陳沫,何沙娥,陳少雄,歐陽林男,劉學鋒,張程,張維耀
環(huán)境因子及次生壁合成基因?qū)δ举|(zhì)部生成影響的研究進展
陳沫,何沙娥,陳少雄*,歐陽林男,劉學鋒,張程,張維耀
(國家林業(yè)和草原局桉樹研究開發(fā)中心,廣東湛江 524022)
木本植物次生木質(zhì)部生成是木材質(zhì)量和產(chǎn)量形成的基礎(chǔ),次生木質(zhì)部生成受外部環(huán)境因子和自身遺傳調(diào)控雙重因素的影響。本文以楊樹等主要樹種為例,概述了木本植物次生木質(zhì)部的形態(tài)結(jié)構(gòu)、形成過程,重點闡述了外部環(huán)境因子對木質(zhì)部生成的影響以及次生壁主要成分纖維素、半纖維素、木質(zhì)素合成基因的研究進展,以期為木本植物木材產(chǎn)量和質(zhì)量形成研究提供借鑒和依據(jù)。
環(huán)境因子;次生木質(zhì)部;木材形成;次生壁
次生木質(zhì)部是木材的主要組成成分,由維管形成層向內(nèi)分化產(chǎn)生。次生木質(zhì)部細胞的形成和增加是樹木主干不斷增粗的主要原因,對維持樹木多年生長和木材產(chǎn)量形成具有重要意義。由維管形成層生成成熟的次生木質(zhì)部是一個復(fù)雜的生物學過程,包括次生木質(zhì)部母細胞產(chǎn)生、木質(zhì)部細胞伸展生長、次生壁合成和細胞程序化死亡等幾個階段[1]。這幾個階段受外界環(huán)境因子直接或間接的影響以及樹木自身遺傳因子的調(diào)控[2],進而影響木質(zhì)部細胞數(shù)量或形態(tài)結(jié)構(gòu),最終決定木材產(chǎn)量和質(zhì)量形成。因此,從20世紀至今,次生木質(zhì)部生成調(diào)控的研究一直是國內(nèi)外植物生理學家和遺傳育種工作者研究的熱點。在環(huán)境因子方面,國內(nèi)外研究多集中在氣候因子,包括溫度、光照強度、降水、co2濃度和光周期等;土壤的營養(yǎng)狀況包括磷肥、鈣肥、鉀肥和鹽脅迫等。在遺傳因子方面,主要解析調(diào)控木質(zhì)部生成各階段發(fā)生的基因及其調(diào)控機制,其中木質(zhì)部細胞次生壁合成研究甚多。本文以楊樹()等為例,概述了木本植物次生木質(zhì)部形態(tài)結(jié)構(gòu)、形成過程、環(huán)境因子對木質(zhì)部生成的影響和次生壁主要成分合成基因的研究進展,以期為木本植物木材產(chǎn)量和質(zhì)量形成研究提供借鑒和依據(jù)。
木材(次生木質(zhì)部)是林木主干的主體部分,起支撐和輸送營養(yǎng)物質(zhì)的作用。以桉樹()為例,闊葉樹種次生木質(zhì)部的軸向系統(tǒng)由導(dǎo)管(V)、薄壁細胞和木纖維(f)等管狀分子構(gòu)成,徑向系統(tǒng)由射線薄壁細胞組成(rp)(圖1)。由于導(dǎo)管分子擴張和纖維侵入,闊葉樹種的木質(zhì)部細胞在外觀上大多排列散亂,呈隨機分布。
圖1 桉樹的木質(zhì)部解剖結(jié)構(gòu)
注:V-導(dǎo)管;rp-射線薄壁細胞;f-纖維
大部分成熟的木質(zhì)部細胞壁可分為兩層:薄的初生壁和相對較厚的次生壁。其中次生壁又分為外、中、內(nèi)三層(S1、S2和S3),中層最厚(圖2)[1]。次生壁主要由纖維素、半纖維素、木質(zhì)素等物質(zhì)在細胞生長停止以后不斷積累而成。次生壁有一定的厚度且質(zhì)地堅硬,在木本植物的木質(zhì)部中大量存在,是決定木材產(chǎn)量和質(zhì)量決定的重要因素。
圖2 木質(zhì)部細胞壁結(jié)構(gòu)圖[3]
注:S1-外層;S2-內(nèi)層;S3-中層;P-初生壁;ML-胞間層
次生木質(zhì)部細胞由維管形成層活動產(chǎn)生。維管形成層細胞通過平周分裂向外產(chǎn)生次生韌皮部,向內(nèi)產(chǎn)生次生木質(zhì)部[4]。同時,通過垂周分裂逐年擴大自身的周徑,隨樹木直徑的增粗逐漸向外推移,維持自身的生存[5]。從形成層細胞分化到木質(zhì)部細胞成熟需經(jīng)歷木質(zhì)部細胞產(chǎn)生、木質(zhì)部細胞伸展生長、次生壁加厚和細胞程序化死亡等幾個主要階段[1]。
