王珍 朱少平
摘 要 利用krasnoelskii錐拉伸與壓縮不動(dòng)點(diǎn)定理考察了一類(lèi)奇異非線性三階三點(diǎn)邊值問(wèn)題的正解的存在性,得到了此類(lèi)邊值問(wèn)題在奇異條件下至少存在一個(gè)正解的結(jié)果。
關(guān)鍵詞 三階三點(diǎn)邊值問(wèn)題 奇異 正解 錐 不動(dòng)點(diǎn)定理
中圖分類(lèi)號(hào):O175 文獻(xiàn)標(biāo)識(shí)碼:A DOI:10.16400/j.cnki.kjdks.2019.03.026
Abstract This paper is concerned with the existence of a positive solution of singular third-order three-point boundary value problem by using the Krasnoselskii's fixed point theorem of cone expansion-compression type, and established existence results for at least one positive solution for this class of problem when the nonlinear term is allowed to be singular.
Keywords third-order three-point boundary value problem; singular; positive solution; cone; fixed point theorem
參考文獻(xiàn)
[1] D.R.Anderson. Multiple positive solutions for a three-point boundary value prob- lem[J].Math Comput.Modelling,1998.27(6):49-57.
[2] Shuhong Li. Positive solutions of nonlinear singular third-order two-point bound- ary value problem[J].2005.
[3] 劉希玉.具有奇性的一類(lèi)邊值問(wèn)題的正解[J].純粹數(shù)學(xué)和應(yīng)用數(shù)學(xué),1998.1.
[4] Q. Yao.The existence and multiplicity of positive solutions for a third-order three - point boundary value problem[J].Acta Math.Appl.Sinica,2003.19:117-122.
[5] D.Guo, V.Lakshmikantham.Nonlinear Problems in Abstract Cones[M].Academic Press, San Diego,1988.
[6] Ma Ru-yun.Existence theorems for a second order three-point boundary value pro- blem[J].J Math Anal Appl,1997.212:430-442.
[7] Ma Ru-yun. Positive solutions of a nonlinear three-point boundary value problems [J].Electron. J. Differential Equations,1999.34:1-8.
[8] 郭大鈞.非線性泛函分析[M].濟(jì)南:山東科學(xué)技術(shù)出版社,2003.
[9] 孫經(jīng)先.非線性泛函分析及其應(yīng)用[M].北京:科學(xué)出版社,2007.
[10] 葛渭高.非線性常微分方程邊值問(wèn)題[M].北京:科學(xué)出版社,2007.
[11] L.Guo,J.Sun,Y.Zhao. Existence of positive solutions for nonlinear third-order three-point boundary value problems[J].Nonlinear Anal.,2008.68(10):3151 -3158.