李書先, 蒲石林, 鄧 飛, 王 麗, 胡 慧, 廖 爽, 李 武, 任萬軍
?
不同生態(tài)條件下氮肥優(yōu)化管理對雜交中稻稻米品質(zhì)的影響*
李書先, 蒲石林, 鄧 飛**, 王 麗, 胡 慧, 廖 爽, 李 武, 任萬軍**
(四川農(nóng)業(yè)大學(xué)農(nóng)學(xué)院/農(nóng)業(yè)部西南作物生理生態(tài)與耕作重點實驗室 溫江 611130)
在四川省溫江和射洪試驗點, 采用單因素隨機區(qū)組試驗設(shè)計, 以‘F優(yōu)498’水稻品種為試驗材料, 研究了不同氮肥處理[普通尿素優(yōu)化施肥、減氮15%優(yōu)化施肥、增氮15%優(yōu)化施肥, PASP(聚天門冬氨酸)尿素1次施肥、2次施和優(yōu)化施肥]對稻米品質(zhì)的影響。結(jié)果顯示, 溫江的碾米品質(zhì)、外觀品質(zhì)和籽粒粗蛋白含量較優(yōu); 射洪的峰值黏度和崩解值較高, 消減值較低, 蒸煮食味品質(zhì)較好, 同時直鏈淀粉含量較高。隨著氮肥的施用, 稻米碾米品質(zhì)、直鏈淀粉含量和籽粒粗蛋白含量顯著提高, 崩解值顯著降低; 同時導(dǎo)致射洪生態(tài)點的峰值黏度增加, 消減值減少; 溫江生態(tài)點的稻米外觀品質(zhì)變優(yōu), 峰值黏度減小, 消減值增加。較農(nóng)民經(jīng)驗性施肥處理, 普通尿素優(yōu)化處理和PASP尿素處理提高了直鏈淀粉含量和籽粒粗蛋白含量, 降低了溫江堊白粒率和堊白度, 改善了外觀品質(zhì); 氮肥優(yōu)化處理降低了峰值黏度和崩解值, 提高了消減值, 使稻米蒸煮食味品質(zhì)變差, 同時提高了射洪精米率和溫江整精米率。較優(yōu)化施肥處理, PASP尿素處理降低了兩試驗點的精米率、整精米率和溫江堊白粒率, 增加了射洪的堊白粒率和堊白度, 使外觀品質(zhì)變差; 同時PASP尿素1次施肥和2次施肥處理降低了直鏈淀粉含量和籽粒粗蛋白含量; PASP尿素優(yōu)化施肥處理降低了兩試驗點的峰值黏度、崩解值和溫江直鏈淀粉含量, 提高了兩試驗點的籽粒粗蛋白含量和射洪直鏈淀粉含量。較優(yōu)化施肥處理, 減氮15%和增氮15%優(yōu)化施肥處理降低了兩試驗點的直鏈淀粉含量、整精米率及溫江堊白粒率, 增加了射洪堊白粒率和堊白度。與PASP尿素1次和2次施肥相比, PASP尿素優(yōu)化施肥顯著降低了堊白度、峰值黏度和崩解值, 增加了消減值和籽粒粗蛋白含量; 同時導(dǎo)致射洪生態(tài)點的整精米率降低, 堊白粒率和直鏈淀粉含量增加; 溫江生態(tài)點的堊白粒率降低, 整精米率增加。綜合稻米碾米品質(zhì)、外觀品質(zhì)、淀粉RVA、直鏈淀粉含量和籽粒粗蛋白含量的關(guān)系, 射洪PASP尿素2次施肥處理稻米綜合品質(zhì)較好, 溫江優(yōu)化施肥處理稻米綜合品質(zhì)較好。
水稻; 生態(tài)條件; 氮肥管理; PASP尿素; 稻米品質(zhì)
隨著生活水平的提高, 水稻優(yōu)質(zhì)生產(chǎn)逐漸成為我國水稻(L.)栽培研究的熱點[1]。氮素是影響水稻生長發(fā)育最敏感的因素之一, 是水稻產(chǎn)量與品質(zhì)形成的有力保障, 合理的氮素施用是改善稻米品質(zhì)的關(guān)鍵[2-4]。為探討氮素對稻米品質(zhì)的影響, 前人已做了大量研究。已有研究表明, 適當(dāng)增施氮肥有利于營養(yǎng)品質(zhì)和加工品質(zhì)的提高, 但高氮往往導(dǎo)致稻米堊白面積增加, 稻米外觀和蒸煮食味品質(zhì)變劣[5-8]。稻米糙米率、精米率、整精米率、最高黏度和崩解值隨施氮量的增加而增加, 堊白粒率、堊白度和消減值則隨施氮量的增加而降低[9]。適當(dāng)?shù)屎笠瓶梢蕴岣哒茁?、稻米蛋白質(zhì)含量和消減值, 降低最高黏度和直鏈淀粉含量[10-12]。聚天門冬氨酸(PASP)是一種氨基酸聚合物, 天然存在于蝸牛和軟體動物殼內(nèi), 是生物降解性好的環(huán)境友好型肥料增效劑。通過工業(yè)合成, PASP尿素逐漸被開發(fā)出來。本課題組前期研究表明, PASP尿素能提高葉片光合潛力, 促進水稻干物質(zhì)生產(chǎn); 調(diào)節(jié)葉片氮素代謝, 提高水稻氮素積累; 提高單位面積有效穗數(shù)來提高籽粒庫容量(單位面積群體穎花量), 進而提高水稻產(chǎn)量; 同時PASP尿素還能有效調(diào)節(jié)稻田氮素供給平衡, 進而促進水稻對氮素的吸收[13-14]。但其對于稻米品質(zhì)的影響鮮有報道。為此, 本研究選取四川省具有代表性的射洪(丘陵區(qū), 低土壤肥力)和溫江(平原區(qū), 高土壤肥力)為試驗點, 研究了普通尿素優(yōu)化施肥和PASP尿素對稻米品質(zhì)的影響, 以期為四川省不同生態(tài)稻區(qū)稻米品質(zhì)改良提供理論和實踐依據(jù)。
試驗于2013年分別在四川省射洪縣和溫江區(qū)進行。射洪縣地處四川盆地中部丘陵區(qū), 試驗田為冬水田; 溫江地處成都平原, 前茬作物為小麥(L.)。各試驗點氣象資料和供試土壤肥力見圖1[14]和表1[14], 具體數(shù)據(jù)由射洪和溫江氣象局提供和測定所得。供試材料為四川農(nóng)業(yè)大學(xué)水稻研究所選育的雜交中秈稻‘F優(yōu)498’。供試普通尿素(含氮率46%)和PASP尿素(含氮率46%)均由四川美青氰胺有限責(zé)任公司提供。
圖1 溫江和射洪試驗點水稻生育期主要氣象資料[14]
表1 溫江和射洪試驗點0~30 cm土壤基礎(chǔ)肥力
各試驗點采用單因素隨機區(qū)組試驗設(shè)計, 以不施氮肥為主對照(CK), 設(shè)4種普通尿素施肥處理:農(nóng)民經(jīng)驗性施肥(FFP1)、優(yōu)化施肥(ONM1)、減氮15%優(yōu)化施肥(ONM-N1)、增氮15%優(yōu)化施肥(ONM+N1), 其中農(nóng)民經(jīng)驗性施肥(FFP1)為副對照; 3種PASP尿素施肥處理: 1次施肥(PASPT1)、2次施肥(PASPT2)、PASP尿素優(yōu)化施肥(ONM2), 共8個處理, 氮肥施用量和施用時期見表2。每個處理重復(fù)3次, 共24個小區(qū), 各小區(qū)面積10 m × 3 m = 30 m2。施P2O590 kg?hm-2, K2O 180 kg?hm-2, 磷肥用作底肥一次性基施, 鉀肥按基肥∶促花肥= 5∶5施用。采用旱育秧方式培育壯秧, 分別于4月30日(射洪)和5月19日(溫江)移栽, 移栽秧齡為35 d, 采用單苗優(yōu)化定拋[15], 移栽行穴距為26.7 cm× 16.7 cm。統(tǒng)一采用高效灌溉技術(shù), 前期濕潤或淺濕交替灌溉促分蘗, 并適時曬田; 中期淺水灌溉促大穗; 后期干濕交替灌溉保根促灌漿。同時做好病蟲草害防除。
