• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      匝道設(shè)縫墩曲線剛構(gòu)橋模型試驗(yàn)研究

      2019-03-14 11:14:50,,,
      公路工程 2019年1期
      關(guān)鍵詞:雙肢撓度支座

      , , ,

      (中南林業(yè)科技大學(xué) 土木工程學(xué)院, 湖南 長沙 410004)

      1 概述

      由于城市高架及高速匝道的需要,曲線橋已成為目前應(yīng)用非常普遍的橋型。該類橋因?yàn)榍€內(nèi)外側(cè)弧長相差較大、結(jié)構(gòu)橫向不對稱及彎-扭耦合效應(yīng),導(dǎo)致橫向受力嚴(yán)重不均勻甚至側(cè)傾事故的發(fā)生。目前,國內(nèi)外眾多學(xué)者對此進(jìn)行了廣泛的研究。宮亞峰等[1]基于結(jié)構(gòu)傾覆的力學(xué)原理,進(jìn)行了三跨獨(dú)柱連續(xù)曲線梁橋抗傾覆穩(wěn)定性分析;曹景等[2]對箱形截面直線橋及曲線橋進(jìn)行了抗傾覆穩(wěn)定性分析;Ricardo Alvarez-Acosta et al[3]通過等截面簡支曲線鋼梁橋的結(jié)構(gòu)響應(yīng)研究,提出了1套估算曲線鋼筋混凝土梁橋最大力學(xué)單元和中跨撓度的方程組;焦馳宇[4]開展了單梁法分析曲線梁橋的適用條件研究;王解軍等[5]制作了三跨連續(xù)曲線寬箱梁有機(jī)玻璃模型,研究了其力學(xué)特性;Xuefei Shi[6]采用顯式非線性動力有限元法對某高速公路出口匝道橋事故進(jìn)行了分析;牛洪剛等[7]通過對城市公路橋梁抗傾覆驗(yàn)算,制定出了適用于獨(dú)柱墩橋梁傾覆穩(wěn)定性的驗(yàn)算方法和加固改造的設(shè)計方案;文強(qiáng)[8]研究了鐵路小半徑大跨度曲線連續(xù)剛構(gòu)橋設(shè)計;唐云偉等[9]利用ANSYS-LS-DYNA建立了三跨連續(xù)剛架曲線橋有限元模型,進(jìn)行了車輛圓周運(yùn)動及超車時程的仿真計算,分析了橫向力系數(shù)的規(guī)范計算結(jié)果與仿真結(jié)果的偏差及超車對橫向力的影響;Taiyu Song et al[10]進(jìn)行了EPC連續(xù)曲線箱梁的彎矩重分布的研究;王陽春等[11]針對小半徑匝道曲線梁橋存在的墩矮、彎扭耦合嚴(yán)重、地震危害明顯的特點(diǎn),結(jié)合了一座三跨連續(xù)小半徑匝道曲線梁橋的工程實(shí)例,分析比較了單梁模型、梁格模型和實(shí)體模型在模擬小半徑曲線梁橋時的精度;Mohsen Am-jadian et al[12]開展了曲線橋在地震作用下的剛體運(yùn)動研究。這些研究都取得了大量的成果。

      但是,至今鮮有對匝道設(shè)縫雙肢墩小半徑曲線剛構(gòu)橋的研究,首先該結(jié)構(gòu)體系的雙肢墩相比于整體墩而言,增大了抗推柔性簡化了橋墩的布置,使得外形更適應(yīng)城市橋梁的美觀要求,再者墩梁固結(jié)使得結(jié)構(gòu)整體性更好且利于抗震,上、下部結(jié)構(gòu)整體剛度提高的同時還可望能徹底解決曲線橋的傾覆問題。故有必要開展相關(guān)研究,明確其受力性能。

      本文模擬實(shí)際工程曲線橋(半徑85 m,跨徑60 m)的結(jié)構(gòu)尺寸,根據(jù)相似原理按1/30比例設(shè)計制作3跨匝道設(shè)縫雙肢墩小半徑曲線剛構(gòu)橋的有機(jī)玻璃模型[13-14],運(yùn)用ABAQUS建立縮尺比例的實(shí)體單元有限元模型(模型1)。通過靜力加載,研究其應(yīng)力分布規(guī)律、撓度變化情況及內(nèi)外側(cè)受力的不均勻性,為更好反應(yīng)曲線橋的受力不均勻性,引入了“不均勻系數(shù)λ”,具體為:

      (1)

      (2)

      (3)

      式中:σ0、σi分別代表曲梁的外、內(nèi)側(cè)頂(底)腹板處或雙肢墩外、內(nèi)側(cè)豎向應(yīng)力;w0、wi分別代表曲梁的外、內(nèi)側(cè)腹板處的撓度;f0、fi分別表示曲梁外、內(nèi)側(cè)支座反力。建立半徑為40 m的1/30縮尺比例的ABAQUS實(shí)體單元有限元模型(模型2),對比分析半徑大小對匝道設(shè)縫雙肢墩小半徑曲線剛構(gòu)橋受力不均勻性的影響。

      2 模型試驗(yàn)

      2.1 模型材料與相似常數(shù)

      表1 試驗(yàn)?zāi)P偷闹饕嗨瞥?shù)Table 1 The main similarity constants of the model幾何常數(shù)Cl彈性模量常數(shù)CE集中力常數(shù)CF應(yīng)力常數(shù)Cσ應(yīng)變常數(shù)Cε3014.253 20441

      2.2 試驗(yàn)?zāi)P团c控制截面測點(diǎn)的布置

      設(shè)計制作三跨等截面箱梁的匝道設(shè)縫雙肢墩小半徑曲線剛構(gòu)橋有機(jī)玻璃模型,主要結(jié)構(gòu)尺寸:半徑為2833.3 mm,跨徑2000 mm,中線跨長(666.6+666.6+666.6)mm,邊跨計算跨徑為650.1 mm,中跨跨徑666.6 mm,箱梁高50 mm;箱梁頂板寬283 mm,厚8 mm;箱梁底板寬167 mm,厚12 mm;3個跨中橫隔板厚14 mm,2個梁墩固結(jié)處的橫梁寬42.5 mm;2個雙肢墩呈花瓶狀,其中墩頂長167 mm,寬20 mm,墩底長120 mm,寬20 mm,雙肢墩之間的間距2.5 mm,墩高283 mm,具體尺寸見圖1。設(shè)計2個鋼支架并墊橡膠片支撐在兩邊橋臺來模擬橡膠支座,制作2塊鋼板通過螺栓并膠水與雙肢墩固結(jié),鋼板又通過螺絲與基礎(chǔ)形成固結(jié)。

      圖1 曲線剛構(gòu)橋模型主要尺寸(單位: mm)Figure 1 Main dimensions of curved rigid frame model (Unit: mm)

      分別選取模型主梁上的邊跨跨中、墩梁固結(jié)處、中跨跨中以及墩頂、墩底,共6個控制截面(分別為主梁A、B、C、D截面,雙肢墩E、F截面),其中A、D,B、C截面相同,全橋控制截面布置如圖2所示。A、B,E、F截面應(yīng)變片布置見圖3,其中外側(cè)表示曲梁的外側(cè),內(nèi)側(cè)表示曲梁的內(nèi)側(cè),邊跨表示邊跨側(cè),中跨表示中跨側(cè)。同時,在A、D及橋臺支座截面安裝百分表測試模型的撓度變形。

      2.3 試驗(yàn)方案

      由于模型結(jié)構(gòu)的自重較輕,為了不使加載過程中出現(xiàn)支座負(fù)反力,各工況加載前先在兩邊橋臺的支座截面處進(jìn)行適當(dāng)?shù)呐渲?。加載工況通過模型結(jié)構(gòu)的影響線以及考慮實(shí)驗(yàn)室的具體設(shè)備情況決定。擬制作兩根鋼支桿,在支桿兩邊加砝碼來進(jìn)行單點(diǎn)力或兩點(diǎn)力的加載,同時為了試驗(yàn)安全,此次加載分11.2、15.2、19.2 kg共3級進(jìn)行,分別測量各級荷載作用下截面的應(yīng)變和變形。本次主要研究豎向中心荷載作用下匝道設(shè)縫雙肢墩小半徑曲線剛構(gòu)橋的的應(yīng)力和撓度變化規(guī)律及內(nèi)外側(cè)受力不均勻性,因此只介紹工況1(C1)中跨跨中中心加載和工況2(C2)邊跨跨中中心加載2個工況的結(jié)果。

