黃升財(cái),王冰,謝國強(qiáng),劉中來,張美娟,張樹清,程憲國
?
赤霉素GA4是水稻矮化特征的重要調(diào)節(jié)因子
黃升財(cái)1,王冰1,謝國強(qiáng)2,劉中來2,張美娟1,張樹清1,程憲國1
(1中國農(nóng)業(yè)科學(xué)院農(nóng)業(yè)資源與農(nóng)業(yè)區(qū)劃研究所,北京 100081;2九江農(nóng)業(yè)科學(xué)院,江西九江 332101)
【目的】以水稻幼胚組培過程中獲得的一株半矮化水稻突變體為研究對象,解析水稻半矮化突變體株高變矮及分蘗增多等表型異常的原因,為克服水稻過度矮化發(fā)育障礙因子及培育抗倒伏高產(chǎn)水稻品種提供科學(xué)理論依據(jù)。【方法】首先統(tǒng)計(jì)分析半矮化水稻突變體與野生型的表型差異,利用體式顯微鏡和光學(xué)顯微鏡觀察突變體花的結(jié)構(gòu)及其細(xì)胞特征;通過轉(zhuǎn)錄組測序及qRT-PCR分析差異基因的表達(dá)特征,并通過外源噴施赤霉素GA3處理檢測突變體對外源赤霉素的敏感性;最后利用高效液相色譜和質(zhì)譜聯(lián)儀檢測突變體內(nèi)赤霉素的含量與富集特征?!窘Y(jié)果】表型觀測與統(tǒng)計(jì)結(jié)果表明,突變體水稻株高比野生型減少56.59%,有效分蘗數(shù)高出47.44%,差異均達(dá)到極顯著水平。突變體的表皮毛消失且花發(fā)育遲緩,雄蕊變小。盡管突變體分蘗數(shù)較高但結(jié)實(shí)率明顯降低,僅為野生型的12.62%,且種子長度和寬度均減小,差異極顯著。通過顯微鏡觀察莖的縱切切片,發(fā)現(xiàn)突變體細(xì)胞長度減少23%,差異極顯著。外源噴施赤霉素后突變體的株高、有效分蘗、結(jié)實(shí)率、種子大小、表皮毛和莖稈細(xì)胞長度均有不同程度的恢復(fù),說明植物體內(nèi)赤霉素合成不足可能是引起水稻矮化的主要原因。轉(zhuǎn)錄組測序結(jié)果顯示突變體中顯著上調(diào),qRT-PCR驗(yàn)證結(jié)果與轉(zhuǎn)錄組測序結(jié)果一致。由于OsGA13ox控制GA12轉(zhuǎn)化為GA53,而GA12和GA53分別轉(zhuǎn)化為GA4和GA1,GA4的活性高于GA1,因此,突變體中GA4減少可能是導(dǎo)致半矮化的主要原因。赤霉素檢測結(jié)果表明突變體中GA4含量減少94.9%,與預(yù)測結(jié)果一致。此外,D14作為SL(獨(dú)腳金內(nèi)酯)的特異性受體,參與調(diào)控植物SL信號轉(zhuǎn)導(dǎo),抑制枝條分枝或者分蘗。qRT-PCR結(jié)果顯示,與野生型相比,突變體中顯著下調(diào),而經(jīng)過GA3處理的野生型和突變體中均顯著上調(diào)。上調(diào)可能導(dǎo)致有效分蘗數(shù)減少,而其下調(diào)可能致使有效分蘗數(shù)增加。統(tǒng)計(jì)結(jié)果表明突變體中有效分蘗顯著增多,而經(jīng)過GA處理之后,野生型和突變體有效分蘗數(shù)均顯著低于未經(jīng)GA3處理前,表明在水稻中的表達(dá)可能受到GA的調(diào)控從而影響水稻分蘗?!窘Y(jié)論】異常表達(dá)導(dǎo)致活性更高的GA4在水稻中的富集減少,形成水稻半矮化突變體;赤霉素可能通過影響的表達(dá)間接調(diào)控水稻的分蘗。
水稻;半矮化突變體;;赤霉素GA4;;有效分蘗
【研究意義】水稻是人類生存至關(guān)重要的糧食作物之一,水稻產(chǎn)量通常由分蘗數(shù)、穗粒數(shù)、單粒重及株高等農(nóng)藝性狀決定。隨著人口壓力逐漸增加,耕地面積逐漸減小,氣候和環(huán)境惡化等問題的出現(xiàn),人類對糧食產(chǎn)量和質(zhì)量的要求愈來愈高。探明水稻矮化和分蘗增多的分子機(jī)制,為培育抗倒伏及高有效分蘗的水稻品種提供科學(xué)的理論支持,對保證人類糧食安全具有重要的意義?!厩叭搜芯窟M(jìn)展】植物生長高度在很大程度上受內(nèi)源激素的影響,包括赤霉素[1-2]、油菜素類固醇[3-4]以及獨(dú)腳金內(nèi)酯[5-6]等。其中赤霉素(GAs)是一類二萜類化合物,可促進(jìn)植物生命周期各個(gè)階段的生長:種子萌發(fā)、莖伸長、葉片膨大、開花和花發(fā)育[7]。赤霉素的合成受古巴焦磷酸合成酶(copalyl pyrophosphate synthase,CPS)、內(nèi)根-貝殼杉烯合成酶(ent-kaurene synthase,KS)、內(nèi)根-貝殼杉烯19-氧化酶(ent-kaurene oxidase,KO)、GA-20-氧化酶(gibberellin- 20-oxidase,GA20ox)及GA-3-氧化酶(gibberellin-3- oxidase,GA3ox)等多個(gè)酶統(tǒng)一調(diào)控[8]。在擬南芥中,(CPS突變體)[9]、(KS突變體)[10]、(KO突變體)[11]均出現(xiàn)矮化現(xiàn)象。水稻赤霉素合成基因[12]、()[13]及()[1]突變也會使水稻出現(xiàn)不同程度的矮化。一般情況下,赤霉素合成突變體除了株高會發(fā)生變化之外,另外一個(gè)特征是對外源GA敏感。而水稻[14]和[15]突變體均對外源GA不敏感,表明GID1(赤霉素特異性受體)和SLR1(DELLA蛋白)參與植物體內(nèi)赤霉素信號的轉(zhuǎn)導(dǎo)。相關(guān)研究表明,當(dāng)細(xì)胞外GA濃度較低時(shí),GID1不與GA結(jié)合,其N端結(jié)構(gòu)域(N-Ex)呈疏松狀態(tài),使DELLA蛋白與GA早期應(yīng)答基因結(jié)合,并通過抑制應(yīng)答基因的翻譯過程進(jìn)而使其失活。當(dāng)細(xì)胞外GA濃度較高時(shí),GA誘導(dǎo)GID1構(gòu)象發(fā)生變化,并與其結(jié)合形成GA-GID1復(fù)合物。該復(fù)合物具有疏水性的表面以便與DELLA蛋白形成三聚體,促進(jìn)DELLA與泛素E3連接酶復(fù)合體結(jié)合,誘導(dǎo)DELLA蛋白被26s蛋白酶降解,進(jìn)而GA信號得以釋放[16]。