葛汝村,李培培,李安娜,徐林,戴曉宇,王換換,李棟
?
吸煙者外周血不同T淋巴細(xì)胞亞群在體外擴增中的異常增殖及功能研究
葛汝村,李培培,李安娜,徐林,戴曉宇,王換換,李棟
250031 濟南,山東省立第三醫(yī)院再生醫(yī)學(xué)研究室(葛汝村、李培培、徐林);250012 濟南,山東大學(xué)齊魯醫(yī)院低溫醫(yī)學(xué)研究室(李安娜、戴曉宇、王換換、李棟)
檢測吸煙對外周血 T 淋巴細(xì)胞體外擴增培養(yǎng)過程中免疫殺傷細(xì)胞和調(diào)節(jié)性 T 細(xì)胞增殖和功能的不同影響。
選擇平均年齡 30 歲的男性吸煙者 27 例與不吸煙男性健康對照組 16 例,采用密度梯度離心法從外周血中分離淋巴細(xì)胞,添加抗 CD3 和抗 CD28 抗體,以及 IL-2 和 IFN-γ 等多種細(xì)胞因子擴增培養(yǎng) 15 d,計算細(xì)胞的增殖率,并利用流式細(xì)胞術(shù)檢測擴增后各組淋巴細(xì)胞中免疫殺傷細(xì)胞(CD3+CD8+細(xì)胞、CD3+CD56+細(xì)胞)以及調(diào)節(jié)性 T 細(xì)胞(CD4+CD25+細(xì)胞)的比率;CCK8 法檢測擴增后的免疫殺傷細(xì)胞對 HeLa 細(xì)胞的殺傷力,PCR 方法檢測擴增后淋巴細(xì)胞部分功能相關(guān)基因的表達。
吸煙者外周血淋巴細(xì)胞增殖能力減弱,且免疫殺傷細(xì)胞所占比例低,調(diào)節(jié)性 T 細(xì)胞所占比例高;吸煙者細(xì)胞免疫殺瘤細(xì)胞的殺傷力明顯低于不吸煙對照組,吸煙組淋巴細(xì)胞表達的 TNF-α、顆粒酶、穿孔素和 IFN-γ 等均有不同程度降低,其中顆粒酶和顆粒溶解素下調(diào)較為明顯;但吸煙組 TGF-β1 的表達量顯著上調(diào),約為對照組的 7 倍。
吸煙導(dǎo)致擴增后的外周血淋巴細(xì)胞中免疫殺傷細(xì)胞所占比例減少,調(diào)節(jié)性 T 細(xì)胞比例增加,吸煙組 TGF-β1 的表達增加進一步抑制了免疫殺傷細(xì)胞的活化和增殖。
吸煙; T 淋巴細(xì)胞,調(diào)節(jié)性; 轉(zhuǎn)化生長因子-β; 免疫殺傷細(xì)胞
眾所周知吸煙有害健康,中國每年大約12% 的男性死于煙草的使用。煙草含有包括尼古丁在內(nèi)的 1200 多種有害物質(zhì),其中 10 多種為致癌物質(zhì),這些有害物質(zhì)能明顯降低人體的免疫功能,降低人體的免疫反應(yīng)能力[1],使人易患肺癌、膀胱癌、心臟病等諸多疾病[2-4]。殺傷性 T 淋巴細(xì)胞(cytotoxic T lymphocyte,CTL)與調(diào)節(jié)性 T 細(xì)胞(regulatory T cells,Treg)在機體免疫系統(tǒng)功能中發(fā)揮重要作用[5-6],本研究擬通過比較吸煙者與不吸煙者外周血 T 淋巴細(xì)胞在體外擴增中的增殖力、殺瘤力和相關(guān)基因的表達,探討吸煙降低機體免疫功能的可能機制。
1.1.1 主要試劑與儀器 RPMI 1640 培養(yǎng)基購自美國 Hyclone 公司;胎牛血清(fetal bovine serum,F(xiàn)BS)購自美國 Gibco公司;羊抗人 CD3 抗體和羊抗人 CD28 抗體購自北京同立海源生物科技有限公司;白介素 IL-2、IL-15、γ 干擾素(interferon-γ,IFN-γ)和 PE 熒光單克隆抗體試劑 IgG1、CD3、CD25、FITC 熒光單克隆抗體試劑IgG1、IgG2b、CD4、CD8、CD56 均購自美國 R&D 公司;人外周血淋巴細(xì)胞分離液(密度 1.077)購自天津灝洋生物制品科技有限責(zé)任公司;RealMasterMix SYRB Green PCR 試劑盒和 Cell counting kit8 試劑盒購自北京天根生化科技有限公司;450 型酶標(biāo)儀為 BD公司產(chǎn)品;Guava easy Cyte8HT 流式細(xì)胞儀購自美國 EMD Millipore 公司;7500 熒光定量 PCR 儀為美國ABI 公司產(chǎn)品。
