• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      基于GARCH模型的比亞迪收益率研究

      2019-01-14 09:14劉穎琪
      關(guān)鍵詞:GARCH模型比亞迪收益率

      摘要:在世界汽車行業(yè)由傳統(tǒng)汽車向新能源汽車轉(zhuǎn)型的時(shí)代背景下,以比亞迪為代表的中國(guó)汽車類公司生產(chǎn)新能源汽車的業(yè)務(wù)發(fā)展前景受到投資者廣泛關(guān)注。比亞迪汽車公司已在A股上市,而在A股市場(chǎng)中,股票價(jià)格頻繁波動(dòng)是其最明顯的特征之一,科學(xué)、合理分析比亞迪股票收益率的波動(dòng)變化情況對(duì)資產(chǎn)持有者如何選擇具有重要意義。本文基于2015-2019年1220個(gè)日收盤價(jià)數(shù)據(jù)構(gòu)建關(guān)于比亞迪股票日收益率的時(shí)間序列,結(jié)果顯示出,受市場(chǎng)和政策條件影響,比亞迪公司的股票收益率波動(dòng)變化起伏較大。由于主營(yíng)業(yè)務(wù)推陳出新,市場(chǎng)不確定因素增加,2016年間收益率具有波動(dòng)最大的特征;因市場(chǎng)對(duì)新業(yè)務(wù)反饋良好及國(guó)家補(bǔ)貼政策利好的影響,2017年間波動(dòng)較小;受宏觀車市略微下行影響及補(bǔ)貼政策收緊影響,2018年起收益率波動(dòng)變大但隨后基本保持不變。

      關(guān)鍵詞:比亞迪;收益率;GARCH模型

      一、研究背景和意義

      如今,由于全球面臨能源消耗和環(huán)境污染嚴(yán)重的問(wèn)題,世界汽車產(chǎn)業(yè)正由傳統(tǒng)汽車向新能源汽車轉(zhuǎn)型。在“新能源汽車”技術(shù)發(fā)展還未成熟的機(jī)遇期,以比亞迪為代表的新能源汽車公司正抓住該契機(jī)大力推動(dòng)企業(yè)自身的創(chuàng)新發(fā)展。比亞迪公司的投資價(jià)值高低成為金融市場(chǎng)的熱點(diǎn)問(wèn)題,它的收益率變化受到社會(huì)各界投資者的廣泛關(guān)注。

      由于股票價(jià)格頻繁劇烈的波動(dòng),股票價(jià)格的時(shí)間序列經(jīng)常表現(xiàn)出一個(gè)時(shí)期的波動(dòng)明顯地大于另一時(shí)期的特征。自從Engle首次利用ARCH模型來(lái)刻畫條件異方差隨時(shí)間的變化以來(lái),自回歸條件異方差模型得到了廣泛的應(yīng)用及發(fā)展,尤其是在金融市場(chǎng)及金融衍生品等領(lǐng)域。在Bollerslev通過(guò)對(duì)ARCH模型進(jìn)行多種改進(jìn),增加考慮了異方差函數(shù)的p階段自相關(guān)性,有效擬合了具有長(zhǎng)期記憶性的異方差函數(shù),最終將其模型的干擾項(xiàng)的條件方差構(gòu)成了一個(gè)ARMA過(guò)程,即稱為 GARCH模型,它能準(zhǔn)確描述時(shí)間序列的條件異方差性和波動(dòng)聚集性。國(guó)外學(xué)者的研究結(jié)果表明,GARCH模型在預(yù)測(cè)金融資產(chǎn)收益率方差方面是比較成功的。

      本文基于2015年-2019年的1220個(gè)日收盤價(jià)數(shù)據(jù),計(jì)算得日收益率,再利用GARCH模型,刻畫出隨時(shí)間變化而變化的條件方差,科學(xué)合理地反映比亞迪公司的收益率即期波動(dòng)的特征,并根據(jù)即期實(shí)際情況進(jìn)行分析。以此,為公司外部利益相關(guān)者,了解公司發(fā)展的狀況,并根據(jù)公司發(fā)展的狀況,制定相應(yīng)的投資決策提供一些參考。

