• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Orientation and alignment during materials processing under high magnetic fields?

    2019-04-13 01:14:44ZhongMingRen任忠鳴JiangWang王江andRuiXinZhao趙睿鑫
    Chinese Physics B 2019年4期
    關(guān)鍵詞:王江

    Zhong-Ming Ren(任忠鳴),Jiang Wang(王江),and Rui-Xin Zhao(趙睿鑫)

    State Key Laboratory of Advanced Special Steel&Shanghai Key Laboratory of Ferrometallurgy,Shanghai University,Shanghai 200444,China

    1.Introduction

    The ability to impose a preferred orientation or alignment on a crystalline material is effective in improving its physical properties.By applying a high magnetic field to a crystal,its magnetic force/torque is generated when the crystal has anisotropic magnetic properties.Table 1 shows the metallic materials aligned by a strong magnetic field.

    It can be seen that both ferromagnetic and nonferromagnetic metals can reach aligned morphologies under a sufficiently high magnetic field.From a thermodynamic viewpoint,the magnetizing of a crystal is a process involving an input of magnetization energy to the system.The magnetic energy can be expressed as follows:[12]

    For a non-ferromagnetic substance,M in Eq.(1)is the volume density of magnetic dipole moment and expressed as

    Inserting Eq.(2)into Eq.(1)yields

    where GMis the magnetization Gibbs energy,μ0is the magnetic permeability(4π ×10?7H·m?1),Hex(sometimes using B instead)is the imposed magnetic field,and χ is the magnetic susceptibility.

    As shown in Fig.1,the χ values of a crystal are heterogeneous in different crystal directions.Therefore,from Eq.(3),the entropy varies correspondingly.Then the difference in magnetizing entropy between crystal directions c and ab is:[12]

    This means that the decrease of free energy along the c-axis direction is more evident than the one along the ab axis.Therefore,the magnetic field enhances the growth in the c-axis direction and promotes the consequent growth alignment.

    It is necessary that a critical radius should be reached for the nuclei in a liquid metal to achieve the magnetic alignment.As given in Eq.(5),the critical radius can be derived from Eq.(1)under the assumption of a spherical particle.

    where kBis the Boltzmann constant,χcis the magnetic susceptibility along the c axis,and χa,bis the magnetic susceptibility along the ab axis.For instance,the critical radius for bismuth is 16.5 nm.

    Table 1.Summary of metallic materials aligned by strong magnetic field.[1–5]

    Fig.1.Anisotropic grain in magnetic field,where B is magnetic field direction.c and ab are crystallographic axes,respectively.[6]

    According to the theory of magnetic anisotropy,it is not necessary for the crystal to have a non-cubic structure.However,it is more common for non-ferromagnetic materials with non-cubic crystal structures to achieve the magnetic alignment.In some cases,magnetic alignment can also be induced by the shape magnetic anisotropy due to the shapes of the crystals,for instance,the needle-like phases precipitated from a liquid metal.Because of the shape anisotropy,the particle is aligned along the direction with a lower system energy imposed by the anisotropic demagnetizing field.It can be expressed in Eq.(6)as follows:

    where?U=U⊥?Ukindicates the difference in magnetic energy between the particle aligning perpendicular and that parallel to the magnetic field direction;χPand χMare the magnetic susceptibility of the particle and liquid metal,respectively;N⊥and Nkare the demagnetizing coefficient perpendicular and parallel to the needle axis of the particle.The value of N⊥is larger than that of Nkin the most cases for the particle with a needle-like shape,such as a primary dendrite arm.Therefore,if χP> χM,?U>0 and the particle should be parallel to the imposed magnetic field direction.If χP< χM,?U<0 and the particle aligns perpendicularly to the magnetic field.[10,12]

    There are several ways to achieve magnetic alignment during the processing of metallic materials,such as solidification,vapor-deposition,heat treatment,slip casting and electrodeposition.

    2.Reviews of researches on orientation an d alignment in processing various materials

    In 1981,Mikelson and Karklin first obtained the aligned solidification structure in Al–Ni,Al–Cu,Bi–Cd,and Cd–Zn alloys under a 0.5 T–1.5 T magnetic field.[6]Subsequently,Savitsky et al.found that the primary MnBi ferromagnetic crystal phase in Bi-(0.9–10)wt%Mn alloys aligned along the direction of a magnetic field of 2.5 T during solidification(see Fig.2).[11]De Rango et al. first prepared the bulk texture of YBa2Cu3O7superconductor in solidification process under a high magnetic field of 5 T.[13]Katsuk reported that the diamagnetic benzophenone crystallized from n-hexane,KCl and BaCl2crystallized from solution aligned under a 10-T magnetic field.[14]Texture crystal growth of Bi-2201 and Bi(Pb)2212 have been also obtained under a high magnetic field.Asai put forth the perpendicular alignment of the primary phase during solidification of Al–Si–Fe alloy under a strong magnetic field of 5.5 T.[15]

    Fig.2.Microstructures of Bi–10 wt%Mn alloy:(a)crystallization without external magnetic field;(b)and(c)cross-section parallel to applied magnetic if eld;(d)cross-section normal to applied magnetic field.[11]