由維管形成層新產(chǎn)生的木質(zhì)部細胞起初僅具一層很薄的初生壁。木質(zhì)部細胞伸展生長階段,初生壁在酶的作用下,細胞壁松弛、擴張,細胞縱向和橫向直徑增加,直至達到最終的形態(tài)。隨后次生壁物質(zhì)開始合成,沉積在初生壁內(nèi)部,細胞形態(tài)也隨即被固化[6]。次生壁合成過程中纖維素微纖絲以一定的模式連續(xù)沉積,使得次生壁呈片層狀,構(gòu)成細胞骨架。木質(zhì)素和其他物質(zhì)則以內(nèi)填的方式沉積在纖維素骨架中,這個過程稱之為木質(zhì)化[7]。木質(zhì)化完成以后,木質(zhì)部細胞進入細胞程序化凋亡過程。在一些水解酶的作用下,木質(zhì)部細胞原生質(zhì)體降解消失,最終形成疏水性的導(dǎo)管元件[1]。
次生木質(zhì)部的形成受多種環(huán)境因素的影響,包括溫度、水分、營養(yǎng)、光照等,以及這些因素之間的相互作用。此外,一些培育技術(shù)例如灌溉、施肥、林分密度控制,都可以通過改變林分的溫度、水分、營養(yǎng)和光照等狀況,進而改變木質(zhì)部細胞的數(shù)量或形態(tài)結(jié)構(gòu),間接影響次生木質(zhì)部的生成。
溫度是影響木質(zhì)部細胞數(shù)量的重要環(huán)境因子。WAISEL[8]等在不同氣候條件下用14CO2短期處理2 a生赤桉()幼苗時發(fā)現(xiàn),相對于低溫處理(16 ~ 18℃),高溫(28℃)處理下木質(zhì)部細胞新生成的層數(shù)較多。對杜仲()和毛白楊()等的研究表明,在冬季低溫條件下,形成層區(qū)活躍程度降低,樹木生長呈休眠狀態(tài);而在溫暖的季節(jié),形成層活躍程度增加,衍生出更多的木質(zhì)部細胞[9-11]。這說明低溫不利于木質(zhì)部細胞生長。溫度除了可以影響木質(zhì)部細胞數(shù)量,還能夠影響木質(zhì)部細胞的形態(tài)結(jié)構(gòu)。例如,THOMAS等[12]研究發(fā)現(xiàn),桉樹在較高溫度下形成的木質(zhì)部導(dǎo)管管腔面積會明顯減小。
水分是次生木質(zhì)部形成的重要決定因素。熱帶硬木樹種柚木()的木質(zhì)部細胞數(shù)量全年都在增加,但遇到短期的干旱季節(jié)木質(zhì)部細胞將停止增加[13]。另外,在持續(xù)干旱的情況下,短期的雨季會誘導(dǎo)闊葉樹種非洲李()次生木質(zhì)部細胞的增加[14]。RAHMAN等[15]在降水模式對尾葉桉()形成層活動的研究中也得到相似的結(jié)論,低降水量或無降水可導(dǎo)致樹木形成層活動和木質(zhì)部形成的時間周期性停止,相反,在持續(xù)降水的情況下,同一棵樹的形成層活動可能持續(xù)全年。由此可見,水分供給對木質(zhì)部生成至關(guān)重要。
養(yǎng)分條件對木質(zhì)部細胞數(shù)量和形態(tài)結(jié)構(gòu)產(chǎn)生影響,是木材產(chǎn)量增加的主要手段。在楊樹中研究發(fā)現(xiàn)缺少磷、鉀和鈣肥均會導(dǎo)致次生木質(zhì)部細胞增量的減少和導(dǎo)管尺寸的減小,增施這三種肥則可促進次生木質(zhì)部細胞的增多以及導(dǎo)管細胞的擴張[16-18]。此外,研究發(fā)現(xiàn)楊樹中,春季和夏季樹木快速增粗時期形成層中K+含量遠遠高于秋季和冬季[19],說明K+含量在木本植物徑向生長中起重要作用。
在生產(chǎn)中,密度調(diào)控等培育技術(shù)可對木質(zhì)部生成產(chǎn)生顯著影響。大量研究數(shù)據(jù)顯示,林分密度與莖粗呈顯著負相關(guān)關(guān)系,密度越大,植株的徑向增長量越小[20-23]。眾所周知,次生木質(zhì)部的生長量是光合產(chǎn)物在莖中分配的結(jié)果。密度控制改變了樹木生長的光照、養(yǎng)分和水分供給等外部環(huán)境狀況,影響了植株的光合效率,進而影響木質(zhì)部細胞生成。