表2 各處理氮肥施肥措施
成熟期在各小區(qū)隨機選擇沒有病蟲害的稻谷1 kg, 在室溫下保存3個月, 待其理化特性趨于穩(wěn)定后, 測定稻米品質(zhì)。參照國標(biāo)《GB/T17891—1999優(yōu)質(zhì)稻谷》測定所取樣品加工品質(zhì)(糙米率、精米率、整精米率)和外觀品質(zhì)(堊白度、堊白粒率、長寬比)。將精米用CT410旋風(fēng)式粉樣機粉碎, 過60目篩, 采用雙波長比色法測定稻米直鏈淀粉含量[16]。
采用3-D型黏度速測儀(澳大利亞New port Scientific儀器公司)測定稻米淀粉RVA(Rapid Visco Analyzer, 簡稱RVA)譜, 用TCW(Thermal Cycle for Windows)配套軟件進行分析。根據(jù)AACC操作規(guī)程(2000 61-02), 含水量為12.0%時, 水稻米粉的樣品量為3.00 g, 加蒸餾水25.00 mL。加溫過程為50 ℃保持1 min; 以恒速升至95 ℃(3 min 48 s); 95 ℃下保持2.5 min; 再以恒速下降到50 ℃(3 min 48 s), 在50 ℃下保持1 min 24 s。攪拌器在起始10 s內(nèi)轉(zhuǎn)動速率為960 r?min-1, 之后保持在160 r?min-1。RVA譜特征值主要以峰值黏度(peak viscosity, PKV)、熱漿黏度(hot paste viscosity, HPV)、冷膠黏度(cool paste viscosity, CPV)、崩解值(breakdown viscosity, BDV, 峰值黏度與熱漿黏度之差)、消減值(setback viscosity, SBV, 冷膠黏度與峰值黏度之差)、回復(fù)值(consistence viscosity, CSV, 冷膠黏度與熱漿黏度之差)、峰值時間(peak time, PeT)和糊化溫度(pasting temperature, PaT)表示。每個樣品測定3次, 取其均值。
用凱氏定氮法測籽粒全氮含量。根據(jù)一般水稻籽粒中蛋白質(zhì)約含16.8%氮的原理, 將測得的全氮含量乘以換算因子K=5.95, 推算籽粒蛋白質(zhì)含量。
采用Microsoft Excel對數(shù)據(jù)進行整理和歸納, 利用DPS 7.05對數(shù)據(jù)進行方差及聚類分析。LSD(least significant difference tests)法比較所取樣本的差異性。
表3表明, 氮肥管理極顯著地影響兩個生態(tài)點的整精米率, 此外, 溫江糙米率和射洪精米率也受到氮肥管理極顯著影響。不同生態(tài)點間, 射洪生態(tài)點的糙米率、精米率和整精米率均低于溫江生態(tài)點。較對照處理, 氮肥施用顯著提高了稻米的碾米品質(zhì), 射洪生態(tài)點糙米率、精米率和整精米率分別較對照增加0.84%~1.25%、1.01%~3.53%和6.67%~21.49%, 溫江生態(tài)點則分別增加1.65%~2.06%、0.49%~2.96%和11.93%~44.01%。較FFP1處理, 氮肥優(yōu)化處理(ONM1, ONM-N1, ONM+N1)和PASP尿素處理對糙米率影響不顯著, 但射洪生態(tài)點氮肥優(yōu)化處理(ONM1, ONM-N1, ONM+N1)和ONM2處理, 以及溫江生態(tài)點ONM1處理顯著提高了精米率。此外, ONM-N1、ONM+N1和PASP尿素處理導(dǎo)致射洪整精米率顯著降低, 但氮肥優(yōu)化處理(ONM1, ONM-N1, ONM+N1)和ONM2處理顯著提高了溫江生態(tài)點的整精米率。較ONM1處理, ONM-N1、ONM+N1和PASP尿素處理導(dǎo)致整精米率呈下降趨勢, 同時PASP尿素處理還導(dǎo)致精米率呈下降趨勢。隨PASP尿素施肥次數(shù)的增加, 射洪整精米率呈下降趨勢, 溫江整精米率表現(xiàn)為ONM2>PASPT1>PASPT2。整體看來, ONM1處理下, 稻米具有較優(yōu)的碾米品質(zhì)。
表4表明, 氮肥管理對稻米長寬比影響不顯著, 但顯著或極顯著地影響兩個生態(tài)點的堊白粒率和堊白度。不同生態(tài)點間, 溫江生態(tài)點的堊白粒率和堊白度均低于射洪生態(tài)點。較對照處理, 氮肥對不同生態(tài)點的堊白粒率和堊白度的影響不同。在射洪生態(tài)點, 除ONM1處理堊白粒率外, 氮肥施用使堊白粒率和堊白度較CK分別增加1.35%~8.53和2.34%~43.41%; 在溫江生態(tài)點, 除FFP1處理堊白粒率外, 堊白粒率和堊白度則分別減少4.61%~24.69%和6.93%~42.23%。較FFP1處理, 射洪生態(tài)點ONM1處理顯著降低了堊白粒率和堊白度, ONM-N1、ONM+N1和PASP尿素處理則顯著增加了堊白度; 溫江生態(tài)點, 除PASPT1處理對堊白度影響不顯著外, 氮肥優(yōu)化處理(ONM1, ONM-N1, ONM+N1)和PASP尿素處理均顯著降低了稻米的堊白粒率和堊白度。較ONM1處理, ONM-N1、ONM+N1和PASP尿素處理顯著增加了射洪的堊白粒率和堊白度, 但降低了溫江的堊白粒率。較PASPT1處理, PASPT2和ONM2處理顯著降低了溫江的堊白粒率和堊白度。可見, ONM1處理有利于提高射洪生態(tài)點的稻米外觀品質(zhì), ONM2處理則有利于提高溫江生態(tài)點的稻米外觀品質(zhì)。
表3 氮肥管理對不同生態(tài)點稻米碾米品質(zhì)的影響
同列數(shù)據(jù)后不同小寫字母表示不同氮肥處理間差異達5%顯著水平。**表示1%顯著水平。Values within a column followed by different lowercase letters are significantly different at< 0.05 according to LSD test. **: significant at 1% probability level.