矮化突變體除了株高變矮之外,通常還伴隨著花發(fā)育異常和分蘗增多等現(xiàn)象。尹昌喜[17]研究表明下調(diào)表達(dá)及上調(diào)表達(dá)導(dǎo)致穗莖節(jié)間GA1含量減少是水稻出現(xiàn)半矮化和包穗的原因。而張玲[18]和WANG等[19]分別利用圖位克隆和BSA鑒定了新的基因和,這兩個(gè)基因的突變均能導(dǎo)致水稻半矮化且花發(fā)育異常。獨(dú)腳金內(nèi)酯(strigolactone,SL)是一組類胡蘿卜素衍生的內(nèi)酯,擬南芥多叢枝突變體[20]及水稻多分蘗突變體[21]均證實(shí)了SL在抑制腋芽生長方面具有保守作用。【本研究切入點(diǎn)】筆者在轉(zhuǎn)基因水稻中獲得穩(wěn)定遺傳的半矮化突變體,與已被鑒定的其他水稻矮化植株的表型有較大差異?!緮M解決的關(guān)鍵問題】本研究利用轉(zhuǎn)錄組學(xué)及生物信息學(xué)分析確定造成突變體表型異常的主要基因,并利用高效液相色譜-質(zhì)譜聯(lián)儀對突變體內(nèi)的激素進(jìn)行檢測,與轉(zhuǎn)錄組測序結(jié)果相互驗(yàn)證。矮化成因的解析對克服過度矮化障礙因子及培育抗倒伏高產(chǎn)水稻品種具有理論與應(yīng)用價(jià)值。
在水稻日本品種Kitaake()幼胚組培過程中,獲得一株半矮化突變體,通過網(wǎng)室自然條件下土壤培養(yǎng)3代之后,未出現(xiàn)性狀分離,表型穩(wěn)定,突變體用(13)表示。
挑選發(fā)育飽滿的野生型和突變體種子于玻璃培養(yǎng)皿中,自來水浸泡,置于30℃恒溫培養(yǎng)箱中暗發(fā)芽1 d。第2天用濕潤的濾紙代替自來水繼續(xù)培養(yǎng),第4天轉(zhuǎn)移到光照培養(yǎng)箱中,光照條件為白天16 h 28℃/黑夜8 h 22℃。第5天轉(zhuǎn)移到土壤中,水稻土和蛭石比例為2﹕1,培養(yǎng)白盆的尺寸54 cm×35 cm×12 cm(長×寬×高),土壤重量為4 kg,每天上午和下午各澆一次水。培養(yǎng)地點(diǎn)是中國農(nóng)業(yè)科學(xué)院資源區(qū)劃所東區(qū)網(wǎng)室。
在水稻生長至抽穗期時(shí),用直尺量取地上部高度(5次生物學(xué)重復(fù))。選取5株水稻進(jìn)行有效分蘗數(shù)統(tǒng)計(jì)。利用立體式顯微鏡(LECIA M165 FC,德國)觀察水稻小穗及花內(nèi)部構(gòu)造的差異。小穗采自穗的同一位置,然后用鑷子將外稃和內(nèi)稃分開露出雄蕊和雌蕊。選取穗莖節(jié)間的莖,用刀片刮至莖透明為止,刮的時(shí)候需滴兩滴蒸餾水以確保莖保持濕潤,然后利用光學(xué)顯微鏡(LEICA DM6 B,德國)觀察細(xì)胞大小,并統(tǒng)計(jì)30個(gè)細(xì)胞的長度。在水稻成熟之后,選取10株統(tǒng)計(jì)其結(jié)實(shí)率。然后用游標(biāo)卡尺測量種子長和寬,重復(fù)6次。
對苗期生長3周的水稻進(jìn)行外源GA處理,噴施20 ml濃度為1.5×10-4mol·L-1的GA3,3 d噴施1次,共3次,于噴施后第8天選取水稻第2片葉進(jìn)行轉(zhuǎn)錄組測序,所有處理均按3次生物學(xué)重復(fù)進(jìn)行。首先用Easy Pure Plant RNA(北京全式金)試劑盒提取RNA,然后用帶有Oligo(dT)的磁珠富集mRNA,加入fragmentation buffer將mRNA打斷成短片段,隨后,用六堿基隨機(jī)引物(random hexamers)以mRNA為模板進(jìn)行反轉(zhuǎn)錄合成一鏈cDNA,再加入緩沖液、dNTPs和DNA聚合酶Ⅰ合成二鏈cDNA。其次利用AMPure XP beads純化雙鏈cDNA,對純化后的雙鏈cDNA進(jìn)行末端修復(fù)、加A、加接頭。通過AMPure XP beads對雙鏈cDNA進(jìn)行片段大小選擇,最后進(jìn)行PCR擴(kuò)增以構(gòu)建cDNA文庫。使用Agilent 2100對文庫的插入片段大小進(jìn)行檢測,文庫質(zhì)檢合格后,利用Illumina高通量測序平臺進(jìn)行測序。
使用DEseq和DEseq2檢測轉(zhuǎn)基因與野生型株系之間的差異表達(dá)基因,差異基因篩選的條件為:差異倍數(shù)≥2和Q值(或FDR)≤0.01。然后使用Gene Ontology(GO富集)[22]和KEGG富集[23]對差異基因進(jìn)行分析。
土培水稻外源噴施GA處理與轉(zhuǎn)錄組測序的水稻一致,在轉(zhuǎn)錄組測序取樣之前,觀察并記錄表型差異。水培水稻外源GA處理是待水稻在恒溫培養(yǎng)箱中發(fā)芽3 d后,進(jìn)行水培,營養(yǎng)液(Hoagland,pH5.8)3 d更換1次,并在營養(yǎng)液中分別添加濃度為1.5×10-4、3×10-5和6×10-6mol·L-1的GA3,10 d后,觀察突變體的表型。
待水稻生長至孕穗期,進(jìn)行外源GA處理,與轉(zhuǎn)錄組測序取樣之前的處理方式相同,之后選取花、穗莖節(jié)間的莖及第2片葉提取RNA。首選用液氮進(jìn)行研磨,之后用Easy Pure Plant RNA試劑盒(北京全式金)進(jìn)行RNA提取。將提取后的RNA用濃度測定儀(Nanodrop 2000,美國)測定其濃度。利用反轉(zhuǎn)錄試劑盒Transscript One-step gDNA Removal and cDNA Synthesis SuperMix(北京全式金)將1.5 μg RNA反轉(zhuǎn)錄為cDNA。使用ChamQTM Universal SYBR qPCR Master Mix(南京諾唯贊)進(jìn)行熒光定量PCR,總反應(yīng)溶液體積為20 μL,包括10 μL 2×ChamQTM Universal SYBR qPCR Master Mix、0.4 μL正反引物(表1)、2 μL cDNA模板和7.2 μL無RNA酶水,重復(fù)3次。使用ABI 7500(美國)熒光定量PCR儀進(jìn)行定量PCR擴(kuò)增,PCR擴(kuò)增條件為94℃ 30 s;95℃ 10 s,60℃ 30 s,40個(gè)循環(huán)。以作為內(nèi)參,擴(kuò)增結(jié)束后使用2-ΔΔCt公式計(jì)算相對表達(dá)量。