    Thashi et al.also achieved the crystal alignment in vapor deposition process by using a high magnetic field.As shown in Fig.3,the zinc crystals were found to be oriented to the easy magnetic axis parallel to the magnetic direction in resistance method.[16]

    Fig.3.Zn film obtained by vapor-deposition without(a)and with(b)6-T magnetic field.[16]

    The crystal alignment during the solid phase transformation was also found under a high magnetic field.The first observation of aligned microstructures in steels was made on Fe–0.1%C and Fe–0.6%C alloys undergoing α-to-γ transformation in a magnetic field of 8 T.[17]The chain or columnar γ phase was developed along the magnetic field in the matrix of α phase as shown in Fig.4.The formation mechanism of the aligned structure is attributed to the dipolar interaction between the nuclei of γ phase regarded as magnetic holes in the background of ferromagnetic medium of α phase.Subsequently,the same author successfully achieved an aligned microstructure during the austenite-to-ferrite transformation in steels under a magnetic field of 12 T.At the same time,the formation mechanism of the aligned structures was discussed from the viewpoint of the nucleation and growth of ferrite grains in austenite phase under a magnetic field.

    Fig.4.Microstructures of Fe–0.6 wt%C specimens kept at 745 ?C for 45 min:(a)cross-section parallel to magnetic field 8 T;(b)cross-section perpendicular to the field;(c)under the same treatment in zone magnetic field.[17]

    In China,the relevant researches have been extensively carried out since the beginning of this century,which can be marked by the first paper published by the researchers from Shanghai University in 2002.The research group headed by Zhong-Ming Ren in Shanghai University mainly focused on the orientation and alignment behaviors of metals in the solidification process.They systemically studied the alignment of MnBi phase in the Bi–Mn alloy and its morphology evolution rule during the bulk solidification under different intensities of magnetic field.[18–24]By maintaining the melt at a constant temperature(above or below the curie temperature of Bi–Mn alloy)in different times,they analyzed the alignment and growth dynamics of the MnBi phase.In the mushy zone orient,the MnBi crystals congregated and grew up preferentially along the direction of the applied magnetic field in the Bi–Mn alloys solidification process.Besides the Bi–Mn system,they also verified the orientation effect of the static magnetic field on the Al–Ni[9]and Al–Cu[7,8]system and found that the A13Ni crystal orientation and the c plane of A13Ni crystal alignment are perpendicular to the direction of magnetic field.For the Al–Cu system,they pointed out that the alignment structure was formed and the h111i crystal direction turned to the direction of the magnetic field during directional solidification of the Al–4.5 wt%Cu alloy with a grains growth speed of 50μm/s and thermal gradient of 3800 K/m.It should be noticed that they in fact began to use the forced solidification method to enhance the alignment effect on solidification of metals with assistance of the static magnetic field in 2005.For the directional solidification of Bi–Mn alloy,they reported that the high magnetic field has enhanced the formation speed range of MnBi fiber and regularized the MnBi/Bi eutectic structure.As shown in Fig.5,the average spacing and diameters of MnBi fibers increased under the magnetic field.[24]The addition of high magnetic field made the arrangement of directionally solidified microstructure more regular.Obviously,the MnBi fiber began to coarsen and the fiber spacing increased.With the rise of magnetic field intensity,the small facet growth characteristics were enhanced.

    Fig.5.Influence of magnetic field on directional solidification structure,(a)and(b):without magnetic field;(c)and(d):with 2-T magnetic field;evolution of average spacing(e)and average diameter(f)with growth velocity under different magnetic fields.[24]

    Except for the single phase and eutectic alloys,the alignment of the monotecitc alloys can also be realized by using high static magnetic field during their solidification.In 2008,Wang et al.reported that some of aligned solidification structures were formed in the alloys of Fe–49 wt%Sn and Cu–40 wt%Pb under a high magnetic field.[25]They attributed such structures to the difference in magnetic anisotropy energy between α-Fe crystal orientation and the preferential growth of α-Fe dendrite;in the Cu–40 wt%Pb alloy under a 12-T high magnetic field,the motion of Pb-rich droplets and the molten flow in the solidifying front was suppressed by the external field,which indicates the formation of much longer,regularly aligned rod-like Pb-rich phase in the center of sample.More recently,Zhong et al.also found the aligned structure of Bi–5 wt%Zn formed during solidification under various high magnetic fields as shown in Fig.6;[26,27]the c axis of Zn crystal in the eutectic BiZn structure is the maximum magnetic susceptibility,which be aligned parallel to the direction of 6-T high static magnetic field completely.Both Wang and Zhong considered that such an aligned structure was formed in two steps:the minor phase droplets’movements were first damped by the high magnetic fields and then grown in a certain direction.