如前所述,由形成層細胞分化到木質(zhì)部成熟經(jīng)歷幾個程序化過程。研究表明,植物體自身的遺傳機制嚴格地調(diào)控著這些程序化過程[24],是影響次生木質(zhì)部形成的內(nèi)在因素。纖維素、半纖維素和木質(zhì)素是次生壁的主要構(gòu)成,現(xiàn)就這3種物質(zhì)合成基因的研究進展進行綜述。
纖維素是高等植物中次生細胞壁的主要構(gòu)成成分,約占其總量的二分之一。纖維素合酶(Cellulose Synthase/CESA),在纖維素合成途徑中發(fā)揮主要調(diào)節(jié)作用,是控制木材纖維產(chǎn)量和品質(zhì)的重要因素[25]。CESA由纖維素合酶超級基因家族成員編碼。CESA基因家族是一個超基因家族,包含多個成員。
在草本植物擬南芥()中發(fā)現(xiàn)10個CESA基因,其中,、和是負責擬南芥次生壁合成的必需基因[26]。毛果楊()基因組中鑒定出17個基因[27],其中5個成員在楊樹成熟莖中具有較高表達水平,在次生維管組織發(fā)育的后期表達水平更高[28],進一步實驗證明過表達任意一個成員均能夠共抑制次生木質(zhì)部相關(guān)的CESA活性并且顯著降低纖維素含量[29],表明它們主要負責木質(zhì)部細胞次生壁纖維素的合成。ZHOU等[30]認為基因的開啟和關(guān)閉是響應(yīng)壓力的一個信號,對木材中木質(zhì)素和纖維素的積累具有重要作用。在裸子植物輻射松()中,纖維素合成酶基因和在密度較大的木材中表達量顯著高于低密度木材[31],表明這些基因參與次生壁的合成,并且影響了木材性質(zhì)。此外,RANIK等在巨桉()中克隆了6個基因,其中,參與次生細胞壁合成的基因有3個,分別是,和,其中尤以的在木質(zhì)部和未成熟的木質(zhì)部中表達量最高[32]。BALACHANDRAN等[33]在細葉桉()中的研究也得到了相同的結(jié)論。
蔗糖合成酶(SuSy)被認為負責糖纖維素前體物質(zhì)尿苷二磷酸-葡萄糖(UDP-glucose)的合成,為纖維素合成提供原料[34],但也有研究認為其可能是纖維素合成酶復(fù)合體的一個成分[35]。楊樹中過表達棉花的蔗糖合成酶能夠略微提高纖維素的含量和纖維素的結(jié)晶性,表明蔗糖合成酶與纖維素合成有一定的關(guān)系[36],但是在楊樹中下調(diào)蔗糖合成酶活性的結(jié)果并不支持蔗糖合成酶直接參與纖維素合成,因此認為蔗糖合成主要功能是為木材多聚物的合成提供碳源[37]。
在次生壁中,半纖維含量約占1/4,主要作用是通過與其他次生壁成分的結(jié)合保持細胞壁的完整性和穩(wěn)定性。糖基轉(zhuǎn)移酶(glycosyltransferases, GTs)蛋白家族參與半纖維素主要成分木聚糖(xylan)的合成。對擬南芥合成木聚糖有缺陷的突變體分析表明,GT43、GT8和GT47等家族的糖基轉(zhuǎn)移酶參與半纖維素的合成[38]。
GT43家族的共有4個成員,包括、、I和,其中、和主要參與木聚糖中(glucuronoxylan, GX)主鏈的延伸[39]。有研究表明,該家族基因突變將導(dǎo)致擬南芥次生壁變薄,木質(zhì)部細胞發(fā)育不正常[39-41]。ZHOU等[42]在白楊中發(fā)現(xiàn)了的同源基因,發(fā)現(xiàn)其功能相似,均參與了木聚糖中葡糖醛酸木聚糖的合成。此外,糖基轉(zhuǎn)移酶PtrGT43A、PtrGT43B和PtrGT43E均是的同源蛋白,PtrGT43C和PtrGT43D均是的同源蛋白,它們是木聚糖骨架合成的關(guān)鍵成員[43-44]。
GT47家族中參與半纖維素中木聚糖還原末端結(jié)構(gòu)合成的基因有()、和[45-46]。基因突變將導(dǎo)致植物次生細胞壁不能正常加厚,在楊樹中沉默表達會導(dǎo)致同樣的結(jié)果[45,47]。在次生壁細胞中特異性表達,和()在擬南芥次生壁合成中具有相同的功能[48]。此外,GT47家族中和參與了葡糖醛酸木聚糖主鏈的延伸,在次生細胞壁正常的物質(zhì)合成中發(fā)揮重要作用[49],與相比,在木聚糖主鏈的延伸過程中發(fā)揮的作用更大[50]。