表1 熒光定量PCR引物
1.6.1 赤霉素的提取 稱取新鮮水稻葉片約1 g于液氮中研磨粉碎,加入10 ml異丙醇/鹽酸提取緩沖液和8 μl 1 μg·mL-1內(nèi)標(biāo)溶液,4℃震蕩30 min;隨后加入20 ml二氯甲烷,4℃震蕩30 min;之后13 000 r/min(4℃)離心5 min,取下層有機(jī)相,避光用氮吹儀(杭州美歐)吹干有機(jī)相,用400 μl甲醇(0.1%甲酸)溶解,0.22 μm濾膜過濾,最后用高效液相色譜(Aglient1290,美國Aglient)-質(zhì)譜(SCIEX-6500Qtrap,美國AB)聯(lián)儀檢測。
1.6.2 標(biāo)準(zhǔn)曲線繪制 以甲醇(0.1%甲酸)為溶劑配制梯度為0.1、0.2、0.5、2.0、5.0、20.0、50.0和200.0 ng·mL-1的GA1和GA4標(biāo)準(zhǔn)溶液,并加入終濃度為20.0 ng·mL-1的內(nèi)標(biāo)溶液。每個(gè)濃度2個(gè)重復(fù)。
1.6.3 液相和質(zhì)譜條件 液相條件:色譜柱采用poroshell 120 SB-C18反相色譜柱(2.1 mm×150 mm,2.7 μm);柱溫:30℃;流動相:A﹕B=(甲醇/0.1%甲酸)﹕(水/0.1%甲酸);洗脫梯度:0—1 min,A=20%;1—9 min,A遞增至80%;9—10 min,A=80%;10—10.1 min,A遞減至20%;10.1—15min,A=20%;進(jìn)樣體積:2 μl。
質(zhì)譜條件:氣簾氣為15 psi;噴霧電壓:4 500 v;霧化氣壓力:65 psi;輔助氣壓力:70 psi;霧化溫度:400℃。
利用Excel 2010和SPSS 12.0軟件對實(shí)驗(yàn)數(shù)據(jù)進(jìn)行統(tǒng)計(jì)分析,用Duncan法進(jìn)行差異顯著性檢驗(yàn)。
水稻半矮化突變體的表型發(fā)育異常。與野生型相比,突變體株高變矮且分蘗數(shù)增多(圖1-A)并出現(xiàn)包穗現(xiàn)象,穗不能完全伸出劍葉鞘(圖1-B和圖1-C);突變體種子變?。▓D1-D)且小穗發(fā)育異常,外稃與內(nèi)稃上的表皮毛消失(圖2-A和圖2-C);花發(fā)育延遲,雄蕊變小(圖2-E和圖2-G);莖節(jié)間細(xì)胞長度減?。▓D3)。統(tǒng)計(jì)分析顯示突變體株高減少56.29%,且各個(gè)節(jié)間長度均減小(圖4-A),差異極顯著;突變體有效分蘗數(shù)比WT高出47.44%(圖4-B),方差分析差異極顯著;突變體結(jié)實(shí)率低,僅為WT的12.62%(圖4-C);種子長度和寬度均減小,經(jīng)方差分析差異顯著(<0.05)(圖4-D和圖4-E)。利用顯微鏡對突變體的莖縱切片統(tǒng)計(jì)分析,發(fā)現(xiàn)突變體的細(xì)胞長度減少約23%,差異極顯著(<0.01)(圖4-F)。
為了深入探究突變體遺傳突變的分子應(yīng)答與赤霉素合成基因之間是否存在依存關(guān)系,對水稻進(jìn)行外源噴施GA3處理,結(jié)果表明,經(jīng)赤霉素處理的突變體的株高、分蘗、包穗、結(jié)實(shí)率、種子大小、表皮毛和莖細(xì)胞長度均得到一定程度的恢復(fù)(圖2-C和圖2-D,圖4-B—圖4-F,圖5-A)。與噴施GA3前相比,野生型和突變體在噴施GA3之后,有效分蘗數(shù)均減小,差異均達(dá)顯著水平。噴施GA3后,與野生型相比,雖然突變體結(jié)實(shí)率差異仍然極顯著,但是與噴施GA3之前相比顯著增高(<0.01)。種子的長與寬在噴施GA3后均得到一定程度的恢復(fù),但是與噴施GA前差異不明顯。在噴施GA3后,突變體表皮毛出現(xiàn)了一定的恢復(fù),但是沒有測試具體數(shù)量指標(biāo)。突變體在噴施GA3后,其莖細(xì)胞長度顯著變長(<0.01)。水培的突變體經(jīng)過GA3處理也出現(xiàn)相似的現(xiàn)象(圖5-B),結(jié)果顯示,在營養(yǎng)液中添加不同濃度GA3之后,突變體株高均增加,其中以低濃度處理(6×10-6mol·L-1)的突變體恢復(fù)最佳,說明突變體極有可能是GA敏感型突變體。
A:孕穗期野生型和突變體形態(tài);B:野生型小穗(比例尺,2 cm);C:突變體小穗(比例尺,2 cm);D:野生型和突變體成熟種子大小
A—D:GA噴施前后野生型和突變體水稻小穗形態(tài)(比例尺,0.4 mm);E—H:GA噴施前后野生型和突變體水稻花的特征(比例尺,0.4 mm)
圖3 噴施GA3前后野生型和突變體水稻穗莖節(jié)間莖細(xì)胞大小(比例尺,25 μm)
**代表差異極顯著,P<0.01;*代表差異顯著,P<0.05。下同
A:土培突變體噴施GA后的表型變化;B:營養(yǎng)液添加不同濃度GA后突變體表型變化,GA①、GA②和GA③分別代表GA3濃度為1.5×10-4、3.0×10-5和6.0×10-6 mol·L-1
為了深入探究遺傳突變的分子機(jī)制,將培養(yǎng)3周的水稻進(jìn)行轉(zhuǎn)錄組測序。測序結(jié)果顯示,與WT相比,突變體共有631個(gè)差異基因,其中326個(gè)上調(diào),305個(gè)下調(diào)(圖6-B)。GO(Gene Ontology)富集顯示,差異基因主要富集在電子轉(zhuǎn)移過程,涉及電子轉(zhuǎn)移的基因有50個(gè)(圖6-C)。KEGG(Kyoto Encyclopedia of genes and genomes)富集顯示差異基因主要參與糖酵解和磷酸戊糖等代謝途徑(圖6-D)。說明半矮化突變體的某一個(gè)或者多個(gè)基因突變導(dǎo)致了下游參與電子轉(zhuǎn)移基因的異常表達(dá),異常表達(dá)的基因極有可能是一些與糖代謝有關(guān)的活性酶。