    Heat treatment is also another important materials processing technique,during which the texture is desired for most cases.A research group of Northeastern University is most active in this field in China.They first studied the effect of magnetic field intensity on the microstructure of proeutectoid ferrite in Fe–0.12%C[28]and Fe–0.76%C alloy.[29]It was found that the proeutectiod ferrite grains were elongated along the magnetic field direction,and the angle between the major axis of proeutectoid ferrite and magnetic field direction decreased with magnetic field intensity increasing.[29]They ex-plained such an observation as follows:the proeutectoid ferrite becomes the magnetic dipolar under high magnetic field,and then the diffusion of polarized austenite atoms is easier to form the ferrite grain along the magnetic field direction.In 2013,Wang et al.reported their work on the effect of magnetic field on crystal orientation,morphology and magnetostriction of TbFe2and Tb0.27Dy0.73Fe1.95alloys in heat treatment process.[30]They found that high magnetic field did not change the orientation of the R–Fe alloy,but the orientation degree had a great improvement after heat treatment.

    It can be seen that the aligned structure is more favored by the functional materials.The chemical synthesis(electrodeposition),vapor-deposition and slip casting are the most important fabricating methods.In such processes,the alignment effect of high static magnetic field works as well.In 2007,Ren et al.found that the one-dimensional growth of the nano-sized cobalt ferrite was enhanced by a 10-T static magnetic field in the synthesis process.[31]Three years later,they also confirmed that the magnetic field can align with the Zn crystal during the film fabrication.They achieved the Zn film growth via the vacuum evaporation method and found that the preferential growth direction of such a film was strongly affected by a strong magnetic field.[32]Wang et al.investigated that the influence of Co doping on the orientation behavior of ZnO film during fabrication under a magnetic field.[33]They found that a 6-T magnetic field can give rise to the formation of rod-like ZnO grains,and the preferred orientation of(101)transforms to that of(002)with oxidation time increasing under a high magnetic field.Very recently,a paper in this field was published by the high magnetic field laboratory of Chinese Academy of Sciences.Xu et al.studied the influence of high magnetic field on the molecular orientation and the morphology of iron phthalocyanie thin film.It was found that in the presence of the external magnetic field,the deposited FePc film showed a higher crystallinity and slightly closer packing in the(002)plane than those without magnetic field.Figure 7 shows the x-ray diffraction spectra of FePc thin films grew without and with magnetic field.[34]In 2010,Ma et al.fabricated the GdBCO bulks under a strong magnetic field and a textured structure was found under a 10-T magnetic field.[35]Such a texture structure favors the superconductivity property of the sample.

    Fig.7.X-ray diffraction spectra of FePc thin films grown without(a)and with(b)magnetic field.[34]

    Fig.8.X-ray diffraction patterns of green bodies prepared(a)without and(b)with a strong magnetic field of 12 T,and those are collected on the top and side surfaces of samples sintered at 1350?C for 90 min in air.X-ray diffraction patterns of(c)0-T sample;(d)12-T sample.[36]

    For the ceramics,slip casting is the main manufacturing method.The texture structure can be obtained by applying high magnetic field to this process,and in fact such an aligned structure is desired for some ceramics.In this field,the first research in China was carried out by Zhou et al.[36]They tried to clip the texture of γ-Y2Si2O7with the assistance of high magnetic field in the two-step sintering process.They used a high magnetic field in the slip casting process and found that the texture obtained in the green bodies could be preserved after sintering.Figure 8 shows the XRD patterns of their green bodies obtained by slip casting under magnetic field and the corresponding sintered samples.

    Zhang et al.fabricated highly textured ZrB2-based ultrahigh temperature ceramics via strong magnetic field alignment in 2009.[37]And recently,Pan et al.prepared a grain-oriented structure CeF3ceramic by imposing a high magnetic field in its slip casting process.[38]

    3.Conclusions

    In summary,it is not difficult to find that the orientation and alignment effect of high magnetic field has been widely accepted and applied to various material processes to obtain the texture structure.In this field,Chinese scientists have conducted extensive and in-depth researches.It can be found that the high static magnetic field is still a powerful method to control the crystal and grain orientation,and it can be expected to possess more practical applications in the future.

    [1]Wang Q,Liu T,Zhang C,Gao A,Li D and He J 2009 Sci.Technol.Adv.Mater.10 1

    [2]Han Y,Ban C,Guo S,Liu X,Ba Q and Cui J 2007 Mater.Lett.61 983

    [3]Rivoirard S,Barthem V M T S,Garcin T,Beaugnon E,De Miranda P E V and Givord D 2009 J.Phys.:Conf.Ser.156 012009

    [4]Legr,B A,Chateigner D,Perrier De La Bathie R and Tournier R 1998 J.Alloys Compd.275–277 660–664

    [5]Wang J,Li J,Hu R,Kou H and Beaugnon E 2015 Mater.Lett.139 288

    [6]Mikelson A E and Karklin Y K 1981 J.Cryst.Growth 52 524

    [7]Li X,Ren Z,Fautrelle Y,Zhang Y and Esling C 2010 Acta Mater.58 1403

    [8]Li X,Ren Z,Sun Y,Wang J,Yu J and Ren W 2006 Acta Metall.Sin.42 147

    [9]Li X,Ren Z,Wang H,Deng K and Xu K 2006 Chin.J.Nonferrous Met.16 476

    [10]Zhang W and Dou Y 2009 Mater.Mech.Eng.33 18

    [11]Savitsky E M,Torchinova R S and Turanov S A 1981 J.Cryst.Growth 52 519

    [12]Yamguchi M and Tanimoto Y 2006 Magneto-Science Magnetic Field Effects on Materials:Fundamentals and Applications(Springer)