      圖2 全橋控制截面立面圖Figure 2 Full bridge control section elevation

      圖3 截面應(yīng)變測點(diǎn)布置(單位:mm)Figure 3 Section strain point arrangement (Unit: mm)

      圖4 模型試驗(yàn)工況加載位置Figure 4 Loading position of model test condition

      3 理論計算及模型試驗(yàn)結(jié)果比較分析

      采用有限元軟件ABAQUS分別建立相同截面和邊界條件的模型1(R=2.83 m)和模型2(R=1.33 m),兩個模型均為直角坐標(biāo)系下的六面體實(shí)體單元有限元模型,其中模型1共分6543個單元,模型2為6147個單元。邊界條件:雙肢墩墩底固結(jié),每邊橋臺按比例切出2個面,將每個面耦合到各個面上中心1個點(diǎn)上,每邊橋臺2個點(diǎn)分別為模擬1個約束橫向和豎向的固定雙向支座和1個約束豎向的單向支座,如圖5所示。對以上的2個工況分別進(jìn)行模擬加載,對比分析模型1的試驗(yàn)應(yīng)力、撓度值與有限元分析結(jié)果,比較模型1和模型2的有限元值的不均勻系數(shù)。

      圖5 工況1模型試驗(yàn)加載Figure 5 Model test loading under working condition 1

      3.1 控制截面應(yīng)力比較分析

      因?yàn)榧虞d過程中部分頂板的加載點(diǎn)剛好位于應(yīng)變的測點(diǎn)位置,所以為了防止出現(xiàn)應(yīng)力集中現(xiàn)象,對比分析時此類點(diǎn)不予考慮。圖7~圖10和表2、表3為荷載19.2 kg作用下模型的應(yīng)力試驗(yàn)值與有限元計算理論值,其中“+”為拉應(yīng)力,“-”為壓應(yīng)力。

      (a) 模型1

      (b) 模型2

      圖7 工況1下A截面縱向應(yīng)力的橫向分布Figure 7 Vertical stress distribution of A section under working condition 1

      圖8 工況1下B截面縱向應(yīng)力的橫向分布Figure 8 Vertical stress distribution of B section under working condition 1

      圖9 工況2下C截面縱向應(yīng)力的橫向分布Figure 9 Vertical stress distribution of C section under working condition 2

      圖10 工況2下D截面縱向應(yīng)力的橫向分布Figure 10 Vertical stress distribution of D section under working condition 2

      從圖7~圖10可以看出,模型試驗(yàn)值與有限元分析的理論值基本一致,且差值一般在20%以內(nèi)。箱梁截面頂、底板縱向應(yīng)力峰值均出現(xiàn)在與腹板交界處,表明剪力滯效應(yīng)明顯。2個工況下底板應(yīng)力最大值一般大于頂板的最大值。工況2下底板外側(cè)應(yīng)力明顯大于內(nèi)側(cè),而工況1下跨中底板內(nèi)、外側(cè)應(yīng)力相差程度稍小一些,這是由于中跨兩端梁墩固結(jié)的原因引起的。

      由表2、表3可知,2個工況下雙肢墩豎向應(yīng)力的試驗(yàn)值與有限元計算的理論值基本一致,不同工況下中跨側(cè)肢墩豎向應(yīng)力數(shù)值與邊跨側(cè)相差較大,并且內(nèi)、外側(cè)應(yīng)力數(shù)值均一定的相差,表明橋墩受力也不均勻。

      表2 E截面豎向應(yīng)力Table 2 Vertical Stresses of Section E kPa截面位置工況1工況2理論值試驗(yàn)值理論值試驗(yàn)值E112.515.6-86.7-90.5E29.511.4-72.9-77.6E3-69.1-77.210.412.0E4-65.7-68.512.614.4

      表3 F截面豎向應(yīng)力Table 3 Vertical Stresses of Section FkPa截面位置工況1工況2理論值試驗(yàn)值理論值試驗(yàn)值F121.627.7-95.4-100.6F223.026.6-78.3-82.4F3-72.0-79.612.315.2F4-75.2-80.336.338.3