1.1.2 實驗對象 吸煙組:年齡24 ~ 39(平均年齡 30 歲)的男性(n = 27),經(jīng)臨床全面體檢,肝功能檢查正常,甲胎蛋白(AFP)及乙肝病毒表面抗原(HBsAg)陰性,血糖正常,排除患有疾病者。吸煙標(biāo)準(zhǔn):平均每天吸煙大于等于 10 支,列為吸煙組。對照組:生活在同一地區(qū),平均年齡 30 歲(n = 16),從未吸煙的男性,經(jīng)臨床全面體檢,肝功能檢查正常,AFP 及 HBsAg 陰性,血糖正常,排除患有疾病者。
1.2.1 人外周血 T 淋巴細(xì)胞亞群的體外擴增 經(jīng)供者授權(quán)同意后,在一周內(nèi)完成吸煙組和對照組的隨機靜脈采血。在無菌條件下,用肝素鈉抗凝的真空采血管采集供者外周靜脈血 20 ml,常規(guī)梯度密度離心法(密度 = 1.077 g/L)獲得單個核淋巴細(xì)胞,使用含 10% FBS 的 RPMI 1640 培養(yǎng)基作為淋巴細(xì)胞擴增基礎(chǔ)培養(yǎng)基,按終濃度加入 PHA(2 μg/ml)、IFN-γ(50 ng/ml),細(xì)胞起始培養(yǎng)密度為5 × 106個/ml。置于 37 ℃、5% CO2、100% 飽和濕度的細(xì)胞培養(yǎng)箱內(nèi)培養(yǎng)。次日加入抗 CD3(50 ng/ml)、抗 CD28(50 ng/ml)、IL-2(1000 U/ml)和 IL-15(10 ng/ml)。以后每 2 ~ 3 天添加培養(yǎng)液并按終濃度加入 IL-2(1000 U/ml))和 IL-15(10 ng/ml)。每 3 天抽取少量細(xì)胞計數(shù)。
1.2.2 流式細(xì)胞術(shù)檢測細(xì)胞表型 取預(yù)檢測細(xì)胞,用 PBS 液 1000 r/min 離心 5 min 洗滌細(xì)胞 2 次,棄上清。細(xì)胞沉淀加入 120 μl 鞘液充分吹懸并用 70 μm 濾網(wǎng)過濾,分別加入 PE 或 FITC 標(biāo)記的單克隆抗體以及相應(yīng)的同型對照抗體 5 μl,充分渦旋振蕩混勻,避光孵育 15 min 后,加入 1000 μl 流式鞘液充分混勻后 1000 r/min 離心5 min 并離心洗滌 1 次,進行流式細(xì)胞檢測,流式分析軟件 Guava Incyte 分析所得數(shù)據(jù)。
1.2.3 CCK8 法檢測擴增后 T 淋巴細(xì)胞對HeLa 細(xì)胞的殺傷率 HeLa 細(xì)胞培養(yǎng)于含 10% FBS 的 RPMI 1640 培養(yǎng)基中,消化后以每孔 1 × 105個/100 μl種于 96 孔板中,培養(yǎng) 12 h 后,每孔加入100 μl 擴增后的 T 淋巴細(xì)胞懸液(含 10% FBS 的RPMI 1640 培養(yǎng)基中細(xì)胞 1 × 106個),效靶比為 10:1,在培養(yǎng)箱孵育 6 h,然后向每孔加入 10 μl CCK8 溶液,培養(yǎng)箱內(nèi)繼續(xù)孵育 1 h,酶標(biāo)儀測定 450 nm 處的吸光度。計算公式如下:
細(xì)胞殺傷率 =[1 –(效靶細(xì)胞值– 效應(yīng)細(xì)胞值)/靶細(xì)胞值]× 100%
1.2.4 Real-time PCR 檢測基因表達 取上述各組擴增前后單個核細(xì)胞各 1 × 106個,以新鮮分離的健康人外周血 MNC 細(xì)胞作為對照組,提取 RNA,并反轉(zhuǎn)錄為 cDNA,以反轉(zhuǎn)錄產(chǎn)物為模板進行 PCR,各基因檢測用引物序列見表 1,操作步驟如下進行,反應(yīng)體系為20 μl:10 μl 2 × Ultra SYBR Mixture,前后引物(10 μmol/L)各 1 μl,模板 1 μl。反應(yīng)程序為:95 ℃預(yù)變性 10 min;隨后進行 40 個循環(huán) 95 ℃變性 15 s;60 ℃退火/延伸 1 min 讀板。每個樣本 3 次重復(fù),以 GAPDH 為內(nèi)參基因,先按照公式ΔΔCT = ΔCT待測– ΔCT對照對各試驗樣本的ΔCT值進行歸一,再用2?ΔΔCT計算各組的相對表達量,并將新鮮對照組的表達值設(shè)為 1。
表 1 定量 PCR 中所用引物序列