    [13]de Rango P,Lees M,Lejay P,Sulpice A,Tournier R,Ingold M,P Germl M P 1991 Nature 349 770

    [14]Akio Katsuki,Ryoko Tokunaga S W and Y T 1996 Chem.Lett.607–608

    [15]Morikawa H,Sassa K and Asai S 1998 Mater.Trans.JIM 39 814

    [16]Tahashi M,Ishihara M,Sassa K and Asai S 2003 Mater.Trans.44 285

    [17]Shimotomai M and Maruta K 2000 Scr.Mater.42 499

    [18]Wang H,Ren Z,Deng K and Xu K 2002 Acta Metall.Sin.38 41

    [19]Wang H,Ren Z,Deng K and Xu K 2002 Chin.J.Nonferrous Met.12 556

    [20]Wang H,Zhong-Ming R,Li X,Li W,Deng K and Xu K 2003 Trans.Nonferrous Met.Soc.Chin.13 1405

    [21]Zhang B,Ren Z,Wang H,Li X and Zhuang Y 2004 Acta Metall.Sin.40 604

    [22]Li X,Ren Z,Wang H,Li W,Deng K and Zhuang Y 2004 Acta Metall.Sin.40 40

    [23]Li X,Ren Z,Yu J,Wang H and Deng K 2005 Acta Metall.Sin.41 685

    [24]Li X,Ren Z,Deng K,Zhuang Y and Xu K 2005 Acta Metall.Sin.41 588

    [25]Wang E,Zuo X,Zhang L and He J 2008 Sprcial Casting&Nonferrpis Aalloys,Vol.04 pp.478–481

    [26]Zhong Y,Wang J and Zheng T X 2012 Journal of Iron Steel Research,International pp.283–285

    [27]Zheng T,Zhong Y,Lei Z,Ren W,Ren Z,Wang H,Wang Q,Debray F,Beaugnon E and Fautrelle Y 2015 Mater.Lett.140 68

    [28]Song J,Zhao X,Wang S,Gong M and Zuo L 2008 Acta Metall.Sin.44 1305

    [29]Gong M,Zhao X,Wang S and Zuo L 2008 Acta Metall.Sin.44 615

    [30]Liu Y,Liu T,Wang Q,Wang H,Wang L and He J 2013 Acta Metall.Sin.49 1148

    [31]Gui L,Zhong Y,Fu X,Lei Z and Ren Z 2007 Acta Metall.Sin.43 529

    [32]Ren S,Ren Z and Ren W 2010 J.Vac.Sci.Technol.30 430

    [33]Li G,Wang H,Wang Q,Zhao Y,Wang Z,Du J and Ma Y 2015 Nanoscale Res.Lett.10 1

    [34]Huang C,Liu L,Fang J,Zhang W,Wang K,Gao P and Xu F 2016 Acta Phys.Sin.65 156101(in Chinese)

    [35]Wang L,Ma Y,Wang D,Wang J,Satoshi A and Kazuo W 2010 Chin.J.Low Temp.Phys.32 127