目前,GT8家族中木聚糖合成的基因,擬南芥中有5個(、、、和),楊樹中有5個(、、、和)。其中,和同樣參與木聚糖還原性末端序列的合成,其突變體木質(zhì)部次生壁強度均明顯下降46,51]。擬南芥中,和行使合成木聚糖的側(cè)鏈功能[38]。和是和的同源基因,所編碼的非糖基轉(zhuǎn)移酶也參與木聚糖合成[52-53-]。
葡甘露聚糖(glucomannan)是半纖維素的另一主要組成,其合成由類纖維素合成酶CslA(Cellulose synthase-like A)糖基轉(zhuǎn)移酶家族催化,該酶的功能在維管植物中非常保守[54]。楊樹CslA基因在發(fā)育的木質(zhì)部中高水平表達,其重組蛋白具有葡甘聚糖合成酶活性,表明其參與次生木質(zhì)部發(fā)育過程中的葡甘聚糖合成[55]。與此類似,松樹中的幾個CslAs重組蛋白也表現(xiàn)出glucomannan合成酶活性[54]。
木質(zhì)素由香豆醇、松柏醇和芥子醇的衍生物對苯基單體(H型)、愈創(chuàng)木基單體(G型)和紫丁香基單體(S型)三類聚合而成,可通過與纖維素和半纖維素交聯(lián)使細胞壁組分之間連成整體,增強細胞壁的機械強度及疏水性能。S型木質(zhì)素和G型木質(zhì)素廣布于被子植物次生木質(zhì)部細胞,G型木質(zhì)素廣布于裸子植物中。木質(zhì)素合成包括苯丙烷合成(莽草酸途徑)、木質(zhì)素單體合成(苯丙烷代謝途徑)和單體聚合3個生物學過程[56-57]。目前,關(guān)于木質(zhì)素單體合成(苯丙烷代謝途徑)和單體聚合兩個過程研究較多。
參與S型木質(zhì)素單體合成的酶有:苯丙氨酸氨解氨酶(PAL);肉桂酸-4-氫化酶(C4H);對香豆酰輔酶-A3-羥化酶(C3H);羥基肉桂酰輔酶A-莽草酸/奎尼酸羥基肉桂酰轉(zhuǎn)化酶(HCT);咖啡酸鄰位甲基轉(zhuǎn)化酶(comt);咖啡酰輔酶A-鄰-甲基轉(zhuǎn)移酶(CCoAOMT);阿魏酸五羥化酶(f5H);4-香豆酸:輔酶A連接酶(4cl);肉桂酰輔酶A還原酶(CCR);肉桂醇脫氫酶(CAD)。以上酶除F5H、COMT外,共8種酶參與G型木質(zhì)素單體的合成。已有研究表明下調(diào)合成這些關(guān)鍵酶的基因能夠降低木質(zhì)素含量。例如,楊樹中基因表達的表達受到抑制,會導(dǎo)致次生壁中木質(zhì)素含量下降[58-59]。此外,同樣是下調(diào)基因,楊樹中木質(zhì)素含量下降一半左右[60],而挪威云杉中()中木質(zhì)素含量僅下降8%[61],其原因可能是裸子植物和被子植物木質(zhì)素單體不同,也能是兩者基因活性下調(diào)的量不同。但也有研究表明下調(diào)這些關(guān)鍵酶的基因會導(dǎo)致木質(zhì)素含量下降劇烈甚至影響植物的正常生長,如在雜交楊中下調(diào),發(fā)現(xiàn)植株的木質(zhì)素含量下降劇烈以至于影響植物的正常生長,這可能與維管疏導(dǎo)組織受到破壞有關(guān)[62]。另外,因為G型木質(zhì)素更難從細胞壁中去除,因此,有學者為得到更有利于生產(chǎn)的植物原料,通過基因工程手段來增大S/G的比例。LI等[63]在山楊中同時上調(diào)和下調(diào),S型和G型兩類木質(zhì)素的比例成倍增加,木質(zhì)素含量下降一半左右,同時伴有纖維素的少量增加。
過氧化物酶和漆酶(POD和LAC)被認為是參與木質(zhì)素單體聚合的酶。這兩種酶具有較低的底物特異性,受眾多同源基因的共同編碼[64-65]。過氧化物酶分為陰離子過氧化物酶和陽離子過氧化物酶。轉(zhuǎn)基因煙草中缺乏陰離子過氧化物酶,木質(zhì)素含量無變化[66];但在楊樹中,缺乏陽離子POD造成木質(zhì)素下降44%[67],造成這兩種結(jié)果的原因可能是陰、陽離子過氧化物酶在細胞壁上定位和木質(zhì)組織中的表達不同。此外,在毛果楊()中,過表達后抑制單體聚合酶漆酶的活性,會導(dǎo)致木質(zhì)素的含量下降[68]。