表4 氮肥管理對不同生態(tài)點稻米外觀品質(zhì)的影響
同列數(shù)據(jù)后不同小寫字母表示不同氮肥處理間差異達5%顯著水平。*和**分別表示5%和1%顯著水平。Values within a column followed by different lowercase letters are significantly different at< 0.05 according to LSD test. * and ** mean significance at 5% and 1% probability level.
氮肥管理對稻米淀粉RVA譜特征值有著明顯的調(diào)控作用(表5)。不同生態(tài)點間, 射洪生態(tài)點的峰值黏度、崩解值明顯高于溫江生態(tài)點, 熱漿黏度、冷膠黏度、消減值和回復(fù)值則相反。不同生態(tài)點間, 氮肥施用對稻米淀粉RVA譜特征值的影響存在差異。較對照處理, 氮肥施用導(dǎo)致射洪生態(tài)點峰值黏度、熱漿黏度呈上升趨勢, 冷膠黏度、崩解值、消減值和回復(fù)值則呈降低趨勢; 在溫江, 氮肥施用則導(dǎo)致峰值黏度、熱漿黏度、冷膠黏度、崩解值呈下降趨勢, 消減值則呈上升趨勢。較FFP1處理, 氮肥優(yōu)化處理(ONM1, ONM-N1, ONM+N1)和ONM2處理顯著降低了射洪和溫江的峰值黏度和崩解值, 提高了消減值; ONM-N1和ONM+N1還導(dǎo)致射洪冷膠黏度顯著降低, 溫江峰值時間顯著增加。較ONM1處理, ONM-N1處理導(dǎo)致崩解值呈上升趨勢, 但ONM+N1處理顯著降低了射洪生態(tài)點的冷膠黏度, 提高了溫江生態(tài)點的消減值; 在射洪, PASPT1和PASPT2處理顯著增加了峰值黏度和崩解值; 在溫江, PASPT1和PASPT2處理顯著增加了冷膠黏度和崩解值; ONM2處理則均顯著降低峰值黏度、熱漿黏度和崩解值。隨著PASP尿素施肥次數(shù)的增加, 射洪試驗點的峰值黏度、熱漿黏度和崩解值呈遞減趨勢, 消減值呈遞增趨勢; 溫江試驗點, 峰值黏度、熱漿黏度和崩解值表現(xiàn)為PASPT2>PASPT1>ONM2, 消減值表現(xiàn)為ONM2>PASPT1>PASPT2。
表5 氮肥管理對不同生態(tài)點稻米RVA譜特征值的影響
同列數(shù)據(jù)后不同小寫字母表示不同氮肥處理間差異達5%顯著水平。*和**分別表示5%和1%顯著水平。Values within a column followed by different lowercase letters are significantly different at< 0.05 according to LSD test. * and ** mean significance at 5% and 1% probability level. PKV: peak viscosity; HTV: hot paste viscosity; CPV: cool paste viscosity; BDV: breakdown viscosity; SBV: setback viscosity; PeT: peak time; PaT: pasting temperature; CSV: consistence viscosity.
表6表明, 氮肥管理對水稻籽粒粗蛋白和直鏈淀粉含量有顯著影響。不同生態(tài)點間, 射洪生態(tài)點的直鏈淀粉含量高于溫江生態(tài)點, 籽粒粗蛋白含量則低于溫江生態(tài)點。較對照處理, 氮肥施用有效提高了稻米直鏈淀粉含量和籽粒粗蛋白含量。較FFP1處理, 除射洪PASPT2和溫江PASPT1外, 氮肥優(yōu)化處理(ONM1, ONM-N1, ONM+N1)和PASP尿素處理均顯著提高了稻米直鏈淀粉含量和籽粒粗蛋白含量。較ONM1處理, ONM-N1、PASPT1和PASPT2處理顯著降低了直鏈淀粉含量和籽粒粗蛋白含量; ONM+N1處理導(dǎo)致直鏈淀粉含量顯著降低, 籽粒粗蛋白含量則明顯增加; ONM2處理顯著提高了射洪和溫江的籽粒粗蛋白含量以及射洪生態(tài)點的直鏈淀粉含量, 降低了溫江生態(tài)點的直鏈淀粉含量。隨著PASP尿素施肥次數(shù)的增加, 射洪生態(tài)點的直鏈淀粉含量和籽粒粗蛋白含量表現(xiàn)為ONM2>PASPT1>PASPT2; 溫江生態(tài)點的直鏈淀粉含量表現(xiàn)為PASPT2>ONM2>PASPT1, 籽粒粗蛋白含量表現(xiàn)為ONM2>PASPT2>PASPT1。
表6 氮肥管理對不同生態(tài)點稻米直鏈淀粉含量和粗蛋白含量的影響
同列數(shù)據(jù)后不同小寫字母表示不同氮肥處理間差異達5%顯著水平。**表示1%顯著水平。Values within a column followed by different lowercase letters are significantly different at< 0.05 according to LSD test. **: significant at 1% probability level.