      二、方法介紹

      為獲得金融時(shí)間序列通常具有的波動(dòng)集聚性,Engle (1982)首先提出了自回歸條件異方差(ARCH)模型。但許多實(shí)證表明,為了更好地獲得條件異方差性,應(yīng)該選取高階的ARCH模型,這將增加要估計(jì)的參數(shù),從而降低參數(shù)估計(jì)的效率。針對(duì)這個(gè)問(wèn)題1986年,Bollerslev在ARCH模型中增加了自回歸項(xiàng),對(duì)ARCH模型的條件方差函數(shù)進(jìn)行拓展,這個(gè)模型被稱為廣義ARCH模 型——GARCH。相對(duì)于ARCH,GARCH模型的優(yōu)點(diǎn)在于:可以用較為簡(jiǎn)單的GARCH模型來(lái)代表一個(gè)高階ARCH模型,使待估參數(shù)大為減少,從而使得模型的識(shí)別和估計(jì)都變得比較容易。故本文使用GARCH模型,其數(shù)學(xué)模型如下:

      三、實(shí)證分析

      1.平穩(wěn)性檢驗(yàn)

      本文選取的GARCH模型需要建立在時(shí)間序列平穩(wěn)且非白噪聲序列的基礎(chǔ)上。在Rstudio軟件中對(duì)序列進(jìn)行隨機(jī)性檢驗(yàn)后的結(jié)果顯示,在各階延遲下LB檢驗(yàn)統(tǒng)計(jì)量的P值竇非常小(< 0.05),所以有很大的把握斷定比亞迪股票日收益率屬于非白噪聲序列。隨后采用自相關(guān)(ADF)圖檢驗(yàn)來(lái)確定其平穩(wěn)性。ADF的檢驗(yàn)結(jié)果圖如圖1所示:

      可以看到樣本自相關(guān)圖顯示延遲10階后,自相關(guān)系數(shù)都落入2倍標(biāo)準(zhǔn)差范圍之內(nèi),而且自相關(guān)系數(shù)向零衰減的速度比較快。由時(shí)序圖和樣本自相關(guān)圖的性質(zhì)可以認(rèn)為該序列平穩(wěn)。

      2.提取水平信息并預(yù)測(cè)未來(lái)水平

      為確定水平信息,還需進(jìn)行偏自相關(guān)(PACF)檢驗(yàn)。PADF的檢驗(yàn)結(jié)果圖如圖2所示:

      結(jié)合自相關(guān)圖,可見自相關(guān)系數(shù)和偏自相關(guān)系數(shù)均顯示出不截尾的性質(zhì),為了避免因個(gè)人經(jīng)驗(yàn)不足而導(dǎo)致的模型識(shí)別不準(zhǔn)確的問(wèn)題,本文使用了R中提供的auto.arima函數(shù)。該函數(shù)基于信息量最小原則自動(dòng)識(shí)別模型階數(shù),并給出了該模型的參數(shù)估計(jì)值。使用AIC準(zhǔn)則作為信息量,得到的系統(tǒng)自動(dòng)定階結(jié)果為擬合ARMA (1,2) 模型,得到該模型的口徑為:

      此時(shí)通過(guò)模型的顯著性檢驗(yàn),即通過(guò)殘差白噪聲檢驗(yàn),模型有效。隨后調(diào)用forecast函數(shù)完成從2019年6月17日后5個(gè)交易日的預(yù)測(cè)工作,預(yù)測(cè)圖如圖3所示:

      3.條件異方差檢驗(yàn)(Portmanteau Q 檢驗(yàn))

      1983年Mcleod和Li提出了Portmanteau Q統(tǒng)計(jì)方法,用于檢驗(yàn)殘差平方序列的自相關(guān)性。該檢驗(yàn)方法的構(gòu)造思想是:如果殘差序列方差非齊性,且具有集群效應(yīng),那么殘差平方序列通常具有自相關(guān)性。所以方差非齊檢驗(yàn)可以轉(zhuǎn)化為殘差平方序列的自相關(guān)性檢驗(yàn)。

      Portmanteau Q檢驗(yàn)的假設(shè)條件為:

      H0:殘差平方序列純隨機(jī)(方差齊性)

      H1:殘差平方序列自相關(guān)(方差齊性)