次生木質(zhì)部的生長發(fā)育是一個極其復(fù)雜的過程,每個階段都受內(nèi)外眾多因素的影響。次生木質(zhì)部存在樹種特異性,因此,不同樹種會對外部環(huán)境因子的變化作出不同的響應(yīng),這也是當前研究的熱點。而這些研究最終都會歸結(jié)到基因?qū)哟?,近年來人們對此研究已?jīng)取得了較大的進展,但對于眾多基因參與調(diào)控的復(fù)雜過程來說只是“冰山一角”。溫度、水分、施肥和光照等這些環(huán)境因子是如何影響木質(zhì)部細胞的數(shù)量和結(jié)構(gòu),樹木自身的遺傳基因又是如何調(diào)控次生壁中各成分的含量和比例,這些調(diào)控機理的研究目前還不太清晰,是木材形成研究亟需解決的重要問題之一。
[1] PLOMION C, LEPROVOST G, STOKES A. Wood formation in trees[J]. Plant Physiology, 2001, 127(4): 1513-1523.
[2] Denne M P, Dodd R S. The environmental control of xylem differentiation[M]∥Barnett J R .Xylem cell development[M]. UK: Castle House, 1981.
[3] Gardiner B, Barnett J, Saranp?? P, et al.The biology of reaction[M].Springer Heidelberg New York Dordrecht London: European cooperation in science and technology, 2014.
[4] 鄭相如,汪矛.形成層的結(jié)構(gòu)與活動[J].生物學通報,1997(4):10-12.
[5] BRUCE J Z, Jett B J. Genetics of wood production[M]. Springer-Verlag Berlin Heidelberg, 1995.
[6] Dejardin A, Laurans F, Arnaud D, et al. Wood formation in angiosperms[J]. Comptes Rendus Biologies, 2010, 333(4): 325-334.
[7] NAKANO Y, YAMAGUCHI M, ENDO H, et al. NAC-MYB-based transcriptional regulation of secondary cell wall biosynthesis in land plants[J]. Frontiers in Plant Science, 2015, 6: 1-18.
[8] WAISEL Y, FAHN I N. Cambial activity inDehn II: The production of phloem and xylem elements[J]. New Phytologist, 1966, 65(3): 319-324.
[9] MWANGE K N, HOU H W, WANG Y Q, et al. Opposite patterns in the annual distribution and time course of endogenous abscisic acid and indole-3-acetic acid in relation to the periodicity of cambial activity inOliv[J]. Journal of Experimental Botany, 2005, 56(413): 1017-1028.
[10] Mwange K N K, Wang X W, Cui K M. Mechanism of dormancy in the buds and cambium of[J]. Acta Botanica Sinica, 2003, 45: 698-704.
[11] Yin Y F, Jiang X M, Cui K M. Seasonal changes in the ultrastructure of the vascular cambium in shoots of[J]. Acta Botanica Sinica, 2002, 44: 1268-1277.