    [36]Sun Z Q,Zhu X W,Li M S,Zhou Y C and Sakka Y 2008 J.Am.Ceram.Soc.91 2521

    [37]Ni D,Zhang G,Kan Y and Sakka Y 2009 Scr.Mater.60 615

    [38]Li W,Sun Y,Kou H,Chen M,Shi Y,Feng X,Pan Y and Guo J 2014 Ceram.Int.40 10317

    猜你喜歡
    王江
    Parkinsonian oscillations and their suppression by closed-loop deep brain stimulation based on fuzzy concept
    誰都要看到的一幅畫
    散文詩世界(2022年7期)2022-07-07 11:33:52
    廣樂高速韶贛北連接線大橋通航水流條件研究
    洛書
    寶藏(2021年12期)2022-01-15 04:19:44
    王江薈國畫系列作品《安仁古八景》
    Effective suppression of beta oscillation in Parkinsonian state via a noisy direct delayed feedback control scheme?
    Magnetic properties and promising cryogenic magneto-caloric performances of Gd20Ho20Tm20Cu20Ni20 amorphous ribbons*
    宋朝“網(wǎng)紅”不好惹
    百家講壇(2019年10期)2019-07-13 13:26:44
    王江作品
    我?guī)惋溩訉W(xué)“站立”
    在线观看美女被高潮喷水网站| 欧美黑人欧美精品刺激| 综合色av麻豆| 亚洲四区av| 91麻豆av在线| 国产高清三级在线| 91狼人影院| 人妻夜夜爽99麻豆av| 亚洲综合色惰| 欧美zozozo另类| 99热这里只有是精品在线观看| 99精品在免费线老司机午夜| 国产女主播在线喷水免费视频网站 | 欧美一区二区国产精品久久精品| 啪啪无遮挡十八禁网站| 最新在线观看一区二区三区| 中文字幕av在线有码专区| 麻豆久久精品国产亚洲av| 国产精品一及| 亚洲精品影视一区二区三区av| 国产单亲对白刺激| 亚洲国产日韩欧美精品在线观看| 国产高清视频在线播放一区| 久久精品国产自在天天线| 麻豆国产97在线/欧美| 久久久久九九精品影院| 天堂网av新在线| 国产精品久久久久久久电影| 美女高潮喷水抽搐中文字幕| 国产人妻一区二区三区在| 欧美一级a爱片免费观看看| 国产老妇女一区| 久久精品国产自在天天线| 亚洲av第一区精品v没综合| 99精品久久久久人妻精品| 精品久久久久久久久久久久久| 国产在线男女| 小蜜桃在线观看免费完整版高清| 嫁个100分男人电影在线观看| 桃红色精品国产亚洲av| 日韩欧美精品免费久久| 久久国内精品自在自线图片| 无人区码免费观看不卡| 蜜桃亚洲精品一区二区三区| 久久精品国产99精品国产亚洲性色| 啦啦啦啦在线视频资源| 久久久久精品国产欧美久久久| 99精品在免费线老司机午夜| 国内精品一区二区在线观看| 久久精品91蜜桃| 日韩精品青青久久久久久| 日韩欧美精品v在线| 91麻豆精品激情在线观看国产| 国产精品爽爽va在线观看网站| 日本免费a在线| 一本久久中文字幕| 国内精品久久久久久久电影| 亚洲男人的天堂狠狠| 国产在线男女| 一区二区三区高清视频在线| 99九九线精品视频在线观看视频| 精品午夜福利视频在线观看一区| 天天一区二区日本电影三级| 国产伦精品一区二区三区视频9| 99久久无色码亚洲精品果冻| 精品久久久久久久久久久久久| 欧美日韩综合久久久久久 | 精品欧美国产一区二区三| 淫妇啪啪啪对白视频| 亚洲中文字幕一区二区三区有码在线看| 国产91精品成人一区二区三区| 18禁裸乳无遮挡免费网站照片| 尤物成人国产欧美一区二区三区| 成人av一区二区三区在线看| 床上黄色一级片| 久99久视频精品免费| 夜夜夜夜夜久久久久| 国产伦在线观看视频一区| 亚洲自拍偷在线| 亚洲七黄色美女视频| 精品午夜福利视频在线观看一区| 在线天堂最新版资源| 亚洲av免费在线观看| 日本欧美国产在线视频| 中文字幕高清在线视频| 3wmmmm亚洲av在线观看| 一边摸一边抽搐一进一小说| 日日摸夜夜添夜夜添小说| 悠悠久久av| 床上黄色一级片| 国产精华一区二区三区| 老司机福利观看| 亚洲av五月六月丁香网| 亚洲真实伦在线观看| 88av欧美| 97超级碰碰碰精品色视频在线观看| 欧美日韩国产亚洲二区| 欧美bdsm另类| 午夜免费激情av| 亚洲在线自拍视频| av在线观看视频网站免费| 