• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      殺菌型水稻秸稈纖維基地膜制造工藝參數(shù)優(yōu)化研究

      2019-07-23 02:34:44陳海濤陳雙超
      關(guān)鍵詞:強(qiáng)劑施膠黏劑

      陳海濤,陳雙超,劉 爽

      ?

      殺菌型水稻秸稈纖維基地膜制造工藝參數(shù)優(yōu)化研究

      陳海濤,陳雙超,劉 爽

      (東北農(nóng)業(yè)大學(xué)工程學(xué)院,哈爾濱 150030)

      為提高農(nóng)藥有效利用率、減少農(nóng)藥使用量,對(duì)負(fù)載廣譜殺菌劑多菌靈的殺菌型水稻秸稈纖維基地膜制造工藝參數(shù)組合進(jìn)行了優(yōu)化研究。應(yīng)用四因素五水平二次正交旋轉(zhuǎn)中心組合試驗(yàn)方法,以濕強(qiáng)劑、施膠劑、膠黏劑濃度和涂層厚度為影響因子,選擇殺菌型水稻秸稈纖維基地膜的干抗張力、濕抗張力、透氣度、降解周期、農(nóng)藥有效利用率為響應(yīng)函數(shù),實(shí)施了組合試驗(yàn),結(jié)果表明:當(dāng)工藝參數(shù)組合為濕強(qiáng)劑質(zhì)量分?jǐn)?shù)0.8%~0.9%、施膠劑質(zhì)量分?jǐn)?shù)0.5%~0.7%、膠黏劑濃度2.0%、涂布厚度20m時(shí),殺菌型水稻秸稈纖維基地膜干抗張力≥35 N、濕抗張力≥15 N、透氣度≤2m/(Pa·s)、降解周期≥60 d、農(nóng)藥有效利用率≥80%。研究結(jié)果表明該地膜不僅提高了秸稈纖維基地膜的各項(xiàng)性能指標(biāo)且增加了秸稈纖維基地膜的殺菌功能,而且為廣譜殺菌劑多菌靈增效減量和廣譜殺菌型水稻秸稈纖維基地膜的研發(fā)提供了參考依據(jù)。

      農(nóng)藥;膜;秸稈;殺菌;優(yōu)化

      0 引 言

      目前,中國(guó)農(nóng)業(yè)生產(chǎn)中農(nóng)藥使用比較大,施藥方法不夠科學(xué),造成生產(chǎn)成本增加,農(nóng)產(chǎn)品殘留過剩、作物出現(xiàn)植物毒性、環(huán)境污染等問題[1-4]。針對(duì)上述問題,為了實(shí)現(xiàn)農(nóng)業(yè)的綠色可持續(xù)發(fā)展,農(nóng)業(yè)部制定了《到2020年農(nóng)藥使用量零增長(zhǎng)行動(dòng)方案》[5]。

      農(nóng)藥控制釋放技術(shù)是提高農(nóng)藥利用率,減少農(nóng)藥用量,減少污染的有效方法。目前通過與聚合物(或黏土)復(fù)合實(shí)現(xiàn)農(nóng)藥的控制釋放[6],主要?jiǎng)┬桶ň惑w、微膠囊、吸附型制劑、化學(xué)型緩釋劑等。秸稈纖維基地膜是以農(nóng)作物秸稈為原料制成的可完全降解型地膜,在覆蓋栽培過程中具有增溫、保墑、抑草、保肥、防止水土流失的功效[7-10]。如果以秸稈纖維基地膜為載體,將農(nóng)藥負(fù)載于其上,可利用膜下避光環(huán)境提高藥劑的穩(wěn)定性,并產(chǎn)生緩釋的效果,延長(zhǎng)持效期,提高藥效,形成多功能全降解地膜。但目前相關(guān)研究鮮有報(bào)道[11-13]。

      本研究擬采用涂布的方式,以殼聚糖為膠黏劑,將廣譜型殺菌劑多菌靈負(fù)載于水稻秸稈纖維基地膜上,研究分析濕強(qiáng)劑、施膠劑、膠黏劑濃度和涂層厚度的變化對(duì)地膜力學(xué)性能及農(nóng)藥緩釋性能的影響,探索殺菌型秸稈纖維基地膜的最佳制造工藝參數(shù),為殺菌型秸稈纖維基地膜的開發(fā)提供參考。

      1 試驗(yàn)材料與方法

      1.1 試驗(yàn)材料與儀器設(shè)備

      試驗(yàn)材料:秸稈纖維(2017年收獲東農(nóng)425水稻),未漂硫酸鹽針葉木槳板;功能助劑:中性施膠劑(濃度15%)、濕強(qiáng)劑(濃度15%);膠黏劑:殼聚糖(北京博奧拓達(dá)科技有限公司);農(nóng)藥:多菌靈(江蘇省江陰市福達(dá)農(nóng)化有限公司,有效成分80%);檢驗(yàn)試劑:二氯甲烷、鹽酸、氨水、甲醇、石油醚。以上試劑均為分析純。