      用[ρk]表示殘差平方序列[ε2k]的延遲k階自相關(guān)系數(shù),則該假設(shè)條件可以等價(jià)表達(dá)為:

      H0:[ρ1=ρ2=…ρq=0][?] H1:[ρ1,ρ2,…,ρq不全為零]

      原假設(shè)成立時(shí),Portmanteau Q統(tǒng)計(jì)量近似服從自由度為q -1的[χ2]分布

      [Qq~χ2(q-1)]

      當(dāng)[q]檢驗(yàn)統(tǒng)計(jì)量的P值小于顯著性水平[α]時(shí),拒絕原假設(shè),認(rèn)為該序列方差非齊且具有自相關(guān)關(guān)系。在R中進(jìn)行Portmanteau Q檢驗(yàn)后的結(jié)果顯示殘差序列顯著方差非齊,且具有長(zhǎng)期相關(guān)性。

      4.擬合模型

      在實(shí)際操作中,對(duì)GARCH模型中的p,q經(jīng)常賦值為1,即GARCH(1,1)。

      構(gòu)造GARH(1,1)模型,得到完整擬合模型為:

      [xt=600.6849+0.4338xt-1+εt-0.4829εt-1-0.0886εt-2+vt,]

      [其中 vt~N0,116579]? ? [vt=htet ]? [ht=0.9015ht+0.09510vt-1]

      可用來(lái)對(duì)短期內(nèi)比亞迪公司的股票收益率進(jìn)行預(yù)測(cè)。

      四、結(jié)論和不足

      通過(guò)以上實(shí)證分析,可以得到以下結(jié)論:受市場(chǎng)和政策條件影響,比亞迪公司的股票收益率波動(dòng)變化起伏較大。具體而言,由于主營(yíng)業(yè)務(wù)推陳出新,不確定因素增加,而短期市場(chǎng)對(duì)這類事件反應(yīng),導(dǎo)致了2016年間收益率具有波動(dòng)最大的特征;因市場(chǎng)對(duì)新業(yè)務(wù)反饋良好及國(guó)家補(bǔ)貼政策利好,市場(chǎng)預(yù)期較好,2017年間波動(dòng)較小;受宏觀車市略微下行影響及補(bǔ)貼政策收緊影響,對(duì)整個(gè)車市的市場(chǎng)預(yù)期較差, 2018年起收益率波動(dòng)變大,由于比亞迪公司主營(yíng)業(yè)務(wù)盈利能力較強(qiáng),波動(dòng)率隨后基本保持不變。

      本文通過(guò)GARCH模型,對(duì)比亞迪公司的收益率進(jìn)行了分析,驗(yàn)證了GARCH模型在實(shí)際經(jīng)濟(jì)環(huán)境下的應(yīng)用可能。同時(shí)由于數(shù)據(jù)的不完備性,時(shí)間跨度的長(zhǎng)度,市場(chǎng)的隨機(jī)性,使用時(shí)間序列模型對(duì)經(jīng)濟(jì)市場(chǎng)進(jìn)行分析預(yù)測(cè)具有一定參考價(jià)值而不盡準(zhǔn)確。

      作者簡(jiǎn)介:

      劉穎琪(1998-? ),女,漢族,廣東湛江遂溪縣,蘇州大學(xué)數(shù)學(xué)科學(xué)學(xué)院,統(tǒng)計(jì)專業(yè)。

      猜你喜歡
      GARCH模型比亞迪收益率
      比亞迪元PLUS
      金橋(2023年1期)2023-01-13
      比亞迪宋
      最佳市場(chǎng)表現(xiàn)獎(jiǎng) 比亞迪F0
      涟源市| 社旗县| 浦北县| 闽清县| 九台市| 顺昌县| 迭部县| 北辰区| 沐川县| 沈阳市| 绍兴县| 承德市| 龙陵县| 秭归县| 牙克石市| 永川市| 海安县| 旅游| 德化县| 鄢陵县| 湘潭县| 连平县| 遂昌县| 华宁县| 福贡县| 玛曲县| 长丰县| 靖州| 西安市| 宾川县| 五大连池市| 缙云县| 清远市| 铜川市| 高雄市| 民县| 临沧市| 道真| 隆昌县| 商水县| 三明市|