A:差異基因聚類圖。每一行表示一個(gè)基因,每一列表示一個(gè)樣,顏色從紅到藍(lán),表示表達(dá)水平從大到小,顏色相近聚類區(qū)內(nèi)的基因表達(dá)模式相近,說明這些基因可能具有相似的功能或參與調(diào)控同一條代謝通路;B:差異基因火山圖。差異表達(dá)顯著的基因用紅點(diǎn)(上調(diào))和綠點(diǎn)(下調(diào))表示,差異表達(dá)不顯著的基因用藍(lán)點(diǎn)表示;C:差異基因GO富集圖。綠色代表生物過程,橙色代表分子功能;D:差異基因KEGG富集散點(diǎn)圖。點(diǎn)的大小表示此pathway中差異表達(dá)基因個(gè)數(shù)多少,而點(diǎn)的顏色對應(yīng)于不同的Qvalue值,值越小說明富集越顯著
A: Differential gene clustering. Each row represents a gene and each column represents a sample. The color is from red to blue, indicating that the expression level is from large to small, and the expression patterns of genes in similar clusters are similar, indicating that these genes may have similar functions or participate in regulation of the same metabolic pathway; B: Differential gene volcano map. Genes with significant differential expression are indicated by red dot (up-regulation) and green dot (down-regulation), and genes with insignificant differential expression are represented by blue dots; C: Differential gene GO enrichment map. Green represents biological processes and orange represents molecular function; D: Differential gene KEGG enrichment scatter plot. The size of the dot indicates the number of differentially expressed genes in the pathway, and the color of the dot corresponds to a different Qvalue. The smaller the value, the more significant the enrichment
圖6 轉(zhuǎn)錄組測序結(jié)果
Fig. 6 Transcriptome sequencing results
為進(jìn)一步分析挖掘差異表達(dá)基因的累積分布特征,對突變體中噴施GA前后得到的8個(gè)表達(dá)不一致的差異基因進(jìn)行了分析(表2),結(jié)果表明,這8個(gè)差異基因?qū)ν庠碐A較為敏感。利用生物信息學(xué)分析,發(fā)現(xiàn)有一個(gè)與赤霉素合成相關(guān)的,在突變體中表達(dá)明顯上調(diào),而噴施GA后表達(dá)出現(xiàn)下調(diào)。在植物體內(nèi)負(fù)責(zé)將GA12轉(zhuǎn)化為GA53,而GA12和GA53又分別轉(zhuǎn)化為GA4和GA1,GA4的活性強(qiáng)于GA1,暗示半矮化突變體極有可能是表達(dá)異常引起的。對突變體的花、莖和葉提取RNA進(jìn)行qRT-PCR驗(yàn)證,結(jié)果(圖7)顯示,在突變體各器官中的表達(dá)均高于野生型,尤其在莖中的表達(dá)量較高且與WT相比差異極顯著;在突變體葉中的表達(dá)量也較高,與WT相比差異極顯著;但在花中的差異不明顯。對突變體進(jìn)行GA處理之后,的表達(dá)量出現(xiàn)不同程度的下降,其中在莖和葉中與噴施GA之前相比差異極顯著。說明突變體是由表達(dá)異常引起的,且對外源GA敏感。
表2 突變體噴施GA前后表達(dá)相反的基因
所有基因功能均查閱自Uniprot蛋白數(shù)據(jù)庫及相關(guān)文獻(xiàn),下同
All gene functions are reviewed from the UniProt database and related paper, the same below
為明確突變體中表達(dá)上調(diào)是否引起水稻中GA4含量變化,用高效液相和質(zhì)譜聯(lián)儀對突變體中的GA1和GA4進(jìn)行檢測分析。結(jié)果表明,與WT相比,突變體中的GA1含量無顯著變化,但活性更強(qiáng)的GA4減少了94.9%(圖8),差異極顯著(<0.01),與預(yù)測結(jié)果一致,說明半矮化突變體是由GA4減少引起的。
圖7 OsGA13ox在突變體各器官中的相對表達(dá)量
A:野生型水稻GA4檢測峰圖;B:突變體水稻GA4檢測峰圖;C:野生型和突變體水稻中GA1含量;D:野生型和突變體水稻中GA4含量
赤霉素(GA)和獨(dú)腳金內(nèi)酯(SL)通常參與調(diào)控植物的枝條分枝或分蘗[25],并且GA和SL之間存在著競爭DELLA蛋白結(jié)合位點(diǎn)的關(guān)系[26]。轉(zhuǎn)錄組測序分析韋恩圖顯示,野生型和突變體有12個(gè)共同對GA應(yīng)答的基因(圖9-A),利用GO注釋獲得這12個(gè)基因的功能(表3)。有趣的是,最后3個(gè)基因、和在突變體中也下調(diào)表達(dá)。是D14蛋白,作為獨(dú)腳金內(nèi)酯(SL)的特異性受體,可與赤霉素受體GID1競爭DELLA蛋白結(jié)合位點(diǎn),調(diào)控植物的生長發(fā)育[27]。qRT-PCR結(jié)果顯示(圖9-B),與野生型相比,在突變體中下調(diào)表達(dá),差異極顯著。野生型和突變體噴施GA后,均上調(diào)表達(dá),其中野生型上調(diào)表達(dá)較高,差異極顯著(<0.01),而突變體中雖然也出現(xiàn)了上調(diào)表達(dá),但與噴施GA之前相比,差異不顯著。