      試驗(yàn)設(shè)備:ZT4-00瓦利打漿機(jī)(中通試驗(yàn)設(shè)備公司),ZJG-100打漿度測(cè)定儀、ZCX-A紙頁成型設(shè)備、ZL-3006 擺錘式紙張抗張力測(cè)量?jī)x器、紙張透氣度測(cè)量?jī)x器(月明試驗(yàn)裝置有限公司),YB502電子秤(精度0.01 g,海康電子設(shè)備有限公司),DGG-9070AD恒溫電熱干燥箱(森信實(shí)驗(yàn)設(shè)備有限公司),T6新世紀(jì)紫外光分光光度計(jì)(北京普析通用儀器有限責(zé)任公司),MS-RL320實(shí)驗(yàn)室刮刀涂布機(jī)(睿林機(jī)械科技有限公司),數(shù)顯測(cè)厚規(guī)(精度0.001 m,上海本杉儀器設(shè)備有限公司),電子恒溫水浴箱(虞龍?jiān)O(shè)備有限公司),SIGMA3-30k離心機(jī)(北京思達(dá)興業(yè)儀器有限公司)。

      1.2 試驗(yàn)方法

      1.2.1 因素水平

      以木漿纖維為骨架、水稻秸稈纖維為填充,控制地膜定量60 g/m2、打漿度(35±1)°SR、多菌靈的載藥量為0.083 g/m2。采用四因素五水平二次正交旋轉(zhuǎn)中心組合試驗(yàn)方法,選擇濕強(qiáng)劑、施膠劑、膠黏劑濃度和涂層厚度為影響因子,干抗張力、濕抗張力、透氣度、降解周期、農(nóng)藥有效利用率為評(píng)價(jià)指標(biāo),因素水平編碼表如表1所示,試驗(yàn)方案如表2。

      表1 因素水平編碼表

      1.2.2 性能指標(biāo)

      將制備的膜片在18 ℃室溫及30%~40%的相對(duì)濕度下靜置24 h,參照GB/T12914-2008《紙與紙板抗張力的測(cè)定》測(cè)試干、濕抗張力;參照GB/T458-2008《紙與紙板透氣度的測(cè)定》進(jìn)行透氣度換算,如公式(1)所示,每組試驗(yàn)重復(fù)10次取平均值。

      式中為透氣度,m/(Pa·s);為一定時(shí)間內(nèi)通過膜片的氣體容積,mL;Δ為膜片兩側(cè)壓差,kPa;為測(cè)定時(shí)間,s。

      借鑒GB/T12914-2008《紙與紙板抗張力的測(cè)定》將36組試驗(yàn)樣片布置于盆栽中,每組樣片3次重復(fù),在藥膜覆蓋并降解期間,選擇可裁剪部分提取測(cè)試試樣,進(jìn)行殘余干抗張力測(cè)定,可得干抗張力隨著時(shí)間推移的變化趨勢(shì)。根據(jù)降解周期的趨勢(shì),計(jì)算出干抗張力為0時(shí)的時(shí)間,即藥膜的降解周期。

      參照GB/T5009.188-2003《蔬菜、水果中甲基托布津、多菌靈的測(cè)定》測(cè)定多菌靈的標(biāo)準(zhǔn)曲線。采用紫外分光光度法[14]將36組樣片每組重復(fù)3次布置于盆栽中,種植韭菜,測(cè)定在韭菜灰霉病期間土壤中多菌靈的累積量,進(jìn)行土壤中多菌靈有效利用率的換算[15](簡(jiǎn)稱“農(nóng)藥有效利用率”),如公式(2)所示,每組重復(fù)10次取平均值。

      應(yīng)用Design-Expert6.0.10軟件進(jìn)行數(shù)據(jù)分析[16]。

      表2 試驗(yàn)方案與結(jié)果

      1.3 制膜工藝流程

      水稻秸稈與針葉木漿板分別打漿→配漿添加濕強(qiáng)劑和施膠劑→抄膜→烘干成型→膠黏劑和多菌靈溶液混合后進(jìn)行涂布→成型→性能指標(biāo)測(cè)定。

      1)打漿:先分別將水稻秸稈及針葉木漿按照GB/T24325-2009《紙漿瓦利(valley)打漿機(jī)法》疏解制備,測(cè)出其濃度以備配漿時(shí)使用[17-18]。

      2)配漿:根據(jù)絕干漿定量,按比例混合水稻秸稈漿和針葉木漿,按比例添加濕強(qiáng)劑和施膠劑。

      3)抄膜:參照GB/T24325-2009《紙漿瓦利(valley)打漿機(jī)法》進(jìn)行壓膜、烘干,完成膜片制造。

      4)涂布:按照試驗(yàn)方案將多菌靈溶液與不同濃度的膠黏劑混合后,通過計(jì)量棒涂布于膜片表面,室溫下靜置成型[19]。

      2 結(jié)果與討論

      2.1 試驗(yàn)結(jié)果

      試驗(yàn)結(jié)果如表2所示。

      2.2 回歸模型

      對(duì)試驗(yàn)結(jié)果進(jìn)行分析,干抗張力1、濕抗張力2、透氣度3、降解周期4、農(nóng)藥有效利用率5的二次項(xiàng)模型有意義(<0.000 1),在信度0.05下進(jìn)行檢驗(yàn),剔除非顯著項(xiàng),得各目標(biāo)函數(shù)回歸模型如式(3)-(7)所示。