淋巴細(xì)胞增殖是機體免疫應(yīng)答過程的一個重要階段。因此,檢測淋巴細(xì)胞增殖水平是細(xì)胞免疫研究和臨床免疫功能檢測的一種常用方法。為了探究吸煙是否能夠影響機體的免疫力,首先分離淋巴細(xì)胞,然后經(jīng) IFN-γ、抗 CD3 抗體和 IL-2 等激活擴增 T 淋巴細(xì)胞培養(yǎng)后計數(shù),可見前 3 天細(xì)胞生長緩慢,細(xì)胞密度低(圖 1A),但健康正常組T 細(xì)胞在第 3 天即進入快速增殖期,而吸煙組的 T 細(xì)胞第 6 天才進入快速增殖期??焖僭鲋车牧馨图?xì)胞密度顯著增加,并形成克隆球(圖 1B)。經(jīng)過 21 d 的培養(yǎng),對照組(不吸煙)細(xì)胞總數(shù)增殖倍數(shù)平均約為 36 倍,而吸煙組細(xì)胞僅擴增25.7 倍左右,明顯低于對照組(< 0.01),如圖 1C 所示。
擴增方案不但可以擴增殺傷性 T 淋巴細(xì)胞[6],也可以擴增調(diào)節(jié)性 T 淋巴細(xì)胞[7],流式細(xì)胞術(shù)結(jié)果顯示擴增后吸煙組免疫 T 淋巴殺傷細(xì)胞(CD3+CD56+和 CD3+CD8+細(xì)胞)所占比例低于對照組,而調(diào)節(jié)性 T 淋巴細(xì)胞(CD4+CD25+)所占比例為(8.99 ± 0.85)%,顯著高于對照組的(1.70 ± 0.32)%(= 40.12,< 0.01),如圖 2A 所示。
將吸煙組與對照組擴增后的 T 淋巴細(xì)胞與 HeLa 細(xì)胞共培養(yǎng),檢測其對腫瘤細(xì)胞的殺傷力,結(jié)果顯示對照組淋巴細(xì)胞殺傷率為(77.01 ± 1.19)%,吸煙組淋巴細(xì)胞殺傷率平均僅為(56.37 ± 7.90)%,兩者具有極顯著差異(= 13.32,< 0.001),如圖 2B 所示。
為了進一步研究吸煙對 T 淋巴細(xì)胞的影響,利用 Real-time PCR 技術(shù)檢測了兩組擴增后的淋巴細(xì)胞中,部分免疫殺傷相關(guān)基因以及 TGF-β1 的 mRNA 表達量,結(jié)果顯示與對照組相比,吸煙組淋巴細(xì)胞表達的 TNF-α、顆粒酶A 和 B、顆粒溶解素、穿孔素和 IFN-γ 等均有不同程度降低,其中顆粒酶和顆粒溶解素下調(diào)較為明顯(< 0.01);但吸煙組 TGF-β1 的表達量顯著上調(diào),約為對照組的 7 倍(= 89.35,< 0.001),如圖 2C 所示。
煙草中主要成分尼古丁能迅速溶于水及酒精中,通過口鼻支氣管黏膜很容易被機體吸收,對人體產(chǎn)生多種危害。例如尼古丁可抑制人牙周膜成纖維細(xì)胞的生長,使處于增殖狀態(tài)的牙周膜成纖維細(xì)胞阻滯于 G2/M,使牙周膜喪失自我修復(fù)的能力[8]。在本研究中,結(jié)果顯示吸煙可以抑制外周血中免疫殺傷細(xì)胞(CD3+CD8+、CD3+CD56+)的增殖,上調(diào)擴增產(chǎn)物中調(diào)節(jié)性 T 細(xì)胞(CD4+CD25+)的比例。
尼古丁對淋巴細(xì)胞的影響主要是通過 CD4+細(xì)胞表達的煙堿樣乙酰膽堿受體發(fā)揮作用的,從而對 T 淋巴細(xì)胞活化、增殖和分泌細(xì)胞因子產(chǎn)生影響[9-11],同樣尼古丁也可以通過PI3-K/Akt 途徑上調(diào)環(huán)氧合酶-2(cyclooxygenase-2,Cox-2)和前列腺素 E2(prostaglandin E2,PGE2)的產(chǎn)量[12]。尼古丁結(jié)合煙堿樣乙酰膽堿受體還可以引起 cAMP 和 Ca2+動員[13],從而全面影響免疫細(xì)胞功能,例如尼古丁可以降低牙齦組織中的免疫細(xì)胞數(shù)目、趨化性和吞噬能力,從而降低牙齦組織的免疫防御力[14]。如果在妊娠期吸煙[尼古丁量 6 mg/(kg·d)]就會長期抑制免疫細(xì)胞的增殖[15]。PCR 的結(jié)果還顯示吸煙組淋巴細(xì)胞表達的 TNF-α、顆粒酶 A 和 B、穿孔素和 IFN-γ 等相關(guān)細(xì)胞因子的表達水平均降低,其中顆粒酶和顆粒溶解素下調(diào)較為明顯。免疫殺傷細(xì)胞的殺傷率是考量機體免疫力的一個重要參數(shù)。我們檢測吸煙組與對照組淋巴細(xì)胞對 HeLa 細(xì)胞的殺傷力,結(jié)果顯示吸煙組對 HeLa 細(xì)胞的殺傷力明顯低于對照組,這與穿孔素和 IFN-γ 等多種基因的表達下調(diào)直接相關(guān)。
