劉慶濤,康振,堵國(guó)成
?
微生物酶法消除黃酒中氨基甲酸乙酯研究進(jìn)展
劉慶濤1,2,康振1,2,堵國(guó)成1,2
1 江南大學(xué) 生物工程學(xué)院 工業(yè)生物技術(shù)教育部重點(diǎn)實(shí)驗(yàn)室,江蘇 無(wú)錫 214122 2 江南大學(xué) 食品安全與營(yíng)養(yǎng)協(xié)同創(chuàng)新中心,江蘇 無(wú)錫 214122
劉慶濤, 康振, 堵國(guó)成. 微生物酶法消除黃酒中氨基甲酸乙酯研究進(jìn)展.生物工程學(xué)報(bào), 2019, 35(4): 567–576.Liu QT, Kang Z, Du GC. Advances in microbial enzymatic elimination of ethyl carbamate in Chinese rice wine. Chin J Biotech, 2019, 35(4): 567–576.
氨基甲酸乙酯 (Ethyl carbamate,EC) 具有致癌性,廣泛存在于酒精飲料中。我國(guó)的黃酒因EC含量高而帶來(lái)的食品安全問(wèn)題越來(lái)越受到人們的關(guān)注。微生物酶法消除黃酒中的EC具有直接、高效的特性而被深入研究。文中從黃酒中EC的形成機(jī)制、酸性脲酶研究現(xiàn)狀、氨基甲酸乙酯水解酶研究現(xiàn)狀等方面概述了微生物酶法消除黃酒中EC的研究進(jìn)展及存在的問(wèn)題。并針對(duì)這些問(wèn)題,提出了尋找新型氨基甲酸乙酯水解酶、Fe3+依賴(lài)型雙功能酸性脲酶食品級(jí)表達(dá)與定向進(jìn)化及雙酶并用將尿素和EC一起消除的策略。
食品安全,氨基甲酸乙酯,微生物酶法,酸性脲酶,氨基甲酸乙酯水解酶,黃酒
氨基甲酸乙酯(Ethyl carbamate 或Urethane,簡(jiǎn)稱(chēng)EC),是一種具有遺傳毒性及較強(qiáng)致癌性的物質(zhì)[1],天然存在于多種發(fā)酵食品 (如醬油、食醋、泡菜) 和酒精飲料 (如黃酒、白酒、葡萄酒等、日本清酒、白蘭地) 中[2-4]。2007年國(guó)際癌癥研究機(jī)構(gòu)IARC (the International Agency for Research on Cancer) 將EC歸類(lèi)為2A 類(lèi)致癌物質(zhì)[5]。世界各國(guó)和國(guó)際衛(wèi)生組織對(duì)酒中的EC 濃度都有嚴(yán)格的限量標(biāo)準(zhǔn)[2]。酒精飲料中因EC存在而隱含的食品安全問(wèn)題越來(lái)越受到人們的關(guān)注。在酒精飲料中,黃酒的EC含量最高[6],而黃酒基本上都是我國(guó)所生產(chǎn),這不僅限制了我國(guó)黃酒的出口,同時(shí)也引起人們對(duì)其長(zhǎng)期飲用所存在的安全方面的擔(dān)憂。消除黃酒中的EC有多種策略,包括工藝優(yōu)化、物理吸附、代謝工程策略改造酒用酵母、生物酶法消除等。工藝優(yōu)化法,一方面通過(guò)對(duì)原材料的精煉及對(duì)發(fā)酵過(guò)程的控制 (如溫度、pH控制及添加外源抑制劑等),來(lái)減少因原材料帶入或菌種代謝及酶促反應(yīng)所產(chǎn)生的EC的前體物[7-10],另一方面通過(guò)對(duì)發(fā)酵產(chǎn)品的后處理過(guò)程進(jìn)行優(yōu)化 (如縮短滅菌的加熱時(shí)間、加快滅菌后的降溫速度等),來(lái)減少EC的形成[11-13]。該過(guò)程繁瑣,改變生產(chǎn)工藝及采用物理吸附還可能影響酒的風(fēng)味[3]。代謝工程策略主要是針對(duì)釀酒酵母的改造,一方面減少細(xì)胞內(nèi)尿素的生成[14-16],另一方面強(qiáng)化細(xì)胞對(duì)胞外尿素的吸收及利用[17-19]。該方法僅是通過(guò)減少形成EC的前體物質(zhì)來(lái)阻礙EC的形成,對(duì)已經(jīng)形成的EC無(wú)法直接消除[20]。而采用微生物酶法可直接降解尿素及EC,其直接、高效的特性使得其在解決酒精飲料因EC而帶來(lái)的食品安全問(wèn)題中具有很大的優(yōu)勢(shì)[21]。文中從黃酒中EC形成機(jī)制、酸性脲酶研究現(xiàn)狀、氨基甲酸乙酯水解酶研究現(xiàn)狀等方面綜述了微生物酶法消除黃酒中EC研究進(jìn)展及存在的問(wèn)題,并對(duì)未來(lái)黃酒中EC酶法消除提出針對(duì)性策略。