[12] Thomas D S, Montagu K D, Conroy J P. Temperature effects on wood anatomy, wood density, photosynthesis and biomass partitioning ofseedlings[J]. Tree Physiology, 2007, 27: 251-260.
[13] Die A P, Kitin F N, Kouame J, et al. Fluctuations of cambial activity in relation to precipitation result inannual rings and intra-annualgrowth zones of xylem and phloem in teak() in Ivory Coast[J].,2012, 110: 861-873.
[14] Krepkowski J ,Br?uning A, Gebrekirstos a, et al.Cambial growth dynamics and climatic control of different tree life forms in tropical mountain forest in Ethiopia[J]. Trees,2011, 25(1): 59-70.
[15] Rahman M H, Nugroho W D, Nakaba S, et al.Changes in cambial activity are related to precipitation patterns in four tropical hardwood species grown in Indonesia[J]. American Journal of Botany, 2019, 106(6): 1-12.
[16] FROMM J, LAUTNER S.Secondary Xylem Biology:chapter 4:abiotic stresses on secondary xylem formation [M]. Salt Lake ,USA:Academic Press , 2016.
[17] Lautner S, Ehlting B,Windeisen E, et al. Calcium nutrition has a significant influence on wood formation in poplar[J]. New Phytologist, 2007, 174(4): 743-752.
[18] Langer, K, Ache P, Geiger D, et al. Poplar potassium transporters capable of controlling K+homeostasis and K+- dependent xylogenesis[J]. The Plant Journal, 2002, 32: 997-1009.
[19] Wind C, Arend M, Fromm F. Potassium-dependent cambial growth in poplar[J]. Plant Biology. 2004, 6(1): 30–37.
[20] 田新輝,孫榮喜,李軍,趙長海,楊敏生.107楊人工林密度對林木生長的影響[J].林業(yè)科學,2011,47(3):184-188.
[21] 李潔,列志旸,許松葵,等.不同密度的銀合歡林生長分析[J].中南林業(yè)科技大學學報,2016,36(6):70-74.
[22] Coetzee J,陳少雄.林分密度對巨桉收獲量的影響:好立地和差立地在4年生時的比較[J].桉樹科技,1998(1):53-60.
[23] 晏姝,胡德活,韋如萍,等.南洋楹造林密度與施肥均勻設(shè)計試驗[J].林業(yè)科學,2015,51(5):153-158.
[24] Schuetz M, Smith R, Ellis B. Xylem tissue specification, patterning, and differentiation mechanisms[J]. Journal of Experimental Botany, 2013, 64(1): 11-31.
[25] Somerville C. Cellulose synthesis in higher plants[J]. Annual review of cell and developmental biology, 2006, 22: 53-78.
[26] Turner S R, Somerville C R. Collapsed xylem phenotype ofidentifies mutants deficient in cellulose deposition in the secondary cell wall[J]. Plant Cell, 1997, 9(5): 689-701.
[27] Djerbi S, Lindskog M , Arvestad L , et al. The genome sequence of black cottonwood () reveals 18 conserved cellulose synthase () genes[J]. Planta, 2005, 221(5): 739-746.
[28] 魏凱莉,周厚君,江成,等.楊樹次生壁纖維素合酶的表達與互作模式分析[J].林業(yè)科學研究,2017,30(2):245-253.
[29] Joshi C P, Thammannagowda S, Fujino T, et al. Perturbation of wood cellulose synthesis causes pleiotropic effects in transgenic aspen[J]. Molecular Plant, 2011, 4(2): 331-345.
[30] ZHOU J,WANG X,LEE J Y, et al. Cell-to-cell movement of two interacting AT-hook factors in Arabidopsis root vascular tissue patterning[J].Plant Cell,2013,25(1): 187-201.
[31] LI X, WU H X, Southerton S G. Seasonal reorganization of the xylem transcriptome at different tree ages reveals novel insights into wood formation in[J].New Phytologist,2010,187(3):764-776.
[32] Ranik M, Myburg A A .Six new cellulose synthase genes fromare associated with primary and secondary cell wall biosynthesis[J].Tree Physiology, 2006, 26(5): 545-556.
[33] Balachandran K R S , DASGUPTA M G. Isolation of developing secondary xylem specific cellulose synthase genes and their expression profiles during hormone signalling in[J].Journal of Genetics, 2014, 93(2): 403-414.