圖 1 細(xì)胞增殖能力檢測(A:擴增前的淋巴細(xì)胞;B:進入快速擴增期的淋巴細(xì)胞;C:到第 21 天對照組細(xì)胞增殖倍數(shù)約為 36 倍,吸煙組細(xì)胞增殖約 25.7 倍,在擴增細(xì)胞總數(shù)上比正常組有顯著降低,*P < 0.01)
Figure 1 Cell proliferation assay (A: Lymphocytes before amplification; B: Lymphocytes in the rapid expansion phase; C: The lymphocytes in control group proliferated about 36 times after 21 days culture, while the smoking group only amplified about 25.7 times,*< 0.01)
圖 2 擴增后淋巴細(xì)胞的免疫表型、殺瘤能力及基因表達分析[A:擴增后吸煙組免疫 T 淋巴殺傷細(xì)胞(CD3+CD56+和 CD3+CD8+細(xì)胞)所占比例低于對照組,而調(diào)節(jié)性 T 淋巴細(xì)胞(CD4+CD25+)顯著高于對照組;B:淋巴細(xì)胞對 HeLa 細(xì)胞殺傷結(jié)果顯示吸煙組的淋巴細(xì)胞殺傷率比對照組低約20%;C:定量 PCR 檢測擴增后 T 細(xì)胞內(nèi)部分基因的表達,以新鮮分離的健康人外周血 MNC 細(xì)胞作為對照組,并將其表達值設(shè)為 1;*P < 0.01 vs.對照組;**P < 0.001 vs.對照組]
Figure 2 Immune phenotype, tumor killing ability and gene expression analysis after lymphocytes amplification [A: Cytotoxicity T lymphocyte (CD3+CD56+and CD3+CD8+cells) is lower in smoking group than the control group, but regulatory T cells (CD4+CD25+) regulatory T cells was significantly higher than the control group; B: Tumor killing ability of smoking group is lower than the control group about 20%;C: The expression of some important genes in expanded T cells, compared with fresh isolated MNC as control (set the value as 1);*< 0.01control group;**< 0.001control group]
但研究發(fā)現(xiàn),尼古丁并不殺死免疫細(xì)胞,相反的,尼古丁可以抑制地塞米松誘導(dǎo)的免疫細(xì)胞凋亡[16],實驗結(jié)果發(fā)現(xiàn)吸煙者在相同的 T 淋巴細(xì)胞增殖刺激下,產(chǎn)生的 Treg 細(xì)胞比例增高。研究顯示 TGF-β 可以誘導(dǎo) CD4+CD25-細(xì)胞轉(zhuǎn)變?yōu)?CD4+CD25+Treg 細(xì)胞[17]。于是采用定量 PCR 的方式檢測了 TGF-β 在核酸水平的表達量變化,結(jié)果顯示吸煙組的 PBMC 培養(yǎng)擴增 15 d 后,吸煙組 TGF-β1 的表達量顯著上調(diào),約為對照組的7 倍,所以我們猜測吸煙引發(fā)吸煙者淋巴細(xì)胞中調(diào)節(jié)性 T 細(xì)胞比例的增加是由于 TGF-β 的過量表達所致。
綜上所述,吸煙降低機體免疫力的機制可能是由于吸煙導(dǎo)致免疫殺傷細(xì)胞數(shù)量減少而且功能下降;并且尼古丁可以促進淋巴細(xì)胞中 TGF-β 的表達,TGF-β 誘導(dǎo)調(diào)節(jié)性 T 細(xì)胞 Treg 的比例增加,進一步抑制了免疫殺傷細(xì)胞的活化和增殖,從而導(dǎo)致機體免疫力降低,下一步我們將在體內(nèi)動物實驗中進一步驗證尼古丁對免疫力的影響。