EC是由尿素、氨甲酰磷酸、瓜氨酸、焦碳酸二乙酯和氰化物等前體物質(zhì)與乙醇自發(fā)反應(yīng)而形成[21]。尿素、氨甲酰磷酸、瓜氨酸主要由原材料帶入及微生物 (釀酒酵母、乳酸菌等) 代謝產(chǎn)生,氰化物則主要是在發(fā)酵過(guò)程中經(jīng)酶促反應(yīng)形成,而焦碳酸二乙酯則是作為防腐劑而人為添加[21]。這些前體物質(zhì)中尿素是黃酒中形成EC的最主要前體物質(zhì)[3],其次是瓜氨酸[22]。在黃酒的煎酒過(guò)程中,尿素、瓜氨酸等前體物質(zhì)在高溫條件下與乙醇快速反應(yīng)而導(dǎo)致酒中EC大量積累。
黃酒中尿素一方面是由原材料帶入,另一方面主要是由酵母細(xì)胞在精氨酸代謝過(guò)程中產(chǎn)生[23]。精氨酸在精氨酸酶 (Arginine hydrolase) 作用下水解為鳥(niǎo)氨酸和尿素[24]。一般情況下,尿素再經(jīng)脲基酰胺酶作用而被分解為氨和CO2。但由于尿素為酵母菌的非偏好氮源,當(dāng)培養(yǎng)基中存在偏好氮源 (如谷氨酰胺及天冬酰胺) 時(shí),由于NCR (Nitrogen catabolite repression) 效應(yīng)導(dǎo)致尿素?zé)o法被及時(shí)分解,進(jìn)而被尿素轉(zhuǎn)運(yùn)蛋白轉(zhuǎn)運(yùn)出細(xì)胞,從而大幅增加黃酒中的尿素含量。黃酒中的瓜氨酸主要來(lái)自于原材料引入[24],另外瓜氨酸也是由乳酸菌將精氨酸經(jīng)ADI途徑 (Arginine deminase pathway) 代謝而產(chǎn)生的中間產(chǎn)物[25]。目前為止,對(duì)黃酒中EC的消除研究主要集中在消除形成EC的最主要的前體物尿素及直接消除EC上。
應(yīng)用于黃酒中EC消除的酶有兩種,其一是酸性脲酶,通過(guò)消除黃酒中的尿素來(lái)減少EC的形成;另外一種就是氨基甲酸乙酯水解酶,它可以直接降解EC生成氨、乙醇和二氧化碳 (圖1)。
圖1 酶法消除黃酒中EC
2.1.1 酸性脲酶概述
脲酶 (Urease, EC 3.5.1.5) 是世界上第一個(gè)結(jié)晶酶[26],可水解尿素生成氨、乙醇及二氧化碳 (H2N-CO-NH2+ H2O → H2N-COOH + NH3及 H2N-COOH + H2O→H2CO3+ NH3)[27]。脲酶廣泛存在于植物、細(xì)菌、真菌中,已有很多年的研究歷史[28-30]。來(lái)自于刀豆的脲酶是第一個(gè)被發(fā)現(xiàn)的含有Ni2+的金屬酶,隨后越來(lái)越多的脲酶均被證實(shí)其活性中心需要Ni2+的參與[31-32]。脲酶由結(jié)構(gòu)亞基 (UreA,B,C) 及輔助亞基 (UreE,F(xiàn),G,D/H) 組成 (圖2)。其中來(lái)自幽門(mén)螺桿菌的脲酶結(jié)構(gòu)基因?yàn)槠渌麃?lái)源的脲酶與的融合體,其輔助基因的功能與其他來(lái)源的脲酶輔助基因的功能一致[33]。脲酶的結(jié)構(gòu)亞基UreC是催化亞基,所有的亞基對(duì)于脲酶的活性表達(dá)均起到至關(guān)重要的作用,缺一不可[30]。
根據(jù)脲酶最適作用pH 的不同,脲酶分為酸性脲酶、中性脲酶及堿性脲酶[30, 34]。植物來(lái)源的脲酶均為中性脲酶,酸性脲酶均發(fā)現(xiàn)于微生物中。酸性脲酶因其能在酸性條件下發(fā)揮作用,從而能夠應(yīng)用于酒精飲料中尿素的降解而引起了人們的關(guān)注。1979年,酸性脲酶在發(fā)酵乳桿菌中首次被發(fā)現(xiàn)[35]。隨后許多具有酸性脲酶活力的胃腸道微生物被分離及鑒定[36-37],許多來(lái)自于乳酸菌類(lèi)如嗜熱鏈球菌[38-39]、唾液鏈球菌[40]、輕型鏈球菌[41]、羅伊氏乳桿菌[42]、[43]等的酸性脲酶也得到了深入的研究。