[34] Amor Y, Haigler C H, Johnson S, et al. A membrane-associated form of sucrose synthase and its potential role in synthesis of cellulose and callose in plants[J].Proceedings of the National Academy of Sciences, 1995, 92(20): 9353-9357
[35] Fujii S, Hayashi T, Mizuno K. Sucrose synthase is an integral component of the cellulose synthesis machinery[J]. Plant Cell Physiology, 2010, 51(2): 294-301.
[36] Coleman H D, Yan J, Mansfield S D. Sucrose synthase affects carbon partitioning to increase cellulose production and altered cell wall ultrastructure[J]. Proceedings of the National Academy of Sciences, 2009,106(31): 13118-13123.
[37] Gerber L, Zhang B, Roach M, et al. Sucrose synthase is an integral component of the cellulose synthesis machinery[J]. New Phytologist, 2014, 203(4): 1220-1230.
[38] 秦麗霞,張德靜,李龍,等.參與植物細胞壁半纖維素木聚糖合成的糖基轉(zhuǎn)移酶[J].植物生理學報, 2011(9): 831-839.
[39] Lee C, Teng Q, Huang W, et al. The Arabidopsis family GT43glycosyltransferases form two functionally nonredundant groups essential for the elongation of glucuronoxylan backbone[J]. Plant Physiology, 2010, 153(2): 526-541.
[40] Brian D K, Allan M S.and, Two glycosyl transferases involved in glucuronoxylan biosynthesis and drought tolerance in Arabidopsis[J]. Molecular Plant, 2010, 3(5): 834-841.
[41] Wu A M, H?rnblad E, Voxeur A, et al. Analysis of the/and/pairs of glycosyltransferase genes reveals critical contributions to biosynthesis of the hemicellulose glucuronoxylan[J]. Plant Physiology, 2010,153: 542-554.
[42] Zhou G K, Zhong R Q, Richardson E A, et al. Molecular characterization of PoGT8D and PoGT43B, two secondary wall-associated glycosyltransferases in poplar[J]. Plant Cell Physiology, 2007,48: 689-699.
[43] Lee C, Teng Q, Zhong R, et al. Molecular dissection of xylan biosynthesis during wood formation in Poplar [J]. Molecular Plant, 2011, 4(4): 730-747.
[44] Lee C, Zhong R, Ye Z H. Biochemical characterization of xylan xylosyltransferases involved in wood formation in Poplar [J]. Plant Signaling & Behavior,2012,7(3): 332-337.
[45] Zhong R, Pena M J, Zhou G K, et al. Arabidopsis fragile fiber8, which encodes a putative glucuronyltransferase, is essential for normal secondary wall synthesis[J]. Plant Cell, 2005, 17(12): 3390-3408.
[46] Pena M J, Zhong R, Zhou G K, et al. Arabidopsis irregularand irregular: implications for the complexity of glucuronoxylan biosynthesis [J]. Plant Cell, 2007, 19(2): 549-563.
[47] Lee C, Teng Q, Huang W, et al. Down-regulation ofexpression in poplar results in a reduced glucuronoxylan content and an increased wood digestibility by cellulase[J].Plant Cell Physiology,2009, 50: 1075-1089.
[48] Lee C, Teng Q, Huang W, et al. The F8H glycosyltransferase is a functional paralog of FRA8 involved in glucuronoxylan biosynthesis in[J]. Plant Cell Physiology, 2008, 50: 812-827.
[49] Brown D M, Zhang Z, Stephens E, et al. Characterization of IRX10 and IRX10-like reveals an essential role in glucuronoxylan biosynthesis in Arabidopsis [J]. The Plant Journal, 2009, 57(4): 732-746.
[50] Wu A M, Rihouey C, Seveno M, et al. TheIRX10 and IRX10-like glycosyltransferases are critical for glucuronoxylan biosynthesis during secondary cell wall formation[J]. The Plant Journal, 2009,57: 718-731.
[51] Lee C, Zhong R, Richardson E A, et al. Thegene is expressed in cells undergoing secondary wall thickening and is essential for glucuronoxylan biosynthesis[J]. Plant Cell Physiology, 2007, 48: 1659-1672.
[52] Brown D, Wightman R, Zhang Z, et al.genes() andencode DUF579-containing proteins that are essential for normal xylan deposition in the secondary cell wall[J]. The Plant Journal, 2011, 66: 401-413.
[53] Jensen J K, Kim H, Cocuron J C, et al. The DUF579 domain containing proteins IRX15 and IRX15-L affect xylan synthesis in[J]. The Plant Journal , 2011, 66: 387-400.