      3.2 控制截面荷載撓度變化曲線

      如圖11、圖12為荷載-位移曲線,由圖可知在工況1和工況2作用下,曲線橋各測點(diǎn)撓度呈線性變化,表明此時箱梁處于線彈性階段,滿足試驗(yàn)測試要求。試驗(yàn)撓度值與分析得到的理論值基本吻合,但試驗(yàn)值一般稍大于理論值,且差值在12%以內(nèi)。工況2下D截面內(nèi)、外側(cè)撓度大于工況1作用下A截面內(nèi)、外側(cè)撓度,相同工況下箱梁的外側(cè)撓度明顯大于內(nèi)側(cè)。

      圖11 工況1下A截面荷載-位移曲線Figure 11 A-section load-displacement curve under condition 1

      圖12 工況2下D截面荷載-位移曲線Figure 12 D-section load-displacement curve under condition 2

      3.3 箱梁內(nèi)外側(cè)應(yīng)力、撓度,支座反力及雙肢墩內(nèi)外側(cè)豎向應(yīng)力不均勻性分析

      基于前述分析結(jié)果,按式(1)~式(3)計算可得表4~表7。

      表4為箱梁截面縱向應(yīng)力不均勻系數(shù),對于模型1,工況2下邊跨箱梁底板應(yīng)力不均勻系數(shù)較大,達(dá)19%(C截面)和13%(D截面);2個工況下箱梁頂板應(yīng)力及工況1下底板應(yīng)力不均勻系數(shù)均較小,未超過10%。由表5,箱梁邊跨撓度不均勻系數(shù)為14%、且大于中跨。

      由表6、表7可知,邊墩內(nèi)外側(cè)支座反力及中墩墩身截面受力嚴(yán)重不均勻,當(dāng)荷載作用在邊跨跨中時(工況2),內(nèi)、外側(cè)支座均受壓,不均勻系數(shù)為1.26;當(dāng)荷載作用在中跨時(工況1),邊墩支座出現(xiàn)負(fù)反力(受拉),內(nèi)、外側(cè)相差較大,不

      表4 箱梁應(yīng)力不均勻系數(shù)λσTable 4 Uneven coefficient of stress in box girder λσ工況位置模型1模型2應(yīng)力/kPa外側(cè)σ0內(nèi)側(cè)σi不均勻系數(shù)λσ應(yīng)力/kPa外側(cè)σ0內(nèi)側(cè)σi不均勻系數(shù)λσA截面頂板-303.8-301.10.01-279.2 -273.30.02工況1A截面底板382.2367.20.04450.3 430.5 0.05B截面頂板109.2107.70.01108.7105.40.03B截面底板-108.8-115.9-0.06-115.9 -126.2-0.08C截面頂板138.8136.80.01137.1 130.9 0.05工況2C截面底板-135.9-113.90.19-163.0 -139.0 0.17D截面頂板-314.7-293.80.07-238.8 -219.2 0.09D截面底板396.8351.40.13361.9 339.7 0.07

      表5 撓度不均勻系數(shù)λwTable 5 Uneven deflection coefficient λw工況位置模型1模型2撓度/mm外側(cè)w0內(nèi)側(cè)wi不均勻系數(shù)λw撓度/mm外側(cè)w0內(nèi)側(cè)wi不均勻系數(shù)λw工況1A截面0.200.180.110.19 0.16 0.19工況2D截面0.24 0.210.140.23 0.18 0.28

      表6 支座反力不均勻系數(shù)λfTable 6 Uneven coefficient of support reaction λf工況位置模型1模型2反力/N外側(cè)f0內(nèi)側(cè)fi不均勻系數(shù)λf反力/N外側(cè)f0內(nèi)側(cè)fi不均勻系數(shù)λf工況11#墩-7.7-2.12.67-11.10.7-16.86工況21#墩51.722.91.2661.37.4 7.28