      式中1為濕強(qiáng)劑,%;2為施膠劑,%;3為膠黏劑濃度,%;4為涂層厚度,m。

      2.3 回歸模型方差分析

      對(duì)式(3)~(7)進(jìn)行方差分析,結(jié)果如表3所示。

      由表3可知,每個(gè)指標(biāo)回歸項(xiàng)值<0.05,說明回歸方程極顯著;擬合項(xiàng)的值>0.05,說明模型擬合好。

      表3 回歸模型方差分析

      2.4 各因素對(duì)各項(xiàng)性能指標(biāo)影響規(guī)律

      2.4.1 涂布前后性能對(duì)比

      對(duì)涂布前后水稻秸稈纖維基地膜進(jìn)行電鏡掃描,涂布前后地膜的微觀形態(tài)如圖1所示,可以明顯看出,由于膠黏劑和農(nóng)藥的混合物裝填在纖維間,減少了纖維間的孔隙度,提高了地膜表面平整度?;陬A(yù)試驗(yàn)可知,干抗張力和濕抗張力隨著涂布厚度和膠黏劑濃度的增加均有所增加,在涂層厚度為10~20m,膠黏劑濃度為1.0%~2.0%時(shí),由于膠黏劑的黏附作用能夠加強(qiáng)纖維間的作用力,干抗張力和濕抗張力明顯增加,在涂層厚度為20~30m,膠黏劑濃度為2.0%~3.0%時(shí),由于膠黏劑濃度越大,流動(dòng)性越差,涂層厚度越大,涂層均勻度越差,使得干抗張力和濕抗張力增長(zhǎng)趨勢(shì)趨緩。

      注:試驗(yàn)溫度25 ℃,放大倍數(shù)400×,標(biāo)尺100m。

      Note: Images were obtained at 25 ℃, magnification 400×, the bar accounts for 100m.

      圖1 涂布前后地膜微觀形態(tài)

      Fig.1 Micromorphology of film before and after coating

      2.4.2 干抗張力

      1)干抗張力影響規(guī)律見圖2,施膠劑質(zhì)量分?jǐn)?shù)和膠黏劑濃度對(duì)干抗張力的影響如圖2a所示。在濕強(qiáng)劑質(zhì)量分?jǐn)?shù)0.8%,涂層厚度20m的條件下,干抗張力與施膠劑質(zhì)量分?jǐn)?shù)呈正相關(guān),隨著施膠劑質(zhì)量分?jǐn)?shù)的增大,干抗張力緩慢增大,這是由于施膠體系中,施膠組分和纖維之間的結(jié)合,分為穩(wěn)定的強(qiáng)鍵結(jié)合和不穩(wěn)定的弱鍵結(jié)合[20],隨著施膠劑質(zhì)量分?jǐn)?shù)的不斷增大,形成穩(wěn)定強(qiáng)鍵的數(shù)量不斷增多,但由于施膠劑質(zhì)量分?jǐn)?shù)不高,所以干抗張力增加緩慢;隨著膠黏劑濃度的增加,干抗張力快速增大,因?yàn)闅ぞ厶堑暮恐饾u增大,殼聚糖分子中存在著許多氨基的親核基團(tuán)[21],可以在木素纖維大分子鏈上發(fā)生鍵合,膠黏劑濃度越大,干抗張力越大。

      由圖2a可知,膠黏劑濃度對(duì)干抗張力的影響程度大于施膠劑質(zhì)量分?jǐn)?shù),最大值出現(xiàn)在施膠劑質(zhì)量分?jǐn)?shù)0.7%、膠黏劑濃度3.0%。

      2)膠黏劑濃度和涂層厚度對(duì)干抗張力的影響如圖2b所示。在濕強(qiáng)劑質(zhì)量分?jǐn)?shù)0.8%,施膠劑質(zhì)量分?jǐn)?shù)0.5%的條件下,干抗張力隨著膠黏劑濃度的增加呈現(xiàn)明顯上升趨勢(shì),因?yàn)槟緷{中含有的木素酚-OH[22],能與殼聚糖所含的-NH2形成離子鍵,從而有效提升干抗張力,膠黏劑濃度越大,形成的離子鍵越多,干抗張力越大;隨著涂層厚度的增加,膠黏劑質(zhì)量增大,與纖維間形成的作用力增大,且膠黏劑質(zhì)量越大黏度越大[23-24],纖維間互相粘連,使得干抗張力迅速增大。

      由圖2b可知,膠黏劑濃度對(duì)干抗張力的影響程度大于涂層厚度,最大值出現(xiàn)在膠黏劑濃度3.0%、涂層厚度30m。

      注:圖2a中濕強(qiáng)劑質(zhì)量分?jǐn)?shù)0.8%,涂層厚度20m;圖2b中濕強(qiáng)劑質(zhì)量分?jǐn)?shù)0.8%,施膠劑質(zhì)量分?jǐn)?shù)0.5%。

      Note: In figure 2a wet strength agent0.8%, coating thickness 20m;in figure 2b wet strength agent 0.8%, sizing agent 0.5%.

      圖2 施膠劑質(zhì)量分?jǐn)?shù)和膠黏劑濃度和膠黏劑濃度和涂層厚度對(duì)干抗張力的影響

      Fig.2 Effects of sizing agent and adhesive concentration and adhesive concentration and coating thickness on dry tensile strength

      2.4.3 濕抗張力

      1)濕抗張力影響規(guī)律見圖3,濕強(qiáng)劑質(zhì)量分?jǐn)?shù)和涂層厚度對(duì)濕抗張力的影響如圖3a所示。在施膠劑質(zhì)量分?jǐn)?shù)0.5%,膠黏劑濃度2.0%的條件下,隨著濕強(qiáng)劑質(zhì)量分?jǐn)?shù)的增大,濕抗張力逐漸增大,因?yàn)闈駨?qiáng)劑所帶的陽離子電荷與纖維表面的負(fù)電荷通過庫(kù)侖力相吸引,編織在纖維分子長(zhǎng)直鏈的四周[25],降低液體對(duì)地膜纖維的潤(rùn)濕作用,使?jié)窨箯埩υ黾?;隨著涂層厚度的增加,濕抗張力迅速增大,因?yàn)橥坎荚诘啬け砻娴哪z黏劑具有一定黏度,在濕潤(rùn)狀態(tài)下能夠更好的吸附在纖維表面和間隙中,對(duì)纖維之間進(jìn)行黏連,減少液體侵入纖維間,涂層厚度越大,液體越難侵入纖維間,濕抗張力越大。