由表7可知, 不同施氮處理間淀粉RAV譜特性與碾米品質(zhì)、外觀品質(zhì)、直鏈淀粉含量和籽粒粗蛋白含量有密切關(guān)系。峰值黏度和崩解值與糙米率、精米率、整精米率和籽粒粗蛋白含量呈顯著或極顯著負(fù)相關(guān)關(guān)系, 與長寬比、堊白度和堊白粒率則呈顯著或極顯著正相關(guān); 冷膠黏度與堊白度呈顯著負(fù)相關(guān); 消減值和回復(fù)值與糙米率、精米率以及粗蛋白含量呈顯著或極顯著正相關(guān), 與長寬比、堊白度和堊白粒率則呈極顯著負(fù)相關(guān); 此外, 峰值時間與糙米率和精米率顯著負(fù)相關(guān), 與長寬比和堊白度極顯著正相關(guān)。
表7 稻米淀粉RVA譜特征值與其他指標(biāo)的相關(guān)性
**表示1%顯著水平; *表示5%顯著水平。**: significant at 1% probability level; *: significant at 5% probability level. BR: brown rice rate; MR: milled rice rate; HMR: head milled rice rate; AR: aspect ratio; CD: chalkiness degree; CR: chalkiness rate; AC: amylose content; CPC: crude protein content; PKV: peak viscosity; HTV: hot paste viscosity; CPV: cool paste viscosity; BDV: breakdown viscosity; SBV: setback viscosity; PeT: peak time; PaT: pasting temperature; CSV: consistence viscosity.
稻米品質(zhì)受到遺傳、環(huán)境和栽培措施等多種因素影響[17]。氮肥施用對稻米碾米品質(zhì)和外觀品質(zhì)存在明顯影響。研究指出, 氮肥施用能延緩水稻后期衰老, 為籽粒灌漿提供物質(zhì)保證, 進而有效提高稻米糙米率、精米率和整精米率[8-9,18], 這與本研究結(jié)果相符。堊白的形成主要是因為灌漿期物質(zhì)的供給不足導(dǎo)致了胚乳貯藏物填充的不充分所致[19-20]。戴平安等[21]認(rèn)為土壤堿解氮和速效磷增加有利于堊白粒率和堊白度的降低。不同生態(tài)點間氮肥使用對稻米堊白的影響不同, 氮肥施用增加了射洪生態(tài)點堊白度和堊白粒率, 降低了溫江生態(tài)點的稻米堊白, 這是土壤中堿解氮和速效磷含量差異所致。較農(nóng)民經(jīng)驗性施肥處理, 氮肥優(yōu)化處理和PASP尿素處理顯著增加了射洪的精米率和溫江的整精米率, 降低了溫江的稻米堊白度和堊白粒率。氮肥后移滿足了水稻中后期的氮素需求, 促進了籽粒胚乳細(xì)胞的發(fā)育, 增強了籽粒的灌漿強度[12,22]。PASP尿素, 作為一種新型高效緩釋氮肥, 能有效調(diào)節(jié)土壤氮素平衡, 提高水稻氮素吸收利用效率和籽粒產(chǎn)量; PASP尿素促進抽穗后穗部干物質(zhì)積累, 顯著增加水稻產(chǎn)量[13-14]。較優(yōu)化施肥處理, PASP尿素處理導(dǎo)致射洪稻米碾米品質(zhì)和外觀品質(zhì)變劣, 但能有效降低溫江的堊白粒率, 改善外觀品質(zhì)??梢? 氮肥的施用要因地制宜, 在射洪, 普通尿素處理能有效提高稻米碾米品質(zhì)和外觀品質(zhì); 在溫江, PASP尿素處理能一定程度改善稻米外觀品質(zhì)。較PASP尿素1次施肥, PASP尿素優(yōu)化施肥能顯著提高溫江整精米率, 降低射洪堊白度和溫江堊白。PSAP尿素優(yōu)化施肥能更好地提供水稻中后期生長發(fā)育的營養(yǎng), 促進了籽粒胚乳細(xì)胞的發(fā)育, 增強了籽粒的灌漿強度[13]。
水稻籽粒粗蛋白和直鏈淀粉含量是評價稻米品質(zhì)的兩個主要指標(biāo)[23]。袁天澤等[24]認(rèn)為水稻粗蛋白和直鏈淀粉含量隨著氮肥用量的增加而增加。郝虎林等[25]研究認(rèn)為隨著氮肥使用量的增加, 籽粒蛋白質(zhì)含量增加, 直鏈淀粉含量降低??梢娗叭搜芯拷Y(jié)果不盡相同。不同生態(tài)條件下, 氮肥施用提高了水稻籽粒粗蛋白含量和直鏈淀粉含量, 這與袁天澤等[24]研究結(jié)果一致。研究表明將基肥后移至抽穗期施用能增加籽粒粗蛋白含量[12]。較農(nóng)民經(jīng)驗性施肥, 氮肥優(yōu)化和PASP尿素處理顯著提高了籽粒粗蛋白和直鏈淀粉含量, 是因為氮肥優(yōu)化管理和PASP尿素能提供水稻中后期氮素營養(yǎng), 導(dǎo)致水稻籽粒粗蛋白含量和直鏈淀粉含量增加。較優(yōu)化施肥處理, PASP尿素優(yōu)化施肥處理顯著提高了籽粒粗蛋白含量, 因為PASP尿素能有效提高穗部和植株氮素積累量[14], 導(dǎo)致籽粒粗蛋白含量增加。同時PASP尿素優(yōu)化施肥處理導(dǎo)致射洪生態(tài)點直鏈淀粉含量增加, 溫江生態(tài)點卻顯著降低, 可能是土壤中的堿解氮和速效磷含量不同所致[21]。較PASP尿素1次和2次施肥, PASP尿素優(yōu)化施肥能增加兩個生態(tài)點的籽粒粗蛋白含量。PASP尿素優(yōu)化管理能提供水稻中后期氮素營養(yǎng)[14], 導(dǎo)致水稻籽粒粗蛋白含量增加。
RVA譜特征值是稻米品質(zhì)的重要組成部分[26]。葉全寶等[27]研究表明隨著施氮量的增加, 峰值黏度、熱漿黏度、崩解值、冷膠黏度等呈下降趨勢, 消減值呈上升趨勢。劉代銀等[10]研究表明隨施氮量的增加, 稻米淀粉RVA譜特征值的最高黏度和崩解值降低, 消減值和糊化溫度升高。從夕漢等[28]認(rèn)為隨施氮量增加, 峰值黏度、熱漿黏度、回復(fù)值和崩解值遞減, 而消堿值遞增。李永杰等[29]研究表明隨著施氮量的增加, 最高黏度、熱漿黏度、冷膠黏度、崩解值和消減值逐漸下降??梢娗叭搜芯拷Y(jié)果不盡相同。氮肥施用導(dǎo)致射洪生態(tài)點峰值黏度顯著增加, 崩解值和消減值明顯降低; 同時導(dǎo)致溫江生態(tài)點峰值黏度和崩解值明顯降低, 消減值則明顯增加。原因是隨著氮肥的供應(yīng), 水稻營養(yǎng)生長旺盛, 綠葉面積增加, 導(dǎo)致后期籽粒氮素積累含量變多, 從而影響了稻米淀粉RVA譜特征值。這與葉全寶等[27]的研究結(jié)果相似, 稻米淀粉RVA譜特征值也受土壤環(huán)境影響[21]。施氮總量相同情況下, 增加穗肥用量會導(dǎo)致峰值黏度降低、崩解值減少、消解值增大和糊化溫度提高[30]。張亞潔等[31]和蔡一霞等[32]認(rèn)為一般情況下, 峰值黏度高、崩解值大、消減值的絕對值小, 稻米食味優(yōu)。較農(nóng)民經(jīng)驗性施肥, 優(yōu)化施肥和PASP尿素處理降低了峰值黏度和崩解值, 提高了消減值。這可能是因為氮肥優(yōu)化管理能提供水稻中后期氮素營養(yǎng), 使水稻籽粒粗蛋白含量增加, 改變了RVA譜特征值, 這與徐大勇等[11]研究結(jié)果一致。較優(yōu)化施肥處理, PASP尿素優(yōu)化施肥處理導(dǎo)致稻米峰值黏度、熱漿黏度和冷膠黏度呈下降趨勢, 回復(fù)值則呈上升趨勢, 同時導(dǎo)致射洪生態(tài)點崩解值增加。這是因為PASP尿素可以緩慢提供中、后期氮素營養(yǎng)[14], 滿足水稻生長對氮素養(yǎng)分的需求, 從而影響稻米淀粉RVA譜特征值[33]。較PASP尿素1次施肥和2次施肥, PASP尿素優(yōu)化施肥顯著降低了兩個生態(tài)點的峰值黏度、熱漿黏度和崩解值, 提高了消減值。PASP尿素優(yōu)化施肥能緩慢提供水稻中后期氮素營養(yǎng)[14], 使水稻籽粒粗蛋白含量增加, 改變了RVA譜特征值
稻米品質(zhì)主要包括外觀品質(zhì)、加工品質(zhì)、蒸煮食用品質(zhì)和營養(yǎng)品質(zhì)[34]。本研究結(jié)果表明, 合理的施肥方式有效提高了稻米精米率、直鏈淀粉含量和籽粒粗蛋白含量, 降低堊白, 改善稻米淀粉RVA譜特征值。因此, 通過施肥方式來調(diào)控稻米碾米品質(zhì)、外觀品質(zhì)和稻米食味品質(zhì)是有效可行的。本研究表明, 普通尿素和PASP尿素在不同生態(tài)點對稻米品質(zhì)的作用結(jié)果不同。因此在合適的生態(tài)點選擇合適的肥料種類可以改善稻米品質(zhì)。從施肥方式來看, 張艷霞等[35]認(rèn)為, 氮素穗肥與稻米品質(zhì)和淀粉特性密切相關(guān), 可通過調(diào)控氮素穗肥水平來改善稻米品質(zhì)。普通尿素和PASP尿素優(yōu)化施肥, 能有效改善稻米品質(zhì), 因此普通尿素和PASP尿素通過合理的多次施肥, 將氮肥后移提高水稻后期氮素需求從而調(diào)控稻米品質(zhì)。從本試驗稻米淀粉RVA譜特征值與品質(zhì)性狀的相關(guān)性來看, 施氮處理對稻米品質(zhì)的影響存在品質(zhì)特性間的差異。如崩解值和稻米碾米品質(zhì)受氮肥的影響并非同向的, 即在提高碾米品質(zhì)的同時不利于食味品質(zhì)的提升[36]。稻米優(yōu)質(zhì)栽培必須考慮各品質(zhì)指標(biāo)間的協(xié)調(diào)關(guān)系, 使其綜合性狀良好表達, 因此綜合稻米碾米品質(zhì)、外觀品質(zhì)、淀粉RVA、直鏈淀粉含量和籽粒粗蛋白含量的關(guān)系, 選出最適合水稻優(yōu)質(zhì)栽培的方式。在本試驗條件下, 射洪PASP尿素2次施肥處理(PASPT2)稻米綜合品質(zhì)較好, 溫江優(yōu)化施肥處理(ONM1)稻米綜合品質(zhì)較好。