表3 野生型和突變體共表達(dá)的12個(gè)GA應(yīng)答基因
圖9 差異基因韋恩圖及D14在野生型和突變體莖中的相對表達(dá)量
許多研究表明水稻的矮化及半矮化與赤霉素合成或信號轉(zhuǎn)導(dǎo)受阻有關(guān),Itoh等[29]研究表明水稻突變是突變體矮化的原因,而Lo等[30]發(fā)現(xiàn)超表達(dá)水稻也會出現(xiàn)矮化等現(xiàn)象。這些現(xiàn)象產(chǎn)生的原因是GA3ox氧化酶是控制合成GA1和GA4的關(guān)鍵因子,而GA2ox氧化酶可以使GAs鈍化失活[31]。本研究發(fā)現(xiàn)一株半矮化突變體,其株高變矮,分蘗增多,且花發(fā)育異常,結(jié)實(shí)率低。該突變體對外源GA敏感,并且噴施GA3能使表型得到一定程度的恢復(fù),說明該突變體為功能缺失型突變體。赤霉素的合成主要受內(nèi)根-貝殼杉烯合成酶(KS)、內(nèi)根-貝殼杉烯19-氧化酶(KO)、GA-13-羥化酶(GA13ox)及GA-20-氧化酶(GA20ox)等酶的統(tǒng)一調(diào)控(圖10)。已有研究表明,在擬南芥[32-33]和水稻[34]中,GA1的生物活性低于GA4,而GA13ox作為調(diào)控GA4和GA1的樞紐,對植物體內(nèi)赤霉素的相對穩(wěn)定具有十分重要的作用。MAGOME等[24]發(fā)現(xiàn)在水稻中超表達(dá)可導(dǎo)致水稻半矮化,而GA13突變體卻表現(xiàn)出植株增高,穗莖節(jié)間變長。造成這種現(xiàn)象的原因是超表達(dá)致使活性更高的GA4富集減少,突變體則相反,由此可說明在控制植物體內(nèi)GA4和GA1的相對穩(wěn)定發(fā)揮著重要的作用。本研究轉(zhuǎn)錄組測序和qRT-PCR結(jié)果顯示,與WT相比,半矮化突變體表達(dá)上調(diào),使活性更高的GA4含量減少,破壞GA4和GA1之間的相對平衡,這與前人研究結(jié)論相似,再次證明了GA13ox對植物體內(nèi)赤霉素的相對平衡是至關(guān)重要的。
通?;虻霓D(zhuǎn)錄水平受轉(zhuǎn)錄因子的調(diào)節(jié),Zhang等[35]研究發(fā)現(xiàn)水稻轉(zhuǎn)錄因子OsWRKY71是赤霉素信號轉(zhuǎn)導(dǎo)的抑制子,而OsGAMYB是GA誘導(dǎo)型轉(zhuǎn)錄激活因子,其啟動子中含有W盒功能性保守基序TGAC,OsWRKY71可以與該基序特異性結(jié)合而抑制OsGAMYB的激活,導(dǎo)致GA信號的轉(zhuǎn)導(dǎo)受到阻礙。Zhang等[36]又發(fā)現(xiàn)也可以抑制赤霉素信號的轉(zhuǎn)導(dǎo)。Guo等[37]研究表明擬南芥是編碼具有抑制活性的含B3結(jié)構(gòu)域的轉(zhuǎn)錄因子,突變體致使擬南芥出現(xiàn)矮化等現(xiàn)象,同時(shí)發(fā)現(xiàn)赤霉素(GA)失活基因的表達(dá)顯著增加;并且驗(yàn)證了突變體中、和3種GA生物合成基因表達(dá)減少,導(dǎo)致內(nèi)源GA4富集明顯降低。外源GA處理不僅可以誘導(dǎo)擬南芥表達(dá),而且能夠部分緩解突變體的矮化程度,說明能夠抑制植物體內(nèi)赤霉素失活基因的表達(dá)。因此,推測本研究中的異常表達(dá)可能與具有抑制活性的轉(zhuǎn)錄因子突變有關(guān)。利用植物轉(zhuǎn)錄因子數(shù)據(jù)庫(http://planttfdb.cbi.pku.edu.cn)對轉(zhuǎn)錄起始位點(diǎn)前500位和后100位啟動子序列進(jìn)行基序預(yù)測,結(jié)果如表4所示。除此之外,據(jù)報(bào)道,茉莉酸(JA)可以通過強(qiáng)烈抑制和的轉(zhuǎn)錄拮抗GA的合成[38],說明高水平JA可能拮抗莖中GA的生物合成。所以與相關(guān)的轉(zhuǎn)錄因子是否突變有待于進(jìn)一步深入研究,并且探索茉莉酸合成基因或其他基因是否與的異常表達(dá)有關(guān)。
圖10 植物體內(nèi)赤霉素合成途徑[31]
表4 OsGA13ox啟動子序列中的基序預(yù)測結(jié)果
擬南芥突變體擁有更多的分枝,超表達(dá)的水稻也表現(xiàn)出分蘗增多[30],而水稻突變體中赤霉素合成基因上調(diào)表達(dá)使得分蘗減少[47],說明GA能夠抑制水稻分蘗。Ito等[25]已證明外源GA能夠使水稻分蘗異常突變體得到恢復(fù)。除赤霉素之外,獨(dú)腳金內(nèi)酯(SL)也能夠抑制枝條分枝或者分蘗[48],且SL的合成受GA信號調(diào)控[49]。D14蛋白為SL的特異性受體,二者能夠和DELLA蛋白結(jié)合形成復(fù)合物,從而調(diào)控下游基因的表達(dá),間接調(diào)節(jié)枝條分枝或者分蘗。本研究發(fā)現(xiàn),與WT相比,突變體的下調(diào)表達(dá),而作為SL的特異性受體,下調(diào)表達(dá)會使SL信號減弱,從而使分蘗增多,這與突變體的分蘗增多相符合。外源噴施GA使上調(diào)表達(dá),會增強(qiáng)SL信號從而使分蘗減少,而WT噴施GA后分蘗減少也驗(yàn)證了這一猜測。本研究推測GA可能通過的表達(dá)間接調(diào)控植物體的枝條分枝或分蘗。
半矮化突變體是由異常表達(dá)導(dǎo)致GA4富集減少引起的;赤霉素可能通過間接調(diào)控水稻的分蘗。
[1] Spielmeyer W, Ellis M H, Chandler P M. Semidwarf (sd-1), “green revolution” rice, contains a defective gibberellin 20-oxidase gene., 2002, 99(13): 9043-9048.