      由圖3a可知,涂層厚度對(duì)濕抗張力的影響程度大于濕強(qiáng)劑質(zhì)量分?jǐn)?shù),最大值出現(xiàn)在濕強(qiáng)劑質(zhì)量分?jǐn)?shù)1.2%、涂布厚度30m。

      注:圖3a中施膠劑質(zhì)量分?jǐn)?shù)0.5%,膠黏劑濃度2.0%;圖3b中濕強(qiáng)劑質(zhì)量分?jǐn)?shù)0.8%,涂層厚度20m。

      Note: In figure 3a sizing agent 0.5%, adhesive concentration 2.0%; in figure 3b wet strength agent 0.8%, coating thickness 20m.

      圖3 濕強(qiáng)劑質(zhì)量分?jǐn)?shù)和涂層厚度和施膠劑質(zhì)量分?jǐn)?shù)和涂層厚度對(duì)濕抗張力的影響

      Fig.3 Effects of wet strength agent and coating thickness and sizing agent and coating thickness on wet tensile strength

      2)施膠劑質(zhì)量分?jǐn)?shù)和涂層厚度對(duì)濕抗張力的影響如圖3b所示。在濕強(qiáng)劑質(zhì)量分?jǐn)?shù)0.8%,膠黏劑濃度2.0%的條件下,濕抗張力與濕強(qiáng)劑質(zhì)量分?jǐn)?shù)呈正相關(guān),因?yàn)闈駨?qiáng)劑的添加不僅保護(hù)了原有纖維間的結(jié)合,還能產(chǎn)生亞甲基醚鍵,這種新的抗水結(jié)合鍵限制了漿料的吸濕潤(rùn)脹[26],使?jié)窨箯埩υ黾樱粷窨箯埩﹄S著涂層厚度的增大而呈快速上升的趨勢(shì),因?yàn)橥繉雍穸仍龃?,使膠黏劑的質(zhì)量增加,膠黏劑作用能有效減少液體對(duì)纖維的潤(rùn)濕作用,所以涂層厚度增大使?jié)窨箯埩ρ杆僭龃蟆?/p>

      由圖3b可知,涂層厚度對(duì)濕抗張力的影響程度大于施膠劑質(zhì)量分?jǐn)?shù),最大值出現(xiàn)在施膠劑質(zhì)量分?jǐn)?shù)0.7%、涂層厚度30m。

      2.4.4 透氣度

      1)透氣度影響規(guī)律見圖4,濕強(qiáng)劑質(zhì)量分?jǐn)?shù)和膠黏劑濃度對(duì)透氣度的影響如圖4a所示。在施膠劑質(zhì)量分?jǐn)?shù)80%,涂層厚度20m的條件下,濕強(qiáng)劑質(zhì)量分?jǐn)?shù)較高時(shí),透氣度隨著膠黏劑濃度的增大而大幅度降低,濕強(qiáng)劑質(zhì)量分?jǐn)?shù)較低時(shí),透氣度隨著膠黏劑濃度的增加呈緩慢降低趨勢(shì)。因?yàn)闈駨?qiáng)劑帶有陽離子,對(duì)于帶有陰離子的膠料和細(xì)小纖維有強(qiáng)烈的吸附作用,秸稈纖維細(xì)小且雜細(xì)胞較多,表面裸露的氨基基團(tuán)能更均勻的與陽離子吸附成膜[27],膠黏劑主要成分為殼聚糖,涂布在地膜表面會(huì)形成一層光滑透明、均勻、質(zhì)密、無色略帶光澤的膜[28],隔斷空氣,從而降低透氣度,隨著濕強(qiáng)劑含量增加,陽離子增多,吸附作用增強(qiáng),透氣度下降明顯。

      由圖4a可知,膠黏劑濃度對(duì)透氣度的影響程度大于濕強(qiáng)劑質(zhì)量分?jǐn)?shù),最小值出現(xiàn)在膠黏劑濃度3.0%、濕強(qiáng)劑質(zhì)量分?jǐn)?shù)1.2%。

      2)施膠劑質(zhì)量分?jǐn)?shù)和涂層厚度對(duì)透氣度的影響如圖4b所示。在濕強(qiáng)劑質(zhì)量分?jǐn)?shù)0.8%,膠黏劑濃度2.0%的條件下,透氣度隨著施膠劑的增加而緩慢下降,因?yàn)槭┠z劑中具有能夠直接和纖維素羥基反應(yīng)的官能團(tuán),朝向纖維的反應(yīng)性官能團(tuán)與纖維素的羥基發(fā)生反應(yīng)形成共價(jià)鍵,從而固著在纖維表面上,完成施膠過程[29],從而減小透氣度。透氣度隨著涂層厚度的增加亦呈整體下降趨勢(shì),當(dāng)涂層厚度趨于30m時(shí),透氣度趨于穩(wěn)定狀態(tài),不再減小,因?yàn)槟z黏劑填充在纖維間隙中,形成了一層保護(hù)膜,涂布厚度越大,纖維縫隙越小,從而降低了透氣度,當(dāng)纖維縫隙被全部填滿時(shí),變化趨于平穩(wěn)。

      由圖4b可知,涂層厚度對(duì)透氣度的影響程度大于施膠劑質(zhì)量分?jǐn)?shù),最小值出現(xiàn)在施膠劑質(zhì)量分?jǐn)?shù)0.7%、涂層厚度30m。

      注:圖4a中施膠劑質(zhì)量分?jǐn)?shù)0.5%,涂層厚度20m;圖4b中濕強(qiáng)劑質(zhì)量分?jǐn)?shù)0.8%,膠黏劑濃度2.0%。

      Note: In figure 4a sizing agent 0.5%, coating thickness 20m; in figure 4b wet strength agent 0.8%, adhesive concentrati0 2.0%.