氮肥施用能顯著提高稻米碾米品質(zhì), 氮肥后移和PASP尿素處理能改變淀粉RVA譜特征值、直鏈淀粉含量和籽粒粗蛋白含量, 因此通過合理的肥料施用能提高稻米品質(zhì)。同時PASP尿素在不同生態(tài)點對稻米品質(zhì)影響不同; PASP尿素處理導(dǎo)致射洪稻米碾米品質(zhì)和外觀品質(zhì)變劣, 但能有效降低溫江的堊白粒率, 改善外觀品質(zhì)??梢? 氮肥的施用要因地制宜。綜合稻米碾米品質(zhì)、外觀品質(zhì)、淀粉RVA譜特征值、直鏈淀粉含量和籽粒粗蛋白含量的關(guān)系, 射洪PASP尿素2次施肥處理(PASPT2)稻米綜合品質(zhì)較好, 溫江優(yōu)化施肥處理(ONM1)稻米綜合品質(zhì)較好。
[1] 趙凌, 趙春芳, 周麗慧, 等. 中國水稻生產(chǎn)現(xiàn)狀與發(fā)展趨勢[J]. 江蘇農(nóng)業(yè)科學(xué), 2015, 43(10): 105–107 ZHAO L, ZHAO C F, ZHOU L H, et al. Current situation and development trend of rice production in China[J]. Jiangsu Agricultural Sciences, 2015, 43(10): 105–107
[2] 魏穎娟, 夏冰, 趙楊, 等.15N示蹤不同施氮量對超級稻產(chǎn)量形成及氮素吸收的影響[J]. 核農(nóng)學(xué)報, 2016, 30(4): 783–791 WEI Y J, XIA B, ZHAO Y, et al. Effects of nitrogen application on yield formation and the nitrogen absorption and utilization of super rice based on15N-tracing[J]. Journal of Nuclear Agricultural Sciences, 2016, 30(4): 783–791
[3] 吳茂力, 姜心祿, 池忠志, 等. 機插秧模式下肥料配置對稻米主要品質(zhì)的影響[J]. 核農(nóng)學(xué)報, 2014, 28(10): 1905–1909 WU M L, JIANG X L, CHI Z Z, et al. Effects of different fertilizer allocation on grain qualities under mechanized transplanting rice mode[J]. Journal of Nuclear Agricultural Sciences, 2014, 28(10): 1905–1909
[4] WOPEREIS-PURA M M, WATANABE H, MOREIRA J, et al. Effect of late nitrogen application on rice yield, grain quality and profitability in the Senegal River valley[J]. European Journal of Agronom, 2002, 17(3): 191–198
[5] 陳瑩瑩, 胡星星, 陳京都, 等. 氮肥水平對江蘇早熟晚粳稻食味品質(zhì)的影響及其品種間差異[J]. 作物學(xué)報, 2012, 38(11): 2086–2092 CHEN Y Y, HU X X, CHEN J D, et al. Effect of nitrogen fertilizer application on eating quality of early-maturing late japonica rice in Jiangsu and its difference among varieties[J]. Acta Agronomica Sinica, 2012, 38(11): 2086–2092
[6] 張洪程, 王秀芹, 戴其根, 等. 施氮量對雜交稻兩優(yōu)培九產(chǎn)量、品質(zhì)及吸氮特性的影響[J]. 中國農(nóng)業(yè)科學(xué), 2003, 36(7): 800–806 ZHANG H C, WANG X Q, DAI Q G, et al. Effects of N-application rate on yield, quality and characters of nitrogen uptake of hybrid rice variety Liangyoupeijiu[J]. Scientia Agricultura Sinica, 2003, 36(7): 800–806
[7] PENG S B, BURESH R J, HUANG J L, et al. Improving nitrogen fertilization in rice by sitespecific N management. A review[J]. Agronomy for Sustainable Development, 2010, 30(3): 649–656
[8] 潘圣剛, 翟晶, 曹湊貴, 等. 氮肥運籌對水稻養(yǎng)分吸收特性及稻米品質(zhì)的影響[J]. 植物營養(yǎng)與肥料學(xué)報, 2010, 16(3): 522–527 PAN S G, ZHAI J, CAO C G, et al. Effects of nitrogen management practices on nutrition uptake and grain qualities of rice[J]. Plant Nutrition and Fertilizer Science, 2010, 16(3): 522–527
[9] 李國生, 張耗, 王志琴, 等. 氮素水平對水稻產(chǎn)量與品質(zhì)的影響[J]. 揚州大學(xué)學(xué)報: 農(nóng)業(yè)與生命科學(xué)版, 2007, 28(4): 66–70 LI G S, ZHANG H, WANG Z Q, et al. Effects of nitrogen levels on grain yield and quality of rice[J]. Journal of Yangzhou University: Agricultural and Life Science Edition, 2007, 28(4): 66–70
[10] 劉代銀, 伍菊仙, 任萬軍, 等. 氮肥運籌對免耕高留茬拋秧稻氮素吸收、運轉(zhuǎn)和子粒品質(zhì)的影響[J]. 植物營養(yǎng)與肥料學(xué)報, 2009, 15(3): 514–521 LIU D Y, WU J X, REN W J, et al. Effects of nitrogen strategies on nitrogen uptake, utilization and grain quality of broadcasted rice under no-tillage with high standing-stubbles[J]. Plant Nutrition and Fertilizer Science, 2009, 15(3): 514–521
[11] 徐大勇, 金軍, 胡曙鋆, 等. 氮磷鉀肥運籌對稻米直鏈淀粉含量和淀粉黏滯譜特征參數(shù)的影響[J]. 作物學(xué)報, 2005, 31(7): 921–925 XU D Y, JIN J, HU S Y, et al. Effects of N, P, K fertilizer management on grain amylose content and RVA profile parameters in rice[J]. Acta Agronomica Sinica, 2005, 31(7): 921–925
[12] 蔡一霞, 劉春香, 王維, 等. 基肥氮后移對早造雜交稻產(chǎn)量、品質(zhì)及米粉糊化特征的影響[J]. 華南農(nóng)業(yè)大學(xué)學(xué)報, 2011, 32(2): 1–5 CAI Y X, LIU C X, WANG W, et al. Grain yield, quality and the gelatinization of rice flour in early hybrid rice as affected by basic nitrogen postponed for heading stage[J]. Journal of South China Agricultural University, 2011, 32(2): 1–5