      表7 F截面豎向應(yīng)力不均勻系數(shù)λσTable 7 Uneven coefficient of vertical stress in F section λσ工況位置模型1模型2應(yīng)力/kPa外側(cè)σ0內(nèi)側(cè)σi不均勻系數(shù)λσ應(yīng)力/kPa外側(cè)σ0內(nèi)側(cè)σi不均勻系數(shù)λσ工況1F截面邊跨側(cè)21.623.0-0.06 20.0 19.7 0.02 工況1F截面中跨側(cè)-72.0-75.2-0.04 -68.1 -74.7 -0.09 工況2F截面邊跨側(cè)-95.4-78.30.22 -91.9 -73.1 0.26 工況2F截面中跨側(cè)12.336.3-0.66 8.8 32.4 -0.73

      均勻系數(shù)達(dá)2.67(但支座反力值較小)。對于橋墩受力,工況2下墩底截面內(nèi)、外側(cè)受力不均勻系數(shù)分別達(dá)22%與-66% 。

      比較模型1和模型2的結(jié)果可知,半徑減小除箱梁應(yīng)力不均勻系數(shù)變化較小外,箱梁內(nèi)外側(cè)撓度、支座反力及墩身應(yīng)力不均勻系數(shù)均增大,受力更加不均勻。

      總之,荷載作用在邊跨(工況2),邊跨箱梁底板內(nèi)外側(cè)應(yīng)力、撓度、支座反力及墩身應(yīng)力的不均勻系數(shù)較大,而荷載作用于中跨時(工況1)結(jié)構(gòu)受力不均勻性相對較輕,這是因?yàn)橹锌鐑啥肆憾展探Y(jié)的原因。隨著半徑減小,結(jié)構(gòu)受力不均勻性總體增大,這是因?yàn)橄淞号ぞ卦龃笏隆?/p>

      4 結(jié)論

      通過對匝道設(shè)縫雙肢墩小半徑曲線剛構(gòu)的試驗(yàn)和有限元分析比較結(jié)果,得到如下結(jié)論。

      a.模型的試驗(yàn)值與有限元分析結(jié)果基本一致,應(yīng)力相差在20%以內(nèi),撓度差值在12%以內(nèi),表明試驗(yàn)與理論計算結(jié)果可靠。

      b.荷載作用在邊跨跨中(工況2)時,邊跨箱梁底板內(nèi)外側(cè)應(yīng)力、撓度、支座反力及墩身應(yīng)力的不均勻系數(shù)較大,而荷載作用于中跨時(工況1)結(jié)構(gòu)受力不均勻性相對較輕;并且,支座反力與墩身應(yīng)力不均勻性大于箱梁應(yīng)力、撓度的不均勻性。這是因?yàn)橹锌鐑啥肆憾展探Y(jié)的原因引起的。

      c.隨著半徑減小,箱梁撓度、支座反力及墩身應(yīng)力不均勻性皆增大,這是因?yàn)橄淞号まD(zhuǎn)增大所致。

      猜你喜歡
      雙肢撓度支座
      改性橡膠隔震支座抗拉性能試驗(yàn)研究*
      Spontaneous multivessel coronary artery spasm diagnosed with intravascular ultrasound imaging:A case report
      臨近營業(yè)線雙肢薄壁柔性高墩施工關(guān)鍵技術(shù)
      基于ANSYS-UM聯(lián)合仿真的減振支座減隔振性能研究
      壁厚對雙肢薄壁墩溫度場及溫差效應(yīng)的影響分析
      帶可替換連梁雙肢雙鋼板組合剪力墻結(jié)構(gòu)滯回性能研究
      懸高測量在橋梁撓度快速檢測中的應(yīng)用
      高強(qiáng)角鋼塔雙肢連接受壓主材構(gòu)件穩(wěn)定性能研究進(jìn)展
      基于減隔震設(shè)計連續(xù)梁橋支座的選擇
      收縮徐變在不同鋪裝時間下對連續(xù)梁橋長期撓度的影響
      黄大仙区| 夏河县| 四平市| 神农架林区| 永嘉县| 龙井市| 彝良县| 建始县| 桃园市| 天津市| 洛宁县| 景泰县| 宁晋县| 吴川市| 合江县| 巴东县| 同心县| 三台县| 涿州市| 和龙市| 黔江区| 奈曼旗| 叶城县| 东乡县| 阆中市| 通辽市| 高阳县| 延庆县| 本溪市| 西昌市| 娱乐| 炎陵县| 德兴市| 龙游县| 桦南县| 休宁县| 浦东新区| 曲沃县| 武夷山市| 金乡县| 县级市|