      圖4 濕強(qiáng)劑質(zhì)量分?jǐn)?shù)和膠黏劑濃度和施膠劑質(zhì)量分?jǐn)?shù)和涂層厚度對(duì)透氣度的影響

      Fig.4 Effects of wet strength agent and adhesive concentration and sizing agent and coating thickness on air permeability

      2.4.5 降解周期

      1)降解周期影響規(guī)律見圖5,濕強(qiáng)劑質(zhì)量分?jǐn)?shù)和涂層厚度對(duì)降解周期的影響如圖5a所示。在施膠劑質(zhì)量分?jǐn)?shù)0.5%,膠黏劑濃度2.0%的條件下,降解周期與濕強(qiáng)劑質(zhì)量分?jǐn)?shù)呈正相關(guān)關(guān)系,因?yàn)樵诘啬こ尚蜁r(shí),由于相容性,使得共混物各組分彼此相互容納,形成了宏觀均勻材料[30],濕強(qiáng)劑質(zhì)量分?jǐn)?shù)越大,與秸稈纖維發(fā)生的作用越大,形成的材料均勻性越好,彼此間產(chǎn)生的作用力越大,降解所需時(shí)間越長(zhǎng),降解周期與涂層厚度亦呈正相關(guān)關(guān)系,膠黏劑能夠填充纖維間隙,使得纖維之間相互黏連,涂層越厚,填充后的纖維間黏連越緊密,纖維表面平整度越好,降解所需時(shí)間越長(zhǎng)。

      由圖5a可知,涂布厚度對(duì)降解周期的影響程度大于濕強(qiáng)劑質(zhì)量分?jǐn)?shù),最大值出現(xiàn)在涂布厚度30m、濕強(qiáng)劑質(zhì)量分?jǐn)?shù)1.2%。

      2)施膠劑質(zhì)量分?jǐn)?shù)和涂層厚度對(duì)降解周期的影響如圖5b所示。在濕強(qiáng)劑質(zhì)量分?jǐn)?shù)0.8%,膠黏劑濃度2.0%的條件下,降解周期隨著涂層厚度的增大而逐漸增大,而且隨著施膠劑質(zhì)量分?jǐn)?shù)增大,降解周期增大明顯,因?yàn)樵谕坎歼^程中,涂層厚度越大,纖維表面膠黏劑質(zhì)量越大,與纖維間的作用力越大,破壞這種作用力所需要的時(shí)間越長(zhǎng),而隨著施膠劑質(zhì)量分?jǐn)?shù)的增加,紙張抄造過程中施膠劑的助留率增加[31-36],大量施膠劑能與纖維間形成更穩(wěn)固的吸附力,破壞這種力需要時(shí)間越長(zhǎng),降解周期越大。

      由圖5b可知,涂層厚度對(duì)降解周期的影響程度大于施膠劑質(zhì)量分?jǐn)?shù),最大值出現(xiàn)在施膠劑質(zhì)量分?jǐn)?shù)0.7%、涂層厚度30m。

      注:圖5a中施膠劑質(zhì)量分?jǐn)?shù)0.5%,膠黏劑濃度2.0%;圖5b中濕強(qiáng)劑質(zhì)量分?jǐn)?shù)0.8%, 膠黏劑濃度2.0%。

      Note: In figure 5a sizing agent 0.5%, adhesive concentration 2.0%; in figure 5b wet strength agent 0.8%, adhesive concentration 2.0%.

      圖5 濕強(qiáng)劑質(zhì)量分?jǐn)?shù)和涂層厚度和施膠劑質(zhì)量分?jǐn)?shù)和涂層厚度對(duì)降解周期的影響

      Fig.5 Effects of wet strength agent and coating thickness and sizing agent and coating thickness on degradation cycle

      2.4.6 農(nóng)藥有效利用率

      1)農(nóng)藥有效利用率影響規(guī)律見圖6,濕強(qiáng)劑質(zhì)量分?jǐn)?shù)和施膠劑質(zhì)量分?jǐn)?shù)對(duì)農(nóng)藥有效利用率的影響如圖6a所示。在膠黏劑濃度2.0%,涂層厚度20m的條件下,農(nóng)藥的有效利用率隨著濕強(qiáng)劑質(zhì)量分?jǐn)?shù)的增加而減小,因?yàn)槔w維表面的膠黏劑成弱陽性,濕強(qiáng)劑帶有陽離子電荷,纖維表面帶負(fù)電荷,它們通過庫(kù)侖力彼此吸引,附著在纖維表面,形成一層膜[37],阻礙了農(nóng)藥分子的擴(kuò)散作用,濕強(qiáng)劑質(zhì)量分?jǐn)?shù)越大,與膠黏劑的作用越大,使得阻礙作用越大。農(nóng)藥有效利用率隨著施膠劑質(zhì)量分?jǐn)?shù)的增加而增加,因?yàn)槭┠z劑和膠黏劑都呈弱陽性,使得膠黏劑中的農(nóng)藥分子能順利擴(kuò)散出去,且施膠劑質(zhì)量分?jǐn)?shù)越大,擴(kuò)散作用越明顯,農(nóng)藥有效利用率越大。