2.1.2 酸性脲酶應(yīng)用現(xiàn)狀
目前來(lái)說(shuō),來(lái)自及運(yùn)動(dòng)節(jié)桿菌的酸性脲酶均已商業(yè)化。來(lái)自于羅伊氏乳桿菌CICC6124的酸性脲酶,在乳酸乳球菌NZ9000中實(shí)現(xiàn)了食品級(jí)表達(dá),在3-L發(fā)酵罐中通過(guò)分階段控制pH及發(fā)酵過(guò)程中流加葡萄糖等策略獲得了脲酶的產(chǎn)量為11 560 U/L,這是目前所報(bào)道的食品級(jí)脲酶的最高產(chǎn)量[44]。雖然上述酸性脲酶均能高效降解酒中的尿素,但其均需Ni2+為其配體,而Ni2+的存在引起人們對(duì)其應(yīng)用時(shí)安全方面的擔(dān)憂(表1)[3-4]。同時(shí),食品級(jí)的酸性脲酶產(chǎn)量低 (表1),這也限制了脲酶的工業(yè)化應(yīng)用。近年來(lái),劉慶濤等[45]發(fā)現(xiàn)并鑒定了來(lái)自于地衣芽孢桿菌9945A的脲酶為Fe3+依賴(lài)型酸性脲酶,其以Fe3+為配體時(shí),在pH 4.5條件下,其m、max分別為28.2 mmol/L、73.5 μmol/(mg·min)。將此脲酶添加于黃酒中 (6 U/mL),在37 ℃條件下反應(yīng)50 h后可消除92%的尿素 (表1)。此Fe3+依賴(lài)型脲酶的發(fā)現(xiàn)解除了Ni2+依賴(lài)型脲酶應(yīng)用時(shí)安全方面的擔(dān)憂,在未來(lái)工業(yè)化應(yīng)用方面具有重大的潛在價(jià)值。
圖2 來(lái)自于不同微生物的脲酶基因簇
2.1.3 雙功能酸性脲酶的發(fā)現(xiàn)
楊廣明等發(fā)現(xiàn)來(lái)自于普羅威登斯菌JN-B815的酸性脲酶對(duì)EC具有水解作用,研究者克隆出了該酸性脲酶的基因并實(shí)現(xiàn)了在大腸桿菌中活性表達(dá)[48]。2015年,楊宇清等[44]發(fā)現(xiàn)來(lái)自于CICC6124 的酸性脲酶對(duì)EC具有水解作用,通過(guò)對(duì)黃酒中EC的降解分析發(fā)現(xiàn),該酶雖然耐乙醇、耐酸,但對(duì)黃酒中的EC幾乎無(wú)直接降解作用??赡艿脑蚴请迕笇?duì)EC的底物親和力 (m) 差,導(dǎo)致其對(duì)黃酒中低濃度的EC無(wú)法降解。劉慶濤等[45]發(fā)現(xiàn)來(lái)自于9945A的Fe3+依賴(lài)型脲酶對(duì)EC也具有水解作用。在pH 4.5條件下,該酶對(duì)EC的m、max分別為958 mmol/L、15.2 μmol/(mg·min),如此低的EC親和力及催化效率導(dǎo)致其不能有效降解黃酒中的EC。同時(shí)劉慶濤等也發(fā)現(xiàn)普羅威登斯菌sp. LBBE的脲酶對(duì)EC也具有水解作用。研究者通過(guò)染色體步移技術(shù)[49],從該菌基因組上獲得了脲酶基因簇的核苷酸序列,并實(shí)現(xiàn)了其在大腸桿菌中活性表達(dá)[45]。具有EC降解能力的雙功能酸性脲酶的發(fā)現(xiàn),為黃酒中EC降解提供了新的思路。
2.1.4 酸性脲酶應(yīng)用于黃酒中EC消除時(shí)存在的問(wèn)題
應(yīng)用酸性脲酶雖然能夠高效消除黃酒中的尿素,從而減少EC的形成。但由于尿素并非形成EC的唯一前體物質(zhì),且其對(duì)已經(jīng)形成的EC無(wú)法降解,因而此種方法僅能減少黃酒中由尿素形成的EC;雙功能酸性脲酶雖然對(duì)EC有水解作用,但其對(duì)EC的底物親和力差、催化效率低等問(wèn)題致使其不能直接降解黃酒中低濃度的EC;另外食品級(jí)宿主所生產(chǎn)的脲酶產(chǎn)量低,也限制了其應(yīng)用。
表1 不同來(lái)源的酸性脲酶性質(zhì)比較
NP: not report.