[2] Peng J, Richards D E, Hartley N M, Murphy G P, Devos K M, Flintham J E, Beales J, Fish L J, Worland A J, Pelica F. ‘Green revolution’ genes encode mutant gibberellin response modulator., 1999, 400: 256-261.
[3] YAMAMURO C, IHARA Y, WU X, NOGUCHI T, FUJIOKA S, TAKATSUTO S, ASHIKARI M, KITANO H, MATSUOKA M. Loss of function of a rice brassinosteroid insensitive 1 homolog prevents internode elongation and bending of the lamina joint., 2000, 12: 1591-1606.
[4] HONG Z, UEGUCHI-TANAKA M, FUJIOKA S, TAKATSUTO S, YOSHIDA S, HASEGAWA Y, ASHIKARI M, KITANOH, MATSUOKA M. The Rice brassinosteroid-deficient dwarf2 mutant defective in the rice homolog ofDIMINUTO/DWARF1, is rescued by the endogenously accumulated alternative bioactive brassinosteroid, dolichosterone., 2005, 17: 2243-2254.
[5] ARITE T, IWATA H, OHSHIMA K, MAEKAWA M, NAKAJIMA M, KOJIMA M, SAKAKIBARA H, KYOZUKA J. DWARF10, an RMsI/MAX4/DAD1 ortholog, controls lateral bud out-growth in rice., 2007, 51(6): 1019-1029.
[6] ISHIKAWA S, MAEKAWA M, ARITE T, ONISHI K, TAKAMURE I, KYOZUKA J. Suppression of tiller bud activity in tillering dwarf mutants of rice., 2005, 46(1): 79-86.
[7] FLEET C M, SUN T P. A DELLAcate balance: the role of gibberellin in plant morphogenesis., 2005, 8(1): 77-85.
[8] 談心, 馬欣榮. 赤霉素生物合成途徑及其相關(guān)研究進(jìn)展. 應(yīng)用與環(huán)境生物學(xué)報(bào), 2008, 14(4): 571-577.
Tan X, Ma X R. Advance in research of gibberellin biosynthesis pathway., 2008, 14(4): 571-577. (in Chinese)
[9] Thomas S G, Sun T P. Update on gibberellin signaling. A tale of the tall and the short., 2004, 135: 668-676.
[10] Yamaguchi S, Sun T p, Kawaide H, Kamiya Y. The GA2 locus ofencodes ent-kaurene synthase of gibberellin biosynthesis., 1998, 116: 1271-1278.
[11] Helliwell CA, Poole A, Peacock W J, Dennis E S.ent-kaurene oxidase catalyzes three steps of gibberellin biosynthesis., 1999, 119(2): 507-510.
[12] MARGIS-PINHEIRO M, ZHOU X R, ZHU Q H, DENNIS E S, UPADHYAYA N M. Isolation and characterization of a Ds-tagged rice (L.) GA-responsive dwarf mutant defective in an early step of the gibberellin biosynthesis pathway., 2005, 23(12): 19-33.
[13] Itoh H, Tatsumi T, Sakamoto T, Otomo K, Toyomasu T, Kitano H, Ashikari M, Ichihara S, Matsuoka M. A rice semi-dwarf gene, Tan-ginbozu (D35), encodes the gibberellin biosynthesis enzyme, ent-kaurene oxidase., 2004, 54(4): 533-547.
[14] Ueguchi-Tanaka M, Ashikari M, Nakajima M, Itoh H, Katoh E, Kobayashi M, Chow TY, Hsing YI, Kitano H, Yamaguchi I, Matsuoka M. GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin., 2005, 437(7059): 693-698.
[15] GOMI K, SASAKI A, ITOH H, UEGUCHI-TANAKA M, ASHIKARI M, KITANO H, MATSUOKA M. GID2, an F-box subunit of the SCF E3 complex, specifically interacts with phosphorylated SLR1 protein and regulates the gibberellin-dependent degradation of SLR1 in rice., 2004, 37(4): 626-634.