午夜亚洲福利在线播放| 观看免费一级毛片| 老熟妇仑乱视频hdxx| 丰满乱子伦码专区| 亚洲欧美日韩高清专用| 亚洲久久久久久中文字幕| 级片在线观看| 国产色婷婷99| 日韩一区二区视频免费看| 国产成人一区二区在线| 亚洲成人久久性| 男人舔女人下体高潮全视频| 综合色av麻豆| 99在线视频只有这里精品首页| 欧美成人免费av一区二区三区| 午夜精品一区二区三区免费看| 亚洲最大成人中文| 国产视频一区二区在线看| 22中文网久久字幕| 婷婷六月久久综合丁香| 99九九线精品视频在线观看视频| 国产av麻豆久久久久久久| 天堂网av新在线| 日本黄大片高清| 亚洲熟妇熟女久久| 久久久久九九精品影院| av在线老鸭窝| 不卡视频在线观看欧美| 在线观看av片永久免费下载| av国产免费在线观看| 成人国产麻豆网| 精品久久久久久久久av| 久久久久久久精品吃奶| 国产美女午夜福利| 直男gayav资源| 国产亚洲精品综合一区在线观看| 国产免费一级a男人的天堂| 亚洲av免费在线观看| 我要搜黄色片| 国产亚洲欧美98| 国内精品久久久久精免费| 日韩国内少妇激情av| 12—13女人毛片做爰片一| www日本黄色视频网| 亚洲av美国av| 最近中文字幕高清免费大全6 | 91麻豆av在线| 亚洲国产日韩欧美精品在线观看| 亚洲第一区二区三区不卡| 日本 av在线| 搡老妇女老女人老熟妇| 午夜激情福利司机影院| 亚洲精品乱码久久久v下载方式| 国产精品99久久久久久久久| 国内少妇人妻偷人精品xxx网站| 免费不卡的大黄色大毛片视频在线观看 | 天堂影院成人在线观看| 国产伦在线观看视频一区| 在线观看av片永久免费下载| 九九久久精品国产亚洲av麻豆| 俄罗斯特黄特色一大片| 欧美xxxx性猛交bbbb| 久久人妻av系列| 国内精品一区二区在线观看| 22中文网久久字幕| 精品午夜福利在线看| 精品久久久久久久末码| 精品99又大又爽又粗少妇毛片 | 国产精品美女特级片免费视频播放器| 内射极品少妇av片p| 99久久精品热视频| 国产日本99.免费观看| 欧美激情久久久久久爽电影| 久久久久久久午夜电影| 国产69精品久久久久777片| 国产色爽女视频免费观看| 看片在线看免费视频| videossex国产| 国产淫片久久久久久久久| 黄色丝袜av网址大全| 天天一区二区日本电影三级| 日本成人三级电影网站| 国产精品永久免费网站| 成人欧美大片| 国产老妇女一区| 日日啪夜夜撸| 亚洲自偷自拍三级| 最近最新免费中文字幕在线| 国产单亲对白刺激| 国产午夜精品论理片| 成人国产一区最新在线观看| 99久久中文字幕三级久久日本| 啪啪无遮挡十八禁网站| 91麻豆av在线| 国产伦在线观看视频一区| av天堂在线播放| 久久久久久国产a免费观看| 99久久精品国产国产毛片| 亚洲天堂国产精品一区在线| 免费无遮挡裸体视频| 床上黄色一级片| 婷婷丁香在线五月| 人人妻,人人澡人人爽秒播| 男女视频在线观看网站免费| 成人欧美大片| 久久中文看片网| 麻豆av噜噜一区二区三区| 亚洲专区国产一区二区| 我要搜黄色片| 成人一区二区视频在线观看| 我的女老师完整版在线观看| 国产精品久久久久久久久免| 日韩一本色道免费dvd| 嫩草影院入口| 欧美+日韩+精品| 精品午夜福利在线看| 国产v大片淫在线免费观看| 欧美三级亚洲精品| 最近最新免费中文字幕在线| 免费看光身美女| 精品午夜福利在线看| 精品午夜福利视频在线观看一区| 婷婷精品国产亚洲av在线| 国产精品久久视频播放| 日本熟妇午夜| 综合色av麻豆| 99精品在免费线老司机午夜| 久久中文看片网| 久久精品国产99精品国产亚洲性色| 国产极品精品免费视频能看的| 最近中文字幕高清免费大全6 | 国产乱人视频| 日本一二三区视频观看| 天天一区二区日本电影三级| 嫩草影院精品99| 精品久久久久久久久久久久久| 1000部很黄的大片| 一级毛片久久久久久久久女| 亚洲中文日韩欧美视频| 国产精品免费一区二区三区在线| 男插女下体视频免费在线播放| 亚洲不卡免费看| 熟妇人妻久久中文字幕3abv| 亚洲乱码一区二区免费版| 天美传媒精品一区二区| 国产亚洲欧美98| 窝窝影院91人妻| 大型黄色视频在线免费观看| 国国产精品蜜臀av免费| 国产人妻一区二区三区在| 国产一区二区激情短视频| 啪啪无遮挡十八禁网站| 国内久久婷婷六月综合欲色啪| 亚洲经典国产精华液单| 91麻豆精品激情在线观看国产| 日本一二三区视频观看| 久久久久久久亚洲中文字幕| 1000部很黄的大片| 亚洲av日韩精品久久久久久密| 很黄的视频免费| 亚洲精华国产精华液的使用体验 | 又爽又黄a免费视频| 日本黄大片高清| 有码 亚洲区| 99热这里只有是精品在线观看| 久久精品国产亚洲av涩爱 | 亚洲男人的天堂狠狠| 看十八女毛片水多多多| 久久这里只有精品中国| 在现免费观看毛片| 