2.1.5 酸性脲酶未來(lái)研究方向
酸性脲酶未來(lái)的研究方向,一方面集中在對(duì)雙功能酸性脲酶的底物特異性改造上。來(lái)自于的酸性脲酶,因其為Fe3+依賴(lài)型脲酶,且耐酸、耐乙醇并能夠降解黃酒中的尿素而具有改造價(jià)值。脲酶的結(jié)構(gòu)亞基UreC為催化亞基,包含了脲酶的催化活性中心。利用同源建模技術(shù)對(duì)C亞基進(jìn)行3D結(jié)構(gòu)模擬,利用Discovery studio等軟件將底物EC對(duì)接到UreC的活性口袋。通過(guò)分子動(dòng)力學(xué)模擬校正對(duì)接結(jié)果。通過(guò)分子對(duì)接結(jié)果,對(duì)脲酶C亞基進(jìn)行半理性設(shè)計(jì)改造,從而提高其對(duì)EC的底物親和力及催化效率 (圖3)。
另一方面,酸性脲酶未來(lái)的研究方向集中在對(duì)酸性脲酶的食品級(jí)高效制備上。提高脲酶在食品級(jí)宿主中的表達(dá)量,有以下幾點(diǎn)建議:其一,優(yōu)化脲酶基因簇各個(gè)基因間的核糖體結(jié)合位點(diǎn) (RBS),確保所有基因均表達(dá)。脲酶基因簇由結(jié)構(gòu)基因及輔助基因構(gòu)成 (圖2),各個(gè)基因間存在交互重疊的現(xiàn)象,這樣就會(huì)導(dǎo)致異源表達(dá)整個(gè)基因簇時(shí),翻譯的過(guò)程有可能會(huì)意外終止。而任何一個(gè)基因的不表達(dá)均能導(dǎo)致脲酶失去活力[30]。其二,強(qiáng)化催化亞基UreC的表達(dá),從而平衡脲酶結(jié)構(gòu)亞基UreA、B、C之間的表達(dá)量。文獻(xiàn)報(bào)道,在同一個(gè)操縱子中表達(dá)多個(gè)基因時(shí),距離啟動(dòng)子越遠(yuǎn)的基因表達(dá)量越低[50]。而大部分脲酶均以(UreABC)3的組成結(jié)構(gòu)發(fā)揮催化作用,UreC表達(dá)量的減弱會(huì)造成UreA、B的浪費(fèi),因此,有必要強(qiáng)化UreC的表達(dá)。其三,與Ni2+或Fe3+轉(zhuǎn)運(yùn)蛋白共表達(dá)。文獻(xiàn)報(bào)道,Ni2+依賴(lài)型的脲酶與Ni2+轉(zhuǎn)運(yùn)蛋白共表達(dá)可顯著提高脲酶的比酶活力[51-52]。因此與Fe3+轉(zhuǎn)運(yùn)蛋白共表達(dá)有可能會(huì)提高Fe3+依賴(lài)型脲酶異源表達(dá)時(shí)的酶活力。
圖3 脲酶UreC亞基同源建模及分子對(duì)接結(jié)構(gòu)圖(A:UreC 3-D結(jié)構(gòu)圖;B:脲酶催化活性中心;C:脲酶底物結(jié)合口袋)
2.2.1 氨基甲酸乙酯水解酶概述
氨基甲酸乙酯水解酶 (英文名稱(chēng)為urethane hydrolase或urethane amidohydrolase,urethanase),酶學(xué)委員會(huì)編號(hào)EC 3.5.1.75。日本學(xué)者最早從事EC水解酶的研究。1990年Kobashi等[53]在檸檬酸桿菌sp.中發(fā)現(xiàn)EC水解酶,并證實(shí)其功能為降解EC生成氨、二氧化碳及乙醇,由此便命名其為“urethanase”。因其所發(fā)現(xiàn)的EC水解酶只能水解酰胺及氨基甲酸酯,而對(duì)有機(jī)酸酯沒(méi)有任何水解作用,他們推測(cè)EC水解酶屬于酰胺酶家族,并沿用至今。
目前,尚沒(méi)有EC水解酶水解EC機(jī)制的報(bào)道。從EC分子結(jié)構(gòu)來(lái)看,其存在酰胺鍵 (R-CO-NH-R) 和酯鍵 (R-COO-R),理論上來(lái)說(shuō),酰胺酶及酯酶家族中的部分酶類(lèi)均能對(duì)EC有水解作用 (圖4)。但是,目前為止,已報(bào)道的具有EC降解能力的酶均屬于酰胺酶家族酶類(lèi),尚未有酯酶水解EC的報(bào)道。
圖4 EC水解機(jī)制
2.2.2 氨基甲酸乙酯水解酶的研究現(xiàn)狀
EC水解酶來(lái)源廣泛,酶學(xué)性質(zhì)差異較大 (表2)。具有代表性的EC水解酶有兩個(gè):其一是2006年Akutsu-Shigeno等[54]從馬紅球菌 (TB-60) 中所發(fā)現(xiàn)并克隆的EC水解酶(GenBank: DD320008.1)。該酶在大腸桿菌中獲得了的活性表達(dá)。酶學(xué)性質(zhì)分析發(fā)現(xiàn),該酶雖然在酸性條件下可以降解EC,但對(duì)EC的底物親和力差 (m=6.59 mmol/L),催化效率低 (cat/m< 0.01 L/(mol·s) 且在乙醇存在條件下不穩(wěn)定,導(dǎo)致其無(wú)法應(yīng)用于酒中EC的降解[54]。其二是李京京等[55]從小鼠胃中篩選出一株具有EC降解能力的賴(lài)氨酸芽孢桿菌SC02。通過(guò)對(duì)此菌株所產(chǎn)的EC水解酶進(jìn)行蛋白純化及N端測(cè)序,并基于N端測(cè)序信息,設(shè)計(jì)簡(jiǎn)并引物,擴(kuò)增得到了EC水解酶的基因序列 (GenBank Accession No. KU353448.1),最終在大腸桿菌及枯草芽孢桿菌中實(shí)現(xiàn)了該酶的活性表達(dá)。但該酶乙醇耐受性差,在5%的乙醇中即失去活力,同時(shí)酸耐受性差,在低于pH 6.0的環(huán)境中不穩(wěn)定等特性限制了其應(yīng)用。隨后,劉曉慧等[55]將此EC水解酶在大腸桿菌中進(jìn)行了定向進(jìn)化的改造。通過(guò)計(jì)算機(jī)輔助設(shè)計(jì)的方法,獲得了溫度穩(wěn)定性提高的突變體,但該突變體的乙醇耐受性及耐酸性并沒(méi)有太大的變化,依然遠(yuǎn)不能達(dá)到其在黃酒中應(yīng)用的需求。其他來(lái)源的EC水解酶基因序列均未解析。