[16] Sun T P. Gibberellin-GID1-DELLA: A pivotal regulatory module for plant growth and development., 2010, 154(2): 567-570.
[17] 尹昌喜. 細(xì)胞質(zhì)雄性不育水稻包穗的激素調(diào)控[D]. 南京: 南京農(nóng)業(yè)大學(xué), 2007: 6.
Yin C X. Plant hormone regulation on panicle enclosure in cytoplasmic male sterile rice[D]. Nanjing: Nanjing Agricultural University, 2007: 6. (in Chinese)
[18] 張玲. 水稻矮化并花發(fā)育異常突變體()的基因定位與候選基因分析[D]. 重慶: 西南大學(xué), 2015: 6.
Zhang L. Gene mapping and candidate gene analysis of()mutants in rice () [D]. Chongqing: Southwestern University, 2015: 6. (in Chinese)
[19] Wang Y P, Tang S Q, Wu Z F, SHI Q H, WU Z M. Phenotypic analysis of a() mutant in rice (L.) and characterization of candidate genes., 2018, 5(17): 1057-1065.
[20] Sorefan K, Booker J, Haurogné K, Goussot M, Bainbridge K, Foo E, Chatfield S, Ward S, Beveridge C, Rameau C, Leyser O. MAX4 and RMS1 are orthologous dioxygenase-like genes that regulate shoot branching inand pea., 2003, 17: 1469-1474.
[21] Jiang L, Liu X, Xiong G, Liu H, Chen F, Wang L, Meng X, Liu G, Yu H, Yuan Y, Yi W, Zhao L, Ma H, He Y, Wu Z, Melcher K, Qian Q, Xu H E, Wang Y, Li J. DWARF 53 acts as a repressor of strigolactone signalling in rice., 2013, 504(7480): 401-405.
[22] Young M D, Wakefield M J, Smyth G K, Oshlack A. Gene ontology analysis for RNA-seq: accounting for selection bias., 2010, 11(2): R14.
[23] Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, Yamanishi Y. KEGG for linking genomes to life and the environment., 2008, 36: D480-D484.
[24] Magome H, Nomura T, Hanada A, Takeda-Kamiya N, Ohnishi T, Shinma Y, Katsumata T, Kawaide H, Kamiya Y, Yamaguchi S. CYP714B1 and CYP714B2 encode gibberellin 13-oxidases that reduce gibberellin activity in rice., 2013, 110(5): 1947-1952.
[25] Ito S, Yamagami D, Asami T. Effects of gibberellin and strigolactone on rice tiller bud growth., 2018, 43(3): 220-223.
[26] Zou J, Zhang S, Zhang W, Li G, Chen Z, Zhai W, Zhao X, Pan X, Xie Q, Zhu L. The rice HIGH-TILLERING DWARF1 encoding an ortholog ofMAX3 is required for negative regulation of the outgrowth of axillary buds., 2006, 48: 687-698.
[27] Nakamura H, Xue Y L, Miyakawa T,Hou F, Qin H M, Fukui K, Shi X, Ito E, Ito S, Park S H, Miyauchi Y, Asano A, Totsuka N, Ueda T, Tanokura M, Asami T. Molecular mechanism of strigolactone perception by DWARF14., 2013, 4: 2613.
[28] Kim S K, Park H Y, Jang Y H, Lee K C, Chung Y S, Lee J H, Kim J K. OsNF-YC2 and OsNF-YC4 proteins inhibit flowering under long-day conditions in rice., 2016, 243(3): 563-576.
[29] Itoh H, Ueguchi-Tanaka M, Sentoku N, Kitano H, Matsuoka M, Kobayashi M. Cloning and functional analysis of two gibberellin 3β-hydroxylase genes that are differently expressed during the growth of rice., 2001, 98(15): 8909-8914.
[30] Lo S F, Yang S Y, Chen K T, HSING YI, ZEEVAART JA, CHEN L J, YU S M. A novel class of gibberellin 2-oxidases control semidwarfism, tillering, and root development in rice., 2008, 20(10): 2603-2618.
[31] Peter H, Valerie S. A century of gibberellin research., 2015, 34: 740-760.
[32] Cowling R J, Kamiya Y, Seto H, Harberd N P. Gibberellin dose-response regulation of GA4 gene transcript levels in., 1998, 117(4): 1195-1203.
[33] Talon M, Koornneef M, Zeevaart J A. Endogenous gibberellins inand possible steps blocked in the biosynthetic pathways of the semidwarf GA4 and GA5 mutants., 1990, 87(20): 7983-7987.
[34] Ueguchi-Tanaka M, Nakajima M, Katoh E, Ohmiya H, Asano K, Saji S, Hongyu X, Ashikari M, Kitano H, Yamaguchi I, Matsuoka M. Molecular interactions of a soluble gibberellin receptor, GID1, with a rice DELLA protein, SLR1, and gibberellin., 2007, 19(7): 2140-2155.
[35] Zhang Z L, Xie Z, Zou X, Casaretto J, Ho T H, Shen Q J. A rice WRKY gene encodes a transcriptional repressor of the gibberellin signaling pathway in aleurone cells., 2004, 134(4): 1500-1513.
[36] Zhang Z L, Shin M, Zou X, Huang J, Ho T H, Shen Q J. A negative regulator encoded by a rice WRKY gene represses both abscisic acid and gibberellins signaling in aleurone cells., 2009, 70(1/2): 139-151.
[37] Guo X, Hou X, FANG J, WEI P, XU B, CHEN M, FENG Y, CHU C.The rice GERMINATION DEFECTIVE 1, encoding a B3 domain transcriptional repressor, regulates seed germination and seedling development by integrating GA and carbohydrate metabolism., 2013, 75(3): 403-416.
[38] Heinrich M, Hettenhausen C, Lange T, Wünsche H, Fang J, Baldwin I T, Wu J. High levels of jasmonic acid antagonize the biosynthesis of gibberellins and inhibit the growth ofstems., 2013, 73(4): 591-606.
[39] Ito Y, Kurata N. Identification and characterization of cytokinin-signalling gene families in rice., 2006, 382: 57-65.