[1] Gupta N, Gupta ND, Goyal L, et al. The influence of smoking on the levels of matrix metalloproteinase-8 and periodontal parameters in smoker and nonsmoker patients with chronic periodontitis: a clinicobiochemical study. J Oral Biol Craniofac Res, 2016, 6(Suppl 1): S39-S43.
[2] Chang JE, Ding D, Martin-Lazaro J, et al. Smoking, environmental tobacco smoke, and aspirin-exacerbated respiratory disease. Ann Allergy Asthma Immunol, 2012, 108(1):14-19.
[3] van Osch FHM, Jochems SHJ, Reulen RC, et al. The association between smoking cessation before and after diagnosis and non-muscle-invasive bladder cancer recurrence: a prospective cohort study. Cancer Causes Control, 2018, 29(7):675-683.
[4] Kunutsor SK, Spee JM, Kieneker LM, et al. Self-reported smoking, urine cotinine, and risk of cardiovascular disease: findings from the PREVEND (prevention of renal and vascular end-stage disease) prospective cohort study. J Am Heart Assoc, 2018, 7(10):e008726.
[5] Fujimaki W, Takahashi N, Ohnuma K, et al. Comparative study of regulatory T cell function of human CD25CD4 T cells from thymocytes, cord blood, and adult peripheral blood. Clin Dev Immunol, 2008, 2008:305859.
[6] Liu Y, Mu Y, Zhang A, et al. Cytokine-induced killer cells/dendritic cells and cytokine-induced killer cells immunotherapy for the treatment of esophageal cancer in China: a meta-analysis. Onco Targets Ther, 2017, 10:1897-1908.
[7] Theil A, Wilhelm C, Kuhn M, et al. T cell receptor repertoires after adoptive transfer of expanded allogeneic regulatory T cells. Clin Exp Immunol, 2017, 187(2):316-324.
[8] Sadaoka S, Yagami K, Maki S. Nicotine in cigarettes promotes chromogranin A production by human periodontal ligament fibroblasts. Arch Oral Biol, 2013, 58(8):1029-1033.
[9] Zanetti SR, Ziblat A, Torres NI, et al. Expression and functional role of α7 nicotinic receptor in human cytokine-stimulated natural killer (NK) cells. J Biol Chem, 2016, 291(32):16541-16552.