2.2.3 氨基甲酸乙酯水解酶應(yīng)用于黃酒中EC消除存在的問(wèn)題
EC水解酶應(yīng)用于黃酒中EC消除時(shí)存在以下問(wèn)題:其一,EC水解酶的乙醇耐受性及酸耐受性差,難以在含有高濃度乙醇及酸性條件下保持穩(wěn)定 (表2)。其二,EC水解酶對(duì)EC的底物親和力及催化效率低,難以降解黃酒中痕量的EC (100–750 μg/L)[6],同時(shí)由于EC與尿素分子結(jié)構(gòu)相近,有些能夠水解EC的酰胺酶對(duì)尿素也有水解作用,導(dǎo)致尿素與EC之間存在底物競(jìng)爭(zhēng)。由于黃酒中尿素含量 (10–50 mg/L) 是EC含量的100–1 000倍左右,可能會(huì)造成尿素對(duì)EC競(jìng)爭(zhēng)性抑制而使得EC水解酶不能發(fā)揮作用。其三,EC水解酶氨基酸序列尚未得到有效解析,目前僅2個(gè)EC水解酶編碼序列得以鑒定。這些缺點(diǎn)導(dǎo)致目前所發(fā)現(xiàn)的EC水解酶難以實(shí)際應(yīng)用于黃酒中EC的降解。
表2 不同來(lái)源的EC水解酶性質(zhì)比較
The enzyme activity that measured in the absence of ethanol was considered as 100%. a: enzyme activity was measured in the presence of 20% (/) ethanol; b: enzyme activity was measured in the presence of 15% (/) ethanol; NP: not report.
2.2.4 氨基甲酸乙酯水解酶未來(lái)研究方向
目前所鑒定出基因序列的兩個(gè)EC水解酶不耐乙醇及酸,致使其無(wú)法在黃酒中使用,因此篩選新型EC水解酶至關(guān)重要。由于能夠水解EC的酰胺酶對(duì)尿素可能也有水解作用,可能導(dǎo)致黃酒中存在的尿素對(duì)EC競(jìng)爭(zhēng)性抑制,因此未來(lái)EC水解酶篩選方向有兩種:其一,篩選對(duì)尿素?zé)o水解作用的耐乙醇耐酸的酰胺酶;其二,篩選對(duì)EC具有水解作用的耐乙醇耐酸的酯酶。另外篩選方法上,也應(yīng)該從傳統(tǒng)的篩選EC水解酶產(chǎn)生菌轉(zhuǎn)移到利用生物信息學(xué)手段,從酶庫(kù)中直接篩選具有EC水解能力的酶。筆者已從150多個(gè)酯酶中篩選到了一個(gè)耐乙醇且能降解EC的酯酶,后續(xù)將對(duì)其作出應(yīng)用評(píng)價(jià)。
隨著人們生活水平的提高,食品安全問(wèn)題越來(lái)越受到人們的關(guān)注。如何消除酒中具有致癌性的EC,已經(jīng)成為一個(gè)世界性問(wèn)題。目前為止,微生物酶法 (酸性脲酶及EC水解酶) 在應(yīng)用于黃酒中EC及其前體物尿素的消除中,具有直接、高效的優(yōu)勢(shì)。然而目前所發(fā)現(xiàn)的EC水解酶在酸性或乙醇存在條件下不穩(wěn)定以及酸性脲酶對(duì)EC底物親和力低、產(chǎn)量低、Ni2+作為輔助因子而帶來(lái)的食品安全性問(wèn)題,使得其尚無(wú)法在黃酒中應(yīng)用。針對(duì)這些問(wèn)題,我們對(duì)黃酒中EC的酶法降解提出了以下3個(gè)策略:1) 篩選新型EC水解酶,即篩選對(duì)尿素?zé)o水解作用的耐乙醇耐酸的酰胺酶或篩選對(duì)EC具有水解作用的耐乙醇耐酸的酯酶。2) Fe3+依賴(lài)型雙功能酸性脲酶的底物特異性改造及食品級(jí)高效表達(dá)。一方面通過(guò)蛋白質(zhì)工程技術(shù)對(duì)雙功能酸性脲酶進(jìn)行定向進(jìn)化,提高其對(duì)EC的親和力及催化效率;另一方面,通過(guò)食品級(jí)表達(dá)系統(tǒng)高效制備改造后的雙功能酸性脲酶。3)酸性脲酶與EC水解酶并用徹底消除黃酒中的EC。黃酒煎酒前,使用酸性脲酶消除尿素,減少在煎酒過(guò)程中EC的形成,同時(shí)也減少了成品黃酒在儲(chǔ)存過(guò)程中EC的再次形成;煎酒后,使用EC水解酶 (或改造后的雙功能酸性脲酶) 對(duì)已經(jīng)形成的EC直接消除 (目前所發(fā)現(xiàn)的EC水解酶暫時(shí)不能實(shí)現(xiàn)黃酒中EC的直接消除),從而解決黃酒因EC而存在的食品安全問(wèn)題 (圖1)。
[1] Forkert PG. Mechanisms of lung tumorigenesis by ethyl carbamate and vinyl carbamate. Drug Metab Rev, 2010, 42(2): 355–378.