[54] Liepman A H, Nairn C J, Willats W G T, et al. Functional genomic analysis supports conservation of function among cellulose synthase-like a gene family members and suggests diverse roles of mannans in plants[J]. Plant Physiology, 2007, 143(4): 1881-1893.
[55] Suzuki S, Li L, Sun Y H, et al. The cellulose synthase gene superfamily and biochemical functions of xylem-specific cellulose synthase-like genes in[J]. Plant Physiology, 2006, 142(3): 1233-1245.
[56] Campbell M M , Sederoff R R. Variation in lignin content and composition (mechanisms of control and implications for the genetic improvement of plants)[J]. Plant Physiology, 1996, 110(1): 3-13.
[57] Barros J, Serk H, Granlund I, et al. The cell biology of lignification in higher plants[J].Annals of Botany, 2015, 115(7): 1053-1074.
[58] LIU C J. Deciphering the enigma of lignification: precursor transport, oxidation, and the topochemistry of lignin assembly[J].Molecular Plant, 2012, 5(2): 304-317.
[59] Hu W J , Harding S A , Lung J, et al. Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees[J]. Nature Biotechnology, 1999, 17(8): 808-812.
[60] Leplé J C, Dauwe R, Morreel K,et al. Downregulation of cinnamoyl-coenzyme areductase in poplar: multiple-level phenotyping reveals effects on cell wall polymer metabolism and structure[J]. The Plant Cell, 2007, 19(11): 3669-3691.
[61] Wadenb?Ck J, Arnold S V, Egertsdotter U, et al.Lignin biosynthesis in transgenic Norway spruce plants harboring an antisense construct for cinnamoyl CoA reductase (CCR)[J].Transgenic Research,2008,17(3): 379-392.
[62] Novaes E, Kirst M, Chiang V, et al. Lignin and biomass: a negative crrelation for wood formation and lignin content in trees[J]. Plant Physiology, 2010, 154(2): 555-561.
[63] Li L , Zhou Y , Cheng X , et al. Combinatorial modification of multiple lignin traits in trees through multigene cotransformation[J]. Proceedings of the National Academy of Sciences, 2003, 100(8): 4939-4944.
[64] Lars ò A, Anders G P B , Hans M J A , et al. Computational analyses and annotations of the Arabidopsis peroxidase gene family[J]. Febs Letters, 1998, 433(1/2): 98-102.
[65] Ranocha P , Mcdougall G , Hawkins S , et al. Biochemical characterization, molecular cloning and expression of laccases–a divergent gene family–in poplar[J]. European Journal of Biochemistry, 1999, 259(1/2): 485-495.
[66] Lagrimini L M, Gingas V,Finger F,et al. Characterization of antisense transformed plants deficient in the tobacco anionic peroxidase[J].Plant Physiology, 1997,114: 1187-1196.
[67] Yahong L, Tsuji Y, Nishikubo N, et al.Analysis of transgenic poplar in which the expression of peroxidase gene is suppressed[J].Molecular Breeding of Woody Plants, 2001,18: 195-204.
[68] Lu S, Li Q, Wei H, et al. Ptr-miR397a is a negative regulator of laccase genes affecting lignin content in[J]. Proceedings of the National Academy of Sciences, 2013, 110: 10848-10853.
Effects of Environmental Factors and Secondary Wall Synthesis Genes on Xylem Formation
CHEN Mo, HE Shae, CHEN Shaoxiong, OUYANG Linnan, LIU Xuefeng,ZHANG Cheng, ZHANG Weiyao
()
The process of secondary xylem formation in woody plants determines wood quality and yield. Genetic regulation of this process, in combination with environmental factors, influence this process. In this paper, the understanding of and research on secondary xylem formation and wood morphology inspecies around the world is reviewed and summarized to provide insights to the yield and quality of wood. In this review, special attention is given to the effects that environmental factors and genes controlling synthesis of the main components of secondary cell-walls (cellulose, hemicellulose and lignin) have on xylem formation.
environmental factor; secondary growth; wood formation; secondary cell-wall
S781
A
10.13987/j.cnki.askj.2019.04.009
國家重點研發(fā)計劃課題 (2016YFD0600502)
陳沫(1994― ),女,在讀研究生,主要從事桉樹人工林培育培育研究,E-mail:954584495@qq.com
陳少雄(1965— ),男,博士,研究員,主要從事桉樹人工林培育研究,E-mail:sxchen01@163.com