[10] Wu S, Zhou Y, Liu S, et al. Regulatory effect of nicotine on the differentiation of Th1, Th2 and Th17 lymphocyte subsets in patients with rheumatoid arthritis. Eur J Pharmacol, 2018, 831:38-45.
[11] Wasén C, Turkkila M, Bossios A, et al. Smoking activates cytotoxic CD8+ T cells and causes survivin release in rheumatoid arthritis.J Autoimmun, 2017, 78:101-110.
[12] Pelissier-Rota MA, Pelosi L, Meresse P, et al. Nicotine-induced cellular stresses and autophagy in human cancer colon cells: a supportive effect on cell homeostasis via up-regulation of Cox-2 and PGE(2) production. Int J Biochem Cell Biol, 2015, 65(1):239-256.
[13] Landais E, Liautaud-Roger F, Antonicelli F. Lymphocytes prime activation is required for nicotine-induced calcium waves. Front Biosci (Elite Ed), 2010, 2:928-939.
[14] Leite FRM, Nascimento GG, Scheutz F, et al. Effect of smoking on periodontitis: a systematic review and meta-regression. Am J Prev Med, 2018, 54(6):831-841.
[15] Fan J, Ping J, Xiang J, et al. Effects of prenatal and lactation nicotine exposure on glucose homeostasis, lipogenesis and lipid metabolic profiles in mothers and offspring. Toxicol Res (Camb), 2016, 5(5): 1318-1328.
[16] Liu Y, Zeng X, Hui Y, et al. Activation of α7 nicotinic acetylcholine receptors protects astrocytes against oxidative stress-induced apoptosis: implications for Parkinson's disease. Neuropharmacology, 2015, 91:87-96.
[17] Kang X, Zhang X, Liu Z, et al. Granulocytic myeloid-derived suppressor cells maintain feto-maternal tolerance by inducing Foxp3 expression in CD4+CD25-T cells by activation of the TGF-β/β-catenin pathway. Mol Hum Reprod, 2016, 22(7):499-511.
Abnormal proliferation and function of different T lymphocyte subsets in peripheral blood of smokers
GE Ru-cun, LI Pei-pei, LI An-na, XU Lin, DAI Xiao-yu, WANG Huan-huan, LI Dong
Regenerative Medicine Laboratory, Shandong Provincial Third Hospital, Ji'nan 250031, China (GE Ru-cun, LI Pei-pei, XU Lin); Cryomedicine Laboratory, Qilu Hospital of Shandong University, Ji'nan 250012, China (LI An-na, DAI Xiao-yu, WANG Huan-huan, LI Dong)
To investigate the different effects of cigarette smoking on proliferation and function of immune killer cells and regulatory T cells during the expansion of peripheral blood T lymphocytes.
Twenty-seven male smokers and sixteen healthy controls of non-smokers with an average age of 30 years were selected. Peripheral lymphocytes were isolated using density gradient centrifugation. Anti-CD3 and anti-CD28 antibody, IL-2, IFN-γ and other cytokines were used for lymphocyte amplification for 15 days. Cell proliferation, and the ratio of killer T cells (CD3+CD8+cells, CD3+CD56+cells) and regulatory T cells (CD4+CD25+cells) were analyzed by FACS. CCK8 method was used to detect the tumor killing activity on HeLa cells. The expression of some immune related genes were detected using PCR method.
The proliferation ability of peripheral lymphocyte were decreased in smokers, while the proportion of regulatory T cells were high in smokers. Tumor killing activity was significantly lower in smoking group than that in control group. The expression of TNF-α, granzyme, IFN-γ and perforin were also reduced in smokers. But the expression of TGF-β1 was up-regulated in smoking group.
Smoking reduced immune killer cells rate in peripheral lymphocyte amplification but increased the proportion of regulatory T cell proportion. Up-regulation of TGF-β1 in smoking group further inhibits immune cell activation and proliferation.
Smoking; T lymphocytes, regulatory; Transforming growth factor beta; Immune killer cells
LI Dong, Email: lidong73@sdu.edu.cn
李棟,Email:lidong73@sdu.edu.cn
2018-12-18
10.3969/j.issn.1673-713X.2019.02.008