[2] Weber JV, Sharypov VI. Ethyl carbamate in foods and beverages: a review. Environ Chem Lett, 2009, 7(3): 233–247.
[3] Zhao XR, Du GC, Zou HJ, et al. Progress in preventing the accumulation of ethyl carbamate in alcoholic beverages. Trends Food Sci Technol, 2013, 32(2): 97–107.
[4] Gowd V, Su HM, Karlovsky P, et al. Ethyl carbamate: an emerging food and environmental toxicant. Food Chem, 2018, 248: 312–321.
[5] Lachenmeier DW. Consequences of IARC re-evaluation of alcoholic beverage consumption and ethyl carbamate on food control. Deut Lebensm Rundsch, 2007, 103: 307–311.
[6] Chen DW, Ren YP, Zhong QD, et al. Ethyl carbamate in alcoholic beverages from China: levels, dietary intake, and risk assessment. Food Control, 2017, 72: 283–288.
[7] Yoshizawa K, Takahashi K, Sato K. Changes of urea content in rice and sake moromi during sake making process. Nippon Jozo Kyokaishi, 1988, 83: 136–141.
[8] Liu SQ, Pilone GJ. A REVIEW: arginine metabolism in wine lactic acid bacteria and its practical significance. J Appl Microbiol, 1998, 84(3): 315–327.
[9] Hasnip S, Caputi A, Crews C, et al. Effects of storage time and temperature on the concentration of ethyl carbamate and its precursors in wine. Food Addit Contam, 2004, 21(12): 1155–1161.
[10] Fang RS. The metabolism mechanism and inhibition method of ethyl caramate formation during traditional Chinese rice wine fermentation[D]. HangZhou: Zhejiang University, 2017 (in Chinese).方若思. 傳統(tǒng)黃酒發(fā)酵中氨基甲酸乙酯產(chǎn)生的代謝規(guī)律及抑制方法研究[D]. 杭州: 浙江大學(xué), 2017.
[11] Wu HM, Chen L, Pan GS, et al. Study on the changing concentration of ethyl carbamate in yellow rice wine during production and storage by gas chromatography/mass spectrometry. Eur Food Res Technol, 2012, 235(5): 779–782.
[12] Park SR, Ha SD, Yoon JH, et al. Exposure to ethyl carbamate in alcohol-drinking and nondrinking adults and its reduction by simple charcoal filtration. Food Control, 2009, 20(10): 946–952.
[13] Liu J, Zhao GA, Xu Y. Directly removal of ethylcarbamate in Chinese rice wine. J Food Sci Biotechnol, 2012, 31(2): 171–176 (in Chinese).劉俊, 趙光鰲, 徐巖. 黃酒中氨基甲酸乙酯直接減除技術(shù)的研究. 食品與生物技術(shù)學(xué)報(bào), 2012, 31(2): 171–176.
[14] Suizu T, Iimura Y, Gomi K, et al. Construction of urea non-producing yeastby disruption of thegene. Agric Biol Chem, 1990, 54(2): 537–539.
[15] Kitamoto K, Oda K, Gomi K, et al. Genetic engineering of a sake yeast producing no urea by successive disruption of arginase gene. Appl Environ Microbiol, 1991, 57(1): 301–306.
[16] Wu DH, Li XM, Shen C, et al. Decreased ethyl carbamate generation during Chinese rice wine fermentation by disruption ofin an industrial yeast strain. Int J Food Microbiol, 2014, 180: 19–23.
[17] Wu D, Li X, Lu J, et al. Constitutive expression of the,gene in an industrial yeast strain to minimize ethyl carbamate production during Chinese rice wine fermentation. FEMS Microbiol Lett, 2016, 363(1): fnv214.
[18] Coulon J, Husnik JI, Inglis DL, et al. Metabolic engineering ofto minimize the production of ethyl carbamate in wine. Am J Enol Viticult, 2006, 57(2): 113–124.
[19] Dahabieh MS, Husnik JI, van Vuuren HJJ. Functional enhancement of Sake yeast strains to minimize the production of ethyl carbamate in Sake wine. J Appl Microbiol, 2010, 109(3): 963–973.
[20] Zhang P, Hu X. Metabolic engineering of arginine permeases to reduce the formation of urea in. World J Microbiol Biotechnol, 2018, 34: 47.