精品国内亚洲2022精品成人| 一进一出抽搐gif免费好疼| 亚洲精品粉嫩美女一区| 国产中年淑女户外野战色| 欧美人与善性xxx| 人人妻人人澡欧美一区二区| 欧美在线一区亚洲| 尤物成人国产欧美一区二区三区| 麻豆成人av在线观看| 亚洲av成人av| 热99re8久久精品国产| 国产成人一区二区在线| 久久精品夜夜夜夜夜久久蜜豆| 久久天躁狠狠躁夜夜2o2o| 久久人妻av系列| 97碰自拍视频| 欧美性猛交╳xxx乱大交人| 91麻豆av在线| 一级黄色大片毛片| 天堂√8在线中文| 国产中年淑女户外野战色| 人妻制服诱惑在线中文字幕| 国产免费av片在线观看野外av| 免费人成视频x8x8入口观看| 直男gayav资源| 变态另类成人亚洲欧美熟女| 亚洲熟妇熟女久久| 很黄的视频免费| 亚洲国产日韩欧美精品在线观看| 国产 一区精品| a在线观看视频网站| 欧美潮喷喷水| 99国产极品粉嫩在线观看| 亚洲国产精品成人综合色| 99久久成人亚洲精品观看| 国产高清视频在线播放一区| 嫩草影院精品99| 亚洲男人的天堂狠狠| 国产一区二区三区视频了| 欧美性猛交黑人性爽| 成熟少妇高潮喷水视频| 国产一级毛片七仙女欲春2| 久久久久久大精品| 老司机福利观看| av在线蜜桃| 我要搜黄色片| 最近最新中文字幕大全电影3| 夜夜看夜夜爽夜夜摸| 亚州av有码| 久久久久性生活片| 欧美最新免费一区二区三区| 国产精品av视频在线免费观看| 18禁裸乳无遮挡免费网站照片| 亚洲中文日韩欧美视频| 日本 av在线| 久9热在线精品视频| 欧美日韩国产亚洲二区| 亚洲综合色惰| 久99久视频精品免费| 欧美不卡视频在线免费观看| 日日干狠狠操夜夜爽| 欧美+日韩+精品| 舔av片在线| 欧美高清性xxxxhd video| 国产精品综合久久久久久久免费| 亚洲最大成人av| 欧美3d第一页| 韩国av一区二区三区四区| 国产真实伦视频高清在线观看 | 婷婷亚洲欧美| 国产精品三级大全| 亚洲av不卡在线观看| av在线蜜桃| 精品免费久久久久久久清纯| 亚洲在线自拍视频| 免费看a级黄色片| 噜噜噜噜噜久久久久久91| aaaaa片日本免费| 老司机深夜福利视频在线观看| 婷婷六月久久综合丁香| 午夜激情欧美在线| 国产精品1区2区在线观看.| 亚洲国产欧美人成| 亚洲国产精品久久男人天堂| 神马国产精品三级电影在线观看| 国产日本99.免费观看| 午夜福利在线在线| 欧美高清性xxxxhd video| 亚洲国产精品sss在线观看| 午夜精品在线福利| 国产午夜福利久久久久久| 春色校园在线视频观看| 精品一区二区三区视频在线观看免费| 最近在线观看免费完整版| 国产午夜福利久久久久久| 99久久精品国产国产毛片| 日韩中文字幕欧美一区二区| 一本一本综合久久| 一区二区三区高清视频在线| 在线免费观看不下载黄p国产 | 一进一出抽搐动态| 国内精品美女久久久久久| 成年人黄色毛片网站| 999久久久精品免费观看国产| 午夜免费激情av| 夜夜看夜夜爽夜夜摸| 日本一二三区视频观看| 悠悠久久av| 欧美色视频一区免费| 永久网站在线| 人妻少妇偷人精品九色| 嫩草影视91久久| 成年版毛片免费区| 97热精品久久久久久| .国产精品久久| 成人无遮挡网站| 在线a可以看的网站| 日韩欧美精品免费久久| 亚洲一区二区三区色噜噜| 国产亚洲av嫩草精品影院| 在线a可以看的网站| 在线观看午夜福利视频| 永久网站在线| 狂野欧美白嫩少妇大欣赏| 22中文网久久字幕| 久久99热6这里只有精品| 国产午夜精品久久久久久一区二区三区 | 黄色视频,在线免费观看| 欧美日本视频| 一夜夜www| 黄色配什么色好看| 午夜老司机福利剧场| 女同久久另类99精品国产91| 久久午夜福利片| 在线观看免费视频日本深夜| 99久久精品国产国产毛片| 麻豆久久精品国产亚洲av| 午夜福利视频1000在线观看| 国内精品一区二区在线观看| 免费电影在线观看免费观看| 欧美精品国产亚洲| 99热这里只有精品一区| 一级a爱片免费观看的视频| xxxwww97欧美| 日本五十路高清| 午夜精品久久久久久毛片777| av.在线天堂| 色精品久久人妻99蜜桃| 日本熟妇午夜| 我要看日韩黄色一级片| 日日夜夜操网爽| 国产精品一及| 精品99又大又爽又粗少妇毛片 | 亚洲欧美清纯卡通| av福利片在线观看| 男女视频在线观看网站免费| 人妻制服诱惑在线中文字幕| 男女边吃奶边做爰视频| 啦啦啦观看免费观看视频高清| 99久久精品热视频| 欧美另类亚洲清纯唯美| 午夜福利在线在线| 狂野欧美白嫩少妇大欣赏| 亚洲成人久久性| 久久久久九九精品影院| 国语自产精品视频在线第100页| 淫秽高清视频在线观看| 大又大粗又爽又黄少妇毛片口| 99久久精品热视频| 很黄的视频免费| 在线观看av片永久免费下载| 一个人观看的视频www高清免费观看| 欧美高清成人免费视频www| 国产成人福利小说| 