[13] DENG F, WANG L, REN W J, et al. Optimized nitrogen managements and polyaspartic acid urea improved dry matter production and yield ofhybrid rice[J]. Soil and Tillage Research,2015, 145: 1–9
[14] DENG F, WANG L, REN W J, et al. Enhancing nitrogen utilization and soil nitrogen balance in paddy fields by optimizing nitrogen management and using polyaspartic acid urea[J]. Field Crops Research, 2014, 169: 30–38
[15] 任萬軍, 胡曉玲, 楊萬全, 等水稻優(yōu)化定拋的增產(chǎn)機理與關(guān)鍵技術(shù)[J]. 中國稻米, 2008, (3): 54–56 REN W J, HU X L, YANG W Q, et al.Rice optimization on the production mechanism and key technology[J]. China Rice, 2008, (3): 54–56
[16] 林美娟, 宋江峰, 李大婧, 等. 用雙波長分光光度法測定鮮食玉米中直鏈淀粉和支鏈淀粉含量[J]. 江西農(nóng)業(yè)學(xué)報, 2010, 22(12): 117–119 LIN M J, SONG J F, LI D J, et al. Determination of amylose and amylopectin content in fresh corn by dual-wavelength spectrophotometry[J]. Acta Agriculturae Jiangxi, 2010, 22(12): 117–119
[17] CHENG W D, ZHANG G P, ZHAO G P, et al. Variation in rice quality of different cultivars and grain positions as affected by water management[J]. Field Crops Research, 2003, 80(3): 245–252
[18] 謝黎虹, 葉定池, 胡培松, 等. 氮肥用量和施用方式對水稻“甬優(yōu)6號”產(chǎn)量和品質(zhì)的影響[J]. 植物營養(yǎng)與肥料學(xué)報, 2011, 17(4): 789–794 XIE L H, YE D C, HU P S, et al.Effects of nitrogen fertilizer application rate and management strategy on grain yield and quality of rice variety “Yongyou 6”[J]. Plant Nutrition and Fertilizer Science, 2011, 17(4): 789–794
[19] 高繼平, 隋陽輝, 張文忠, 等. 水稻灌漿期冠層溫度對植株生理性狀及稻米品質(zhì)的影響[J]. 中國水稻科學(xué), 2015, 29(5): 501–510 GAO J P, SUI Y H, ZHANG W Z, et al. Effect of canopy temperature on physiological characteristic and grain quality at filling stage in rice[J]. Chinese Journal of Rice Science, 2015, 29(5): 501–510
[20] 王忠, 顧蘊潔, 陳剛, 等. 稻米的品質(zhì)和影響因素[J]. 分子植物育種, 2003, 1(2): 231–241 WANG Z, GU Y J, CHEN G, et al. Rice quality and its affecting factors[J]. Molecular Plant Breeding, 2003, 1(2): 231–241
[21] 戴平安, 周坤爐, 黎用朝, 等. 土壤條件對優(yōu)質(zhì)食用稻品質(zhì)及產(chǎn)量的影響[J]. 中國水稻科學(xué), 1998, 12(S1): 51–57 DAI P A, ZHOU K L, LI Y C, et al. Effects of soil conditions on quality and yield of high-quality edible rice[J]. Chinese Journal of Rice Science, 1998, 12(S1): 51–57
[22] 胡群, 夏敏, 張洪程, 等. 氮肥運籌對缽苗機插優(yōu)質(zhì)食味水稻產(chǎn)量及品質(zhì)的影響[J]. 作物學(xué)報, 2017, 43(3): 420–431 HU Q, XIA M, ZHANG H C, et al.Effect of nitrogen application regime on yield and quality of mechanical pot-seedlings transplanting rice with good taste quality[J]. Acta Agronomica Sinica, 2017, 43(3): 420–431
[23] 劉奇華, 吳修, 陳博聰, 等. 灌溉方式對黃淮稻區(qū)優(yōu)質(zhì)粳米品質(zhì)的影響[J]. 應(yīng)用生態(tài)學(xué)報, 2014, 25(9): 2583–2590 LIU Q H, WU X, CHEN B C, et al. Effects of different irrigation methods on grain quality of japonica rice in Huanghuai District of China[J]. Chinese Journal of Applied Ecology, 2014, 25(9): 2583–2590
[24] 袁天澤, 潘明安, 黃仁軍, 等. 氮磷肥施用對水稻品質(zhì)及稻田氮磷含量的影響[J]. 中國種業(yè), 2010, (10): 53–55 YUAN T Z, PAN M A, HUANG R J, et al. The effects of nitrogen phosphorus fertilizer apply towards rice quality and NPD content on the field[J]. China Seed Industry, 2010, (10): 53–55
[25] 郝虎林, 魏幼璋, 楊肖娥, 等. 供氮水平對稻株鐵、錳、銅、鋅含量和稻米品質(zhì)的影響[J]. 中國水稻科學(xué), 2007, 21(4): 411–416 HAO H L, WEI Y Z, YANG X E, et al. Effects of different nitrogen fertilizer levels on concentrations of Fe, Mn, Cu and Zn and grain quality in rice ()[J]. Chinese Journal of Rice Science, 2007, 21(4): 411–416
[26] 程海濤, 馬兆惠, 劉桂林, 等. 北方粳稻品種(系)資源淀粉RVA譜特征與品質(zhì)性狀典型相關(guān)分析[J]. 作物雜志, 2017, (2): 59–66 CHENG H T, MA Z H, LIU G L, et al. Canonical correlation analysis between RVA profile characteristics and quality traits of japonica rice varieties[J]. Crops, 2017, (2): 59–66
[27] 葉全寶, 張洪程, 李華, 等. 施氮水平和栽插密度對粳稻淀粉RVA譜特性的影響[J]. 作物學(xué)報, 2005, 31(1): 124–130 YE Q B, ZHANG H C, LI H, et al.Effects of amount of nitrogen applied and planting density on RVA profile characteristic of japonica rice[J]. Acta Agronomica Sinica, 2005, 31(1): 124–130