[21] Mohapatra BR. An Insight into the prevalence and enzymatic abatement of urethane in fermented beverages//Patra JK, Das G, Shin HS, eds. Microbial Biotechnology. Singapore: Springer Singapore, 2018: 153–170.
[22] Wu DH, Li XM, Sun JY, et al. Effect of citrulline metabolism inon the formation of ethyl carbamate during Chinese rice wine fermentation. J Inst Brew, 2018, 124(1): 77–84.
[23] An D, Ough CS. Urea excretion and uptake by wine yeasts as affected by various factors. Am J Enol Viticult, 1993, 44(1): 35–40.
[24] Schehl B, Senn T, Lachenmeier DW, et al. Contribution of the fermenting yeast strain to ethyl carbamate generation in stone fruit spirits. Appl Microbiol Biotechnol, 2007, 74(4): 843–850.
[25] Azevedo Z, Couto JA, Hogg T. Citrulline as the main precursor of ethyl carbamate in model fortified wines inoculated with: a marker of the levels in a spoiled fortified wine. Lett Appl Microbiol, 2002, 34(1): 32–36.
[26] Sumner JB. The isolation and crystallization of the enzyme urease. Preliminary paper. J Biol Chem, 1926, 69(2): 435–441.
[27] Krajewska B. Ureases I. functional, catalytic and kinetic properties: a review. J Mol Catal B: Enzym, 2009, 59(1/3): 9–21.
[28] Mobley HL, Hausinger RP. Microbial ureases: significance, regulation, and molecular characterization. Microbiol Rev, 1989, 53(1): 85–108.
[29] Balasubramanian A, Ponnuraj K. Crystal structure of the first plant urease from Jack Bean: 83 years of journey from its first crystal to molecular structure. J Mol Biol, 2010, 400(3): 274–283.
[30] Carter EL, Flugga N, Boer JL, et al. Interplay of metal ions and urease. Metallomics, 2009, 1(3): 207–221.
[31] Dixon NE, Gazzola C, Blakeley RL, et al. Jack bean urease (EC 3.5.1.5). Metalloenzyme. Simple biological role for nickel. J Am Chem Soc, 1975, 97(14): 4131–4133.
[32] Farrugia MA, Macomber L, Hausinger RP. Biosynthesis of the urease metallocenter. J Biol Chem, 2013, 288(19): 13178–13185.
[33] Fong YH, Wong HC, Yuen MH, et al. Structure of UreG/UreF/UreH complex reveals how urease accessory proteins facilitate maturation ofurease. PLoS Biol, 2013, 11(10): e1001678.
[34] McDonald JA, Vorhaben JE, Campbell JW. Invertebrate urease: purification and properties of the enzyme from a land snail,. Comp Biochem Physiol Part B: Comp Biochem, 1980, 66(2): 223–231.
[35] Suzuki K, Benno Y, Mitsuoka T, et al. Urease-producing species of intestinal anaerobes and their activities. Appl Environ Microbiol, 1979, 37(3): 379–382.
[36] Miyagawa K, Sumida M, Nakao M, et al. Purification, characterization, and application of an acid urease from. J Biotechnol, 1999, 68(2/3): 227–236.
[37] Yang LQ, Wang SH, Tian YP. Purification, properties, and application of a novel acid urease fromsp. Appl Biochem Biotechnol, 2010, 160(2): 303–313.
[38] Mora D, Maguin E, Masiero M, et al. Characterization of urease genes cluster of. J Appl Microbiol, 2004, 96(1): 209–219.
[39] Zotta T, Ricciardi A, Rossano R, et al. Urease production by. Food Microbiol, 2008, 25(1): 113–119.
[40] Chen YY, Clancy KA, Burne RA. Streptococcus salivarius urease: genetic and biochemical characterization and expression in a dental plaque. Infect Immun, 1996, 64(2): 585–592.
[41] Yamazaki E, Kurasawa T, Kakimoto S, et al. Characteristics of acid urease from. Agric Biol Chem, 1990, 54(9): 2433–2435.
[42] Kakimoto S, Sumino Y, Akiyama SI, et al. Purification and characterization of acid urease from. Agric Biol Chem, 1989, 53(4): 1119–1125.
[43] Kakimoto S, Sumino Y, Kawahara K, et al. Purification and characterization of acid urease from. Appl Microbiol Biotechnol, 1990, 32(5): 538–543.
[44] Yang YQ, Kang Z, Zhou JL, et al. High-level expression and characterization of recombinant acid urease for enzymatic degradation of urea in rice wine. Appl Microbiol Biotechnol, 2015, 99(1): 301–308.
[45] Liu QT, Chen YQ, Yuan ML, et al. Airon-containing urease reduces urea concentrations in rice wine. Appl Environ Microbiol, 2017, 83(17): e01258-17.
[46] Liu J, Xu Y, Nie Y, et al. Optimization production of acid urease bysp. in an approach to reduce urea in Chinese rice wine. Bioprocess Biosyst Eng, 2012, 35(4): 651–657.
[47] Zhou JL, Kang Z, Liu QT, et al. Degradation of urea and ethyl carbamate in Chinese Rice wine by recombinant acid urease. Chin J Biotech, 2016, 32(1): 74–83 (in Chinese).周建立, 康振, 劉慶濤, 等. 重組酸性脲酶對(duì)黃酒中尿素和氨基甲酸乙酯的降解應(yīng)用. 生物工程學(xué)報(bào), 2016, 32(1): 74–83.