      由圖6a可知,濕強(qiáng)劑質(zhì)量分?jǐn)?shù)對(duì)農(nóng)藥有效利用率的影響程度大于施膠劑質(zhì)量分?jǐn)?shù),最大值出現(xiàn)在濕強(qiáng)劑質(zhì)量分?jǐn)?shù)0.4%、施膠劑質(zhì)量分?jǐn)?shù)0.7%。

      2)濕強(qiáng)劑質(zhì)量分?jǐn)?shù)和膠黏劑濃度對(duì)農(nóng)藥有效利用率的影響如圖6b所示。在施膠劑質(zhì)量分?jǐn)?shù)0.5%,涂布厚度20m的條件下,隨著濕強(qiáng)劑質(zhì)量分?jǐn)?shù)增多,農(nóng)藥有效利用率成緩慢下降趨勢(shì)。因?yàn)闈駨?qiáng)劑帶有的陽離子能與膠黏劑相互作用,對(duì)纖維縫隙進(jìn)行填充,形成阻礙農(nóng)藥擴(kuò)散的薄膜,但由于質(zhì)量分?jǐn)?shù)不大,作用不強(qiáng)烈,下降趨勢(shì)緩慢。膠黏劑濃度與農(nóng)藥有效利用率先呈緩慢增加后緩慢減小趨于穩(wěn)定的趨勢(shì),在膠黏劑濃度2.0%時(shí),達(dá)到利用率最大值,因?yàn)槟z黏劑在低濃度時(shí),黏度不大,對(duì)農(nóng)藥的黏附作用較小,使得農(nóng)藥的溶解和擴(kuò)散作用受到阻礙較小,隨著濃度的逐漸增大,黏度變大,對(duì)農(nóng)藥的吸附作用變大,使得農(nóng)藥的緩釋作用受到阻礙,利用率變小,由于農(nóng)藥總質(zhì)量較小,所以農(nóng)藥有效利用率變化不明顯。

      由圖6b可知,濕強(qiáng)劑質(zhì)量分?jǐn)?shù)對(duì)農(nóng)藥有效利用率的影響程度大于膠黏劑濃度,最大值出現(xiàn)在濕強(qiáng)劑質(zhì)量分?jǐn)?shù)0.4%、膠黏劑濃度2.0%。

      注:圖6a中膠黏劑濃度2.0%,涂層厚度20m;圖6b中施膠劑質(zhì)量分?jǐn)?shù)0.5%,涂層厚度20m。

      Note: In figure 6a adhesive concentration 2.0%, coating thickness 20m; in figure 6b sizing agent0.5%, coating thickness 20m.

      圖6 濕強(qiáng)劑質(zhì)量分?jǐn)?shù)和施膠劑質(zhì)量分?jǐn)?shù)和濕強(qiáng)劑質(zhì)量分?jǐn)?shù)和膠黏劑濃度對(duì)農(nóng)藥有效利用率的影響

      Fig.6 Effects of wet strength agent and sizing agent and wet strength agent and adhesive concentration on effective use of pesticides

      2.5 優(yōu)化分析

      為滿足水稻秸稈纖維基地膜覆蓋殺菌栽培的技術(shù)要求,優(yōu)化原則為:干抗張力≥35 N、濕抗張力≥15 N、透氣度≤2m/(Pa·s)、降解周期≥60 d、農(nóng)藥有效利用率≥80%,并且節(jié)省資源、降低成本,優(yōu)化分析結(jié)果如圖7所示。

      由圖7可知,工藝參數(shù)優(yōu)化組合為:當(dāng)膠黏劑濃度2.0%、涂布厚度20m時(shí),濕強(qiáng)劑質(zhì)量分?jǐn)?shù)0.8%~0.9%、施膠劑質(zhì)量分?jǐn)?shù)0.5%~0.7%。

      注:膠黏劑濃度2.0%,涂層厚度20m。

      Note: Adhesive concentration 2.0%, coating thickness 20m.

      圖7 殺菌型水稻秸稈纖維基地膜工藝參數(shù)優(yōu)化結(jié)果

      Fig.7 Optimization technology parameters of sterilization straw fiber mulch

      3 驗(yàn)證試驗(yàn)

      按最優(yōu)工藝參數(shù)組合制備定量60 g/m2、濕強(qiáng)劑質(zhì)量分?jǐn)?shù)0.8%、施膠劑質(zhì)量分?jǐn)?shù)0.5%、膠黏劑濃度2.0%、涂層厚度20m的殺菌型秸稈纖維基地膜試樣(簡(jiǎn)稱藥膜樣片)。測(cè)試各項(xiàng)性能指標(biāo)取平均值,并與原質(zhì)秸稈纖維基地膜(簡(jiǎn)稱原膜樣片,不涂布膠黏劑,膜下噴灑等量農(nóng)藥)和裸地(噴灑等量農(nóng)藥)作性能對(duì)比試驗(yàn),結(jié)果如表4所示。

      表4 比較試驗(yàn)結(jié)果

      由表中數(shù)據(jù)可得:藥膜的干抗張力為36.1 N、濕抗張力為15.9 N、透氣度為2.1m/(Pa·s)、降解周期75 d、農(nóng)藥有效利用率為83%,均達(dá)到地膜田間鋪設(shè)實(shí)用性能要求,表明優(yōu)化結(jié)果正確可信。對(duì)比可得,藥膜的農(nóng)藥有效利用率比原膜直接噴灑農(nóng)藥有效利用率提高了8個(gè)百分點(diǎn),比裸地直接噴灑農(nóng)藥有效利用率提高了43個(gè)百分點(diǎn)。