[28] 從夕漢, 施伏芝, 阮新民, 等. 氮肥水平對不同基因型水稻氮素利用率、產(chǎn)量和品質(zhì)的影響[J]. 應(yīng)用生態(tài)學(xué)報, 2017, 28(4): 1219–1226 CONG X H, SHI F Z, RUAN X M, et al. Effects of nitrogen fertilizer application rate on nitrogen use efficiency and grain yield and quality of different rice varieties[J]. Chinese Journal of Applied Ecology, 2017, 28(4): 1219–1226
[29] 李永杰, 崔晶, 李景龍, 等. 施氮量對津原E28產(chǎn)量和品質(zhì)的影響[J]. 天津農(nóng)學(xué)院學(xué)報, 2014, 21(1): 28–30 LI Y J, CUI J, LI J L, et al. Effects of nitrogen fertilizer on yield and quality of Jinyuan E28[J]. Journal of Tianjin Agricultural University, 2014, 21(1): 28–30
[30] 劉建, 魏亞鳳, 徐少安. 蘗穗肥氮素配比對水稻產(chǎn)量、品質(zhì)及氮肥利用率的影響[J]. 華中農(nóng)業(yè)大學(xué)學(xué)報, 2006, 25(3): 223–227 LIU J, WEI Y F, XU S A. Effects of the ratio of tiller to panicle nitrogen fertilizer on rice yield and quality and nitrogen utilization efficiency[J]. Journal of Huazhong Agricultural University, 2006, 25(3): 223–227
[31] 張亞潔, 楊連新, 李俊賢, 等. 土壤水分對旱稻米質(zhì)性狀及RVA譜特征參數(shù)影響[J]. 揚州大學(xué)學(xué)報: 農(nóng)業(yè)與生命科學(xué)版, 2004, 25(4): 7–11 ZHANG Y J, YANG L X, LI J X, et al. Effects of soil moisture on quality characters and RVA profile parameters of upland rice[J]. Journal of Yangzhou University: Agricultural and Life Science Edition,2004, 25(4): 7–11
[32] 蔡一霞, 朱慶森, 徐偉, 等. 結(jié)實期水分脅迫對水稻強、弱勢粒主要米質(zhì)性狀及淀粉粘滯譜特征的影響[J]. 作物學(xué)報, 2004, 30(3): 241–247 CAI Y X, ZHU Q S, XU W, et al. Effects of water stress on the main characters of superior and inferior grains quality and the properties of RVA profile during grain-filling stage[J]. Acta Agronomica Sinica, 2004, 30(3): 241–247
[33] 曲均峰. 不同控氮比摻混肥在水稻上的應(yīng)用效果[J]. 中國農(nóng)學(xué)通報, 2014, 30(12): 176–180 QU J F. Application of different release duration control-released urea combined with conventional urea on rice[J]. Chinese Agricultural Science Bulletin, 2014, 30(12): 176–180
[34] 張昌泉, 趙冬生, 李錢峰, 等. 稻米品質(zhì)性狀基因的克隆與功能研究進展[J]. 中國農(nóng)業(yè)科學(xué), 2016, 49(22): 4267–4283 ZHANG C Q, ZHAO D S, LI Q F, et al.Progresses in research on cloning and functional analysis of key genes involving in rice grain quality[J]. Scientia Agricultura Sinica, 2016, 49(22): 4267–4283
[35] 張艷霞, 丁艷鋒, 王強盛, 等. 氮素穗肥對不同品種稻米品質(zhì)性狀的影響[J]. 植物營養(yǎng)與肥料學(xué)報, 2007, 13(6): 1080–1085ZHANG Y X, DING Y F, WANG Q S, et al. Effect of panicle nitrogen fertilizer on quality properties of different rice varieties[J]. Plant Nutrition and Fertilizer Science, 2007, 13(6): 1080–1085
[36] 李剛, 鄧其明, 李雙成, 等. 稻米淀粉RVA譜特征與品質(zhì)性狀的相關(guān)性[J]. 中國水稻科學(xué), 2009, 23(1): 99–102 LI G, DENG Q M, LI S C, et al. Correlation analysis between RVA profile characteristics and quality in rice[J]. Chinese Journal of Rice Science, 2009, 23(1): 99–102
Influence of optimized nitrogen management on the quality of medium hybrid rice under different ecological conditions*
LI Shuxian, PU Shilin, DENG Fei**, WANG Li, HU Hui, LIAO Shuang, LI Wu, REN Wanjun**
(College of Agronomy, Sichuan Agricultural University / Key Laboratory of Crop Physiology, Ecology, and Cultivation in Southwest, Ministry of Agriculture, Wenjiang 611130, China)
The effects of different nitrogen (N) treatments on rice quality were studied at two different ecological sites (Wenjiang and Shehong), using single-factor experiment with a randomized block design and ‘F You 498’ as the test material. The results showed that the milling quality, appearance, and grain crude protein content were better in the Wenjiang rice. In the Shehong rice, the peak viscosity and breakdown viscosity were higher and the setback viscosity was lower; the cooking and eating qualities were better and the amylose content was higher. With N fertilizer applied, the rice milling quality and amylose and grain crude protein contents were significantly increased, and the breakdown viscosity was significantly decreased. At the same time, N fertilization increased the peak viscosity and reduced the setback viscosity