環(huán)保性
      煤氣與熱力(2021年9期)2021-11-06 05:22:54
      空氣源熱泵供暖期耗電量計算
      煤氣與熱力(2021年6期)2021-07-28 07:21:18
      面向對象方法在水蓄冷PLC編程中應用分析
      電子制作(2019年7期)2019-04-25 13:18:00
      水車
      好孩子畫報(2018年9期)2018-12-01 10:18:58
      地源熱泵系統(tǒng)的研究與應用
      水循環(huán)高效礦井乏風熱泵系統(tǒng)分析與應用
      同煤科技(2015年4期)2015-08-21 12:51:02
      熱泵在熱電聯(lián)產(chǎn)中的應用
      河南科技(2015年15期)2015-03-11 16:25:52
      清潔能源——水蓄能與水源熱泵技術耦合系統(tǒng)在建筑中應用
      大姚县| 阿克苏市| 六安市| 遂昌县| 乌兰察布市| 徐闻县| 建始县| 方山县| 延安市| 日土县| 澳门| 社旗县| 浦北县| 通河县| 察雅县| 临江市| 旬阳县| 新沂市| 洪雅县| 罗源县| 德格县| 故城县| 即墨市| 康马县| 方正县| 务川| 正镶白旗| 邵东县| 元谋县| 宁化县| 高要市| 宁陕县| 诸暨市| 宣威市| 板桥市| 西充县| 达孜县| 卢龙县| 陇川县| 五家渠市| 闵行区|