      4 結(jié) 論

      1)各因素對(duì)干抗張力影響貢獻(xiàn)率大小排序?yàn)椋耗z黏劑濃度、施膠劑質(zhì)量分?jǐn)?shù)、涂層厚度、濕強(qiáng)劑質(zhì)量分?jǐn)?shù);對(duì)濕抗張力影響貢獻(xiàn)率大小排序?yàn)椋和繉雍穸?、濕?qiáng)劑質(zhì)量分?jǐn)?shù)、施膠劑質(zhì)量分?jǐn)?shù)、膠黏劑濃度;對(duì)透氣度影響貢獻(xiàn)率大小排序?yàn)椋菏┠z劑質(zhì)量分?jǐn)?shù)、涂層厚度、膠黏劑濃度、濕強(qiáng)劑質(zhì)量分?jǐn)?shù);對(duì)降解周期影響貢獻(xiàn)率大小排序?yàn)椋簼駨?qiáng)劑質(zhì)量分?jǐn)?shù)、涂層厚度、膠黏劑濃度、施膠劑質(zhì)量分?jǐn)?shù);對(duì)農(nóng)藥有效利用率影響貢獻(xiàn)率大小排序?yàn)椋簼駨?qiáng)劑質(zhì)量分?jǐn)?shù)、膠黏劑濃度、涂層厚度、施膠劑質(zhì)量分?jǐn)?shù)。

      2)工藝參數(shù)優(yōu)化組合為濕強(qiáng)劑質(zhì)量分?jǐn)?shù)0.8%~0.9%、施膠劑質(zhì)量分?jǐn)?shù)0.5%~0.7%、膠黏劑濃度2.0%、涂布厚度20m,此時(shí),殺菌型水稻秸稈纖維基地膜干抗張力≥35 N、濕抗張力≥15 N、透氣度≤2m/Pa·s、降解周期≥60 d、農(nóng)藥有效利用率≥80%。按此工藝參數(shù)制造的殺菌型水稻秸稈纖維基地膜可滿足地膜田間鋪設(shè)實(shí)用性能要求,相較于秸稈纖維基地膜,該地膜不僅創(chuàng)新性的增加了地膜的殺菌功能,而且地膜的各項(xiàng)性能指標(biāo)均有提高,其中顯著提高了農(nóng)藥有效利用率,為廣譜殺菌型水稻秸稈纖維基地膜的研發(fā)奠定了基礎(chǔ)。

      [1] Regueiro J, López-Fernádez O, Rial-Otero R, et al. A review on the fermentation of foods and the residues of pesticides-biotransformation of pesticides and effects on fermentation and food quality[J]. Critical Reviews in Food Science and Nutrition,2014, 55(6): 839-863.

      [2] 馮建國(guó),吳學(xué)民. 國(guó)內(nèi)農(nóng)藥劑型加工行業(yè)的現(xiàn)狀及展望[J].農(nóng)藥科學(xué)與管理,2016,37(1):26-31.

      Feng Jianguo, Wu Xuemin. Status and prospects of pesticide formulation processing industry in China[J]. Pesticide Science and Administration, 2016, 37(1): 26-31. (in Chinese with English abstract)

      [3] Singh B, Sharma D K, Gupta A. In vitro release dynamics of thiram fungicide from starch and poly (methacrylic acid)- based hydrogels[J]. Journal of Hazardous Materials, 2008, 154(1/2/3): 278-286.

      [4] Sun C, Shu K,Wang W, et al. Encapsulation and controlled release of hydrophilic pesticide in shell cross-linked nanocapsules containing aqueous core[J]. International Journal of Pharmaceutics, 2014, 463(1): 108-114.

      [5] 《到2020年農(nóng)藥使用量零增長(zhǎng)行動(dòng)方案》[EB/OL]. 2015-02-17, http://jiuban.moa.gov.cn/zwllm/tzgg/tz/201503/ t20150318_4444765.htm.

      [6] 臺(tái)立民,劉冬雪. 化學(xué)型農(nóng)藥緩釋劑[J]. 農(nóng)藥,2000,39(6):5-13.

      Tai Limin, Liu Dongxue. Application of polymers in controlled-release technology of pesticides[J]. Pesticides, 2000, 39(6): 5-13. (in Chinese with English abstract)

      [7] 嚴(yán)昌榮,劉恩科,舒帆,等. 我國(guó)地膜覆蓋和殘留污染特點(diǎn)與防控技術(shù)[J]. 農(nóng)業(yè)資源與環(huán)境學(xué)報(bào),2014(2):95-102.

      Yang Changrong, Liu Enke, Shu Fan, et al. Review of agricultural plastic mulching and its residual pollution and prevention measures in China[J]. Journal of Agricultural Resources and Environment, 2014(2): 95-102. (in Chinese with English abstract)

      [8] 張穎,陳海濤,韓永俊,等. 稻草纖維基地膜覆蓋栽培哈椒試驗(yàn)研究[J]. 東北農(nóng)業(yè)大學(xué)學(xué)報(bào),2014,45(11):95-100.

      Zhang Ying, Chen Haitao, Han Yongjun, et al. Study on the stalk fiber films mulching cultivation green pepper[J]. Journal of Northeast Agricultural University, 2014, 45(11): 95-100. (in Chinese with English abstract)

      [9] 韓永俊,陳海濤,劉麗雪,等. 水稻秸稈纖維基地膜制造工藝參數(shù)優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(3):242-247.