of Shehong rice, whereas it improved the appearance, decreased the peak viscosity, and increased the reduction value of Wenjiang rice. Compared with the fertilization practices of farmers, the optimal N fertilizer treatments (ONM1: optimized N management; ONM-N1: optimized N management with 15% N reduction; and ONM+N1: optimized N management with 15% N increase) and optimized N management of polyaspartic acid-urea (PASP-urea) treatment increased the amylose and grain crude protein contents. Optimal N fertilizer treatment reduced the chalky rice rate and chalkiness ratio, and improved the appearance of Wenjiang rice. At both ecological sites, the optimal N fertilizer treatment reduced the peak viscosity and breakdown viscosity, increased the setback viscosity, and worsened the cooking and eating qualities of the rice. At the same time, it increased the milled rice rate of Shehong rice and the head rice rate of Wenjiang rice. In comparison with the ONM1 treatment, PASP-urea treatment reduced the milled rice ratios and head rice rates of the two types of rice and the chalky rice rate of Wenjiang rice, whereas it increased the chalky rice rate and chalkiness ratio of Shehong rice, worsening its appearance. At the same time, PASP-urea applied at the basal stage only and spilt-applied at the basal stage and at panicle initiation reduced the amylose and grain crude protein contents. Optimized N management of PASP-urea treatment reduced the peak viscosity and breakdown viscosity of the two rice types and the amylose content of Wenjiang rice, whereas it increased the grain crude protein contents of the two rice types and the amylase content of Shehong rice. Compared with the OMN1 treatment, the ONM-N1 and ONM+N1 treatments reduced the amylose contents and the head rice rates of the two rice types and the chalky rice rate of Wenjiang rice, whereas they increased the chalky rice rate and chalkiness ratio of Shehong rice. Compared with that of PASP-urea applied at the basal stage alone and spilt-applied at the basal stage and at panicle initiation, optimized N management of PASP-urea treatment significantly decreased the chalkiness ratio, peak viscosity, and breakdown viscosity, and increased the setback viscosity and grain crude protein contents. At the same time, it reduced the head rice rate and increased the chalky rice rate and amylose content in Wenjiang rice, whereas it reduced the chalky rice rate and increased the head rice rate in Shehong rice. Overall, in terms of the milling quality, appearance, starch RVA, amylose content, and grain crude protein content, the two applications of PASP-urea fertilizer treatment resulted in better comprehensive qualities in Shehong rice, whereas optimized N fertilization treatment gave better comprehensive qualities in Wenjiang rice.
Rice; Ecological conditions; Nitrogen management; PASP urea; Rice quality
DENG Fei, E-mail: 273634096@qq.com; REN Wanjun, E-mail: rwjun@126.com
Dec. 16, 2018;
Feb. 28, 2019
S511.3+2
2096-6237(2019)07-1042-11
10.13930/j.cnki.cjea.181087
李書先, 蒲石林, 鄧飛, 王麗, 胡慧, 廖爽, 李武, 任萬軍. 不同生態(tài)條件下氮肥優(yōu)化管理對雜交中稻稻米品質(zhì)的影響[J]. 中國生態(tài)農(nóng)業(yè)學(xué)報(中英文), 2019, 27(7): 1042-1052
LI S X, PU S L, DENG F, WANG L, HU H, LIAO S, LI W, REN W J.Influence of optimized nitrogen management on the quality of medium hybrid rice under different ecological conditions[J]. Chinese Journal of Eco-Agriculture, 2019, 27(7): 1042-1052
* 國家自然科學(xué)基金項目(31871564)、國家糧食豐產(chǎn)增效科技創(chuàng)新專項課題(2018YFD0301204)和四川省育種攻關(guān)項目(2016NYZ0051)資助
鄧飛, 主要研究方向為水稻高產(chǎn)優(yōu)質(zhì)栽培, E-mail: 273634096@qq.com; 任萬軍, 主要研究方向為水稻優(yōu)質(zhì)高產(chǎn)及機械化栽培, E-mail: rwjun@126.com
李書先, 主要研究方向為水稻高產(chǎn)優(yōu)質(zhì)栽培。E-mail: 2534619749@qq.com
2018-12-16
2019-02-28
* This study was supported by the National Natural Science Foundation of China (31871564), the National Science and Technology Innovation Project for Grain Yield Enhancement of China (2018YFD0301204) and Sichuan Breeding Program (2016NYZ0051).