日本一本二区三区精品| 欧美日韩精品成人综合77777| 18禁黄网站禁片午夜丰满| 日本-黄色视频高清免费观看| 最近中文字幕高清免费大全6 | 1000部很黄的大片| 一区二区三区免费毛片| 伊人久久精品亚洲午夜| 中文字幕熟女人妻在线| 亚洲av成人精品一区久久| 一级黄色大片毛片| 一本久久中文字幕| 国内少妇人妻偷人精品xxx网站| 国产视频内射| 国产伦精品一区二区三区视频9| 亚洲人成网站高清观看| 亚洲无线在线观看| 国产精品国产高清国产av| 18禁裸乳无遮挡免费网站照片| 12—13女人毛片做爰片一| 欧美色欧美亚洲另类二区| 午夜福利欧美成人| 国产在线精品亚洲第一网站| 久久久精品欧美日韩精品| 欧美激情久久久久久爽电影| 男人的好看免费观看在线视频| 国产乱人视频| 亚洲av不卡在线观看| 国产精品免费一区二区三区在线| 国产在线男女| 色播亚洲综合网| 亚洲国产高清在线一区二区三| 国产成人av教育| 美女免费视频网站| 九色国产91popny在线| 国产黄a三级三级三级人| 色5月婷婷丁香| 亚洲精华国产精华精| av在线蜜桃| 成年免费大片在线观看| 久久久成人免费电影| 大又大粗又爽又黄少妇毛片口| 黄色视频,在线免费观看| 亚洲经典国产精华液单| 成人av在线播放网站| 国产 一区精品| 级片在线观看| АⅤ资源中文在线天堂| 在线播放无遮挡| 欧美成人a在线观看| 999久久久精品免费观看国产| 97超级碰碰碰精品色视频在线观看| 日本 av在线| 亚洲三级黄色毛片| 国产黄色小视频在线观看| 麻豆成人av在线观看| 一进一出抽搐动态| 久久精品久久久久久噜噜老黄 | 亚洲最大成人av| 老熟妇乱子伦视频在线观看| 成人av在线播放网站| 91av网一区二区| 又黄又爽又刺激的免费视频.| 亚洲最大成人av| 婷婷精品国产亚洲av| 别揉我奶头~嗯~啊~动态视频| 又粗又爽又猛毛片免费看| 日韩 亚洲 欧美在线| ponron亚洲| 麻豆精品久久久久久蜜桃| 国产一区二区三区av在线 | 97超级碰碰碰精品色视频在线观看| 日本 av在线| av专区在线播放| 欧美激情在线99| 精品一区二区三区人妻视频| 中出人妻视频一区二区| 国产精品一区二区三区四区久久| 不卡视频在线观看欧美| 男人和女人高潮做爰伦理| 日韩欧美精品v在线| 国产aⅴ精品一区二区三区波| a级毛片a级免费在线| 国语自产精品视频在线第100页| 成人性生交大片免费视频hd| 婷婷色综合大香蕉| 中文字幕久久专区| 久久久久久久精品吃奶| 成人毛片a级毛片在线播放| 成熟少妇高潮喷水视频| 麻豆国产97在线/欧美| 欧美精品啪啪一区二区三区| 国产精品嫩草影院av在线观看 | 午夜激情欧美在线| 久久国产乱子免费精品| 欧美极品一区二区三区四区| 精品国产三级普通话版| 99久久精品一区二区三区| а√天堂www在线а√下载| av.在线天堂| 免费看av在线观看网站| 国产精品,欧美在线| 亚洲av中文字字幕乱码综合| 国产精品精品国产色婷婷| 久久久久久久久久成人| 美女cb高潮喷水在线观看| 日日啪夜夜撸| 极品教师在线视频| 国产蜜桃级精品一区二区三区| 精品久久久久久久久久免费视频| 精品免费久久久久久久清纯| 人妻夜夜爽99麻豆av| 精品日产1卡2卡| 久久精品影院6| 欧美不卡视频在线免费观看| 国产成人av教育| 日韩欧美一区二区三区在线观看| 欧美高清成人免费视频www| 亚洲精品久久国产高清桃花| 国产精品福利在线免费观看| 久久国产精品人妻蜜桃| 狂野欧美激情性xxxx在线观看| 国产精品亚洲一级av第二区| 国产69精品久久久久777片| 精品午夜福利在线看| 欧美精品啪啪一区二区三区| 可以在线观看的亚洲视频| 久久99热这里只有精品18| 亚洲成av人片在线播放无| 一本久久中文字幕| 97人妻精品一区二区三区麻豆| 亚洲三级黄色毛片| 男女视频在线观看网站免费| 国产精品久久久久久亚洲av鲁大| 乱码一卡2卡4卡精品| 我要搜黄色片| 一区二区三区高清视频在线| 香蕉av资源在线| 午夜免费男女啪啪视频观看 | 免费黄网站久久成人精品| 成人特级av手机在线观看| 国产精品1区2区在线观看.| 国产日本99.免费观看| 亚州av有码| 亚洲国产精品合色在线| 欧美xxxx性猛交bbbb| 日日撸夜夜添| 免费看光身美女| 18禁黄网站禁片午夜丰满| 99热网站在线观看| 欧美人与善性xxx| 久久久国产成人免费| 黄色女人牲交| 欧美人与善性xxx| 午夜精品久久久久久毛片777| 99久久精品热视频| 亚洲性久久影院| 成人av在线播放网站| www.色视频.com| 18+在线观看网站| 一本一本综合久久| 搡女人真爽免费视频火全软件 | 麻豆成人av在线观看| 欧美丝袜亚洲另类 | 欧美日本视频| 久久久色成人| 久久99热这里只有精品18| 欧美+日韩+精品| 乱系列少妇在线播放| 国产蜜桃级精品一区二区三区|