[40] Santi L, Wang Y, Stile M R, Berendzen K, Wanke D, Roig C, Pozzi C, Müller K, Müller J, Rohde W, Salamini F. The GA octodinucleotide repeat binding factor BBR participates in the transcriptional regulation of the homeobox gene Bkn3., 2003, 34(6): 813-826.
[41] Wu C, You C, Li C, Long T, Chen G, Byrne M E, Zhang Q. RID1, encoding a Cys2/His2-type zinc finger transcription factor, acts as a master switch from vegetative to floral development in rice., 2008, 105(35): 12915-12920.
[42] Lijavetzky D, Carbonero P, Vicente-Carbajosa J. Genome-wide comparative phylogenetic analysis of the rice andgene families., 2003, 1: 17.
[43] Mao C, Wang S, Jia Q, Wu P.OsEIL1, a rice homolog of theEIN3 regulates the ethylene response as a positive component., 2006, 61(1): 141-152.
[44] Hiraga S, Sasaki K, Hibi T, Yoshida H, Uchida E, Kosugi S, Kato T, Mie T, Ito H, Katou S, Seo S, MATSUI H, OHASHI Y, MITSUHARA I. Involvement of two rice ETHYLENE INSENSITIVE3-LIKE genes in wound signaling., 2009, 282(5): 517-529.
[45] Rice Chromosomes 11 and 12 Sequencing Consortia. The sequence of rice chromosomes 11 and 12, rich in disease resistance genes and recent gene duplications., 2005, 3: 20.
[46] Kirik V, Baumlein H. A novel leaf-specific myb-related protein with a single binding repeat., 1996, 183(1/2): 109-113.
[47] Li W Q, Wu J G, Weng S L, ZHANG Y, ZHANG D, SHI C. Identification and characterization of dwarf 62, a loss-of-function mutation in DLT/OsGRAS-32 affecting gibberellin metabolism in rice., 2010, 232(6): 1383-1396.
[48] Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S. Inhibition of shoot branching by new terpenoid plant hormones., 2008, 455(7210): 195-200.
[49] Ito S, Yamaqami D, Umehara M, Hanada A, Yoshida S, Sasaki Y, Yajima S, Kyozuka J, Ueguchi-Tanaka M, Matsuoka M, Shirasu K, Yamaguchi S, Asami T. Regulation of strigolactone biosynthesis by gibberellin signaling., 2017, 174(2): 1250-1259.
Enrichment profile of GA4 is an important regulatory factor triggering rice dwarf
HUANG ShengCai1, WANG Bing1, XIE GuoQiang2, LIU ZhongLai2, ZHANG MeiJuan1, ZhANG ShuQing1, CHENG XianGuo1
(1Intitute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081;2Jiu Jiang Academy of Agricultural Sciences, Jiujiang 332101, Jiangxi)
【Objective】A dwarf rice mutant was generated by culturing rice embryo tissues and characterized to elucidate the reasons for leading to an occurence of semi-dwarf rice with more tiller number. It is expected that this study will provide a theoretical basis for scientifically cultivating rice varieties of lodging-resistant and high-yielding in overcoming the dwarf obstacle factors.【Method】In this study, both the rice dwarf mutant and wild type were phenotypically profiled, and the structural characteristics of flower and cell appearance of leaves were investigated by stereomicroscope and light microscopy; The differential gene expression profiles were analyzed by both the transcriptomics and qRT-PCR, and the sensitivity of the mutant to exogenous gibberellin was detected by spraying exogenous GA3; The enrichment profiles of gibberellin in the mutant were detected by a high performance liquid chromatography and a mass spectrometry. 【Result】Data showed that the mutant demonstrated a decrease of 56.59% in the average plant height and an increase of 47.44% in the effective tiller number compared with the wild type, respectively (<0.01). Observation showed that the mutant led to disappearance of the epidermis and revealed a smaller stamen accompanying a delayed development in the flower organs. Although the mutant has a higher effective tiller number, but significantly lowers the seed setting rate, which only accounts for 12.62% of that in the wild type. The length and the width of grains also are significantly reduced (<0.01). Stem longitudinal sections reveal that the mutant decreased the cell length of 23% compared with the wild type (<0.01). However, when the mutant was exposed to exogenous gibberellin, the plant height, effective tiller number, seed setting rate, seed size, epidermis and the stem cell length were obviously restored, indicating that the dwarf mutant possibly results from the shortage of GA’s synthesis in plant. Transcriptome sequencing showed that the mutant significantly up-regulated thegene, and exhibited an identical result with the qRT-PCR analyses. Since theOsGA13oxcontrols the conversion of the GA12 to the GA53, both of which are converted to the GA4 and the GA1, respectively. Particularly, the GA4 exhibits a higher activity than the GA1, suggesting that rice dwarf might be triggered by the reduction of GA4 enrichment in plant. Measurement confirmed that the accumulation of the GA4 in the mutant was decreased by 94.9% compared with the wild type. Additionally, as a specific receptor for SL (Strigolactone), thegene is involved in the SL signaling transduction in plant, and thus inhibits branching or tillering. The qRT-PCR showed that the mutant significantly down-regulated thegene compared to the wild type, however, both the wild type and the mutant significantly up-regulated after spraying GA3. The data suggested that the up-regulation of thegene might lower the effective tiller number, while the down-regulation of thegene possibly increase the effective tiller number. Statistical analyses demonstrates that the mutant significantly increased the effective tiller number, but both the wild type and mutant decreased the effective tiller number after spraying GA3, indicating that the expression profiles of thegene in rice might be modulated by GA, and thereby exert on the tiller number.【Conclusion】Semi-dwarfed rice mutant is likely caused by a decrease of GA4 enrichment because of abnormal expression of thegene, and GA might indirectly regulate rice tiller by affecting the expression of thegene
rice; semi-dwarf mutant;; GA4;; effective tiller
10.3864/j.issn.0578-1752.2019.05.002
2018-11-06;
2018-12-09
轉(zhuǎn)基因重大專項(xiàng)(2016ZX08010005-9)
黃升財(cái),E-mail:huangshengcai_123@163.com。 通信作者張樹清,E-mail:zhangshuqing@caas.cn。通信作者程憲國,Tel:010-82105031;E-mail:chengxianguo@caas.cn
(責(zé)任編輯 李莉)