[48] Liu XF, Zhang Q, Zhou ND, et al. Expression of an acid urease with urethanase activity inand analysis of urease gene. Mol Biotechnol, 2017, 59(2/3): 84–97.
[49] Wang SM, He J, Cui ZL, et al. Self-formed adaptor PCR: a simple and efficient method for chromosome walking. Appl Environ Microbiol, 2007, 73(15): 5048–5051.
[50] Juminaga D, Baidoo EEK, Redding-Johanson AM, et al. Modular engineering of L-tyrosine production in. Appl Environ Microbiol, 2012, 78(1): 89–98.
[51] Bauerfeind P, Garner RM, Mobley LT. Allelic exchange mutagenesis ofinresults in reduced nickel transport and urease activity. Infect Immun, 1996, 64(7): 2877–2880.
[52] Chen YYM, Burne RA. Identification and characterization of the nickel uptake system for urease biogenesis in57.I. J Bacteriol, 2003, 185(23): 6773–6779.
[53] Kobashi K, Takebe S, Sakai T. Urethane-hydrolyzing enzyme fromsp. Chem Pharm Bull, 1990, 38(5): 1326–1328.
[54] Akutsu-Shigeno Y, Adachi Y, Yamada C, et al. Isolation of a bacterium that degrades urethane compounds and characterization of its urethane hydrolase. Appl Microbiol Biotechnol, 2006, 70(4): 422–429.
[55] Liu XH, Fang F, Xia XL, et al. Stability enhancement of urethanase fromby site-directed mutagenesis. Chin J Biotech, 2016, 32(9): 1233–1242 (in Chinese).劉曉慧, 方芳, 夏小樂(lè), 等. 定點(diǎn)突變改造提高紡錘形賴(lài)氨酸芽孢桿菌氨基甲酸乙酯水解酶穩(wěn)定性. 生物工程學(xué)報(bào), 2016, 32(9): 1233–1242.
[56] Zhao CJ, Imamura L, Kobashi K. Urethanase ofsp. isolated from mouse gastrointestine. Chem Pharm Bull, 1991, 39(12): 3303–3306.
[57] Zhao C, Kobashi K. Purification and characterization of iron-containing urethanase from. Biol Pharm Bull, 1994, 17(6): 773–778.
[58] Mohapatra B, Bapuji M. Characterization of urethanase fromspecies associated with the marine sponge (species). Lett Appl Microbiol, 1997, 25(6): 393–396.
[59] Wu Q, Zhao Y, Wang D, et al. Immobilized: a novel urethanase-producing strain for degrading ethyl carbamate. Appl Biochem Biotechnol, 2013, 171(8): 2220–2232.
[60] Zhou ND, Gu X, Tian Y. Isolation and characterization of urethanase fromand its application to reduce ethyl carbamate contamination in chinese rice wine. Appl Biochem Biotechnol, 2013, 170(3): 718–728.
[61] Bu PP, Chen J, Du GC. Purification and characterization of a halophilic urethanase from. Chin J Biotech, 2014, 30(12): 404–411 (in Chinese).卜攀攀, 陳堅(jiān), 堵國(guó)成, 等. 耐鹽氨基甲酸乙酯水解酶的分離純化及酶學(xué)性質(zhì). 生物工程學(xué)報(bào), 2014, 30(12): 404–411.
Advances in microbial enzymatic elimination of ethyl carbamate in Chinese rice wine
Qingtao Liu1,2, Zhen Kang1,2, and Guocheng Du1,2
1 The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China 2 Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, Jiangsu, China
Ethyl carbamate (EC), a carcinogenic and teratogenic chemical that is widely distributed in various alcoholic beverages, has attracted much attention. Microbial enzymatic degradation of EC in rice wine is always efficient and attractive. In this review, we summarize the research progress and problems of microbial enzymatic elimination of EC in rice wine from three aspects: the mechanisms of EC formation in rice wine, the research progress of acid urease, and the research progress of urethanase. Then, we propose the corresponding strategies to solve the problems: screening new urethanase with satisfied enzyme properties, food-grade expression and directed evolution of the bifunctional Fe3+-dependent acid urease and acid urease used in combination with urethanase to eliminate both urea and EC in rice wine.
food safety, ethyl carbamate, enzymatic elimination, acid urease, urethanase, rice wine
10.13345/j.cjb.180386
September 19, 2018;
November 7, 2018
the National Key Research and Development Program of China (Nos. 2017YFC1600403, 2017YFC1600405), Key Research and Development Program of Jiangsu Province (No. BE2016689).
Guocheng Du. Tel: +86-510-85918307; Fax: +86-510-85918309; E-mail: gcdu@jiangnan.edu.cn
國(guó)家重點(diǎn)研發(fā)計(jì)劃 (Nos. 2017YFC1600403, 2017YFC1600405),江蘇省重點(diǎn)研發(fā)計(jì)劃 (No. BE2016689) 資助。
(本文責(zé)編 郝麗芳)