      Han Yongjun, Chen Haitao, Liu Lixue, et al. Optimization of technical parameters for making mulch from rice straw fiber[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(3): 242-247.(in Chinese with English abstract)

      [10] 汪興漢,章志強(qiáng). 不同顏色地膜對(duì)光譜的透射反射與吸收性能[J]. 江蘇農(nóng)業(yè)科學(xué),1986,4(20):31-33.

      Wang Xinghan, Zhang Zhiqiang. Effects of different color film on the transmittance, reflectance and absorptivity of the spectrum[J]. Jiangsu Agricultural Sciences, 1986, 4(20): 31-33. (in Chinese with English abstract)

      [11] 周大綱. 我國(guó)農(nóng)膜行業(yè)的現(xiàn)狀及其發(fā)展對(duì)策(2015年)[J]. 塑料助劑,2015(6):13-15+41.

      Zhou Dagang. Status quo of Agro-film industry (2015) of China and countermeasure for its development[J]. Plastic Additives, 2015(6): 13-15+41. (in Chinese with English abstract)

      [12] 曹志強(qiáng),劉敏. 我國(guó)農(nóng)膜行業(yè)“十二·五”現(xiàn)狀及“十三·五”發(fā)展規(guī)劃[J]. 中國(guó)塑料,2016(8):1-10.

      Cao Zhiqiang, Liu Min. Situation of agricultural films during the 12th Five-year plan period and their development prospect during the 13th Five-year plan period in China[J]. China Plastics, 2016(8): 1-10. (in Chinese with English abstract)

      [13] 郭帥. 農(nóng)藥緩釋微膠囊紙基地膜的制備及性能研究[D].無錫:江南大學(xué),2015.

      Guo Shuai. Preparation and Properties of the Pesticide Micro Capsule Paper-Based Film[D]. Wuxi: Jiangnan University, 2015. (in Chinese with English abstract)

      [14] 李軍,顧亞南,李冠華. 高效液相色譜法同時(shí)快速測(cè)定土壤中多菌靈、滅多威和克百威的殘留[J]. 環(huán)境研究與監(jiān)測(cè),2018,31(3) :31-33

      Li Jun, Gu Yanan, Li Guanhua. Simultaneous determination of carbendazim, methomyland carbofuran residues in soil by high performance liquid chromatography[J]. Environmental Research and Monitoring, 2018, 31(3) :31-33. (in Chinese with English abstract)

      [15] 袁會(huì)珠,楊代斌,閆曉靜,等. 農(nóng)藥有效利用率與噴霧技術(shù)優(yōu)化[J]. 植物保護(hù),2011,37(5):14-20.

      Yuan Huizhu, Yang Daibin, Yan Xiaojing, et al. Pesticide efficiency and the way to optimize the spray application[J]. Plant Protection, 2011, 37(5): 14-20. (in Chinese with English abstract)

      [16] 徐仲儒. 試驗(yàn)回歸設(shè)計(jì)[M]. 哈爾濱:黑龍江科技出版社,1998.

      [17] 石淑蘭,何福望. 制漿造紙分析與檢測(cè)[M]. 北京:中國(guó)輕工業(yè)出版社,2004:13-84.

      [18] 劉環(huán)宇,陳海濤,閔詩(shī)堯,等. 基于PSO-SVR的植物纖維地膜抗張力預(yù)測(cè)研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(4):118-124.

      Liu Huanyu, Chen Haitao, Min Shiyao, et al. Tensile strength prediction for plant fiber mulch based on PSO-SVR[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(4): 118-124. (in Chinese with English abstract)

      [19] 李才昌. 精密涂布技術(shù)及其應(yīng)用[J]. 綠色包裝,2017(11):3.

      Li Caichang. Precision coating technology and its application[J]. Green Packaging, 2017(11): 3. (in Chinese with English abstract)

      [20] Gess J M, Lund R C. Strong-bond/weak-bond theory of sizing[J]. Tappi Journal, 1991, 74(1): 111.

      [21] 王藝旋,楊志偉,單天嬌. 殼聚糖及其衍生物在造紙中的應(yīng)用研究進(jìn)展[J]. 造紙裝備及材料,2016(3):25-29.

      Wang Yixuan, Yang Zhiwei, Shan Tianjiao. Study progress on application of chitosan and its derivatives on paper industry[J]. Papermaking Equipment and Materials, 2016(3): 25-29. (in Chinese with English abstract)

      [22] 譚芙蓉,吳波,代立春,等. 纖維素類草本能源植物的研究現(xiàn)狀[J].應(yīng)用與環(huán)境生物學(xué)報(bào),2014,20(1):162-168.

      Tan Furong, Wu Bo, Dai Lichun, et al. Research and prospect of cellulosic herbaceous energy plant[J]. Journal of Applied and Environmental Biology, 2014, 20(1): 162-168. (in Chinese with English abstract)

      [23] Tsaih M L, Chen R H. Effect of ionic strength and pH on the diffusion coefficients and conformation of chitosans molecule insolution[J]. J Appl Polym Sci, 2015, 73(10): 2041-2051.

      [24] EI-hefian E A, Yahaya A H. Rheological study of chitosan and itsbends: An overview[J]. Maeji Int J Sci Technol, 2010, 4(2): 210.

      [25] 孫浩,徐清涼,朱勛輝. 淺談造紙工業(yè)常用濕強(qiáng)劑[J]. 造紙裝備及材料,2017,46(2):15-16.

      Sun Hao, Xu Qingliang, Zhu Xunhui. Wet strength agent commonly used in paper industry[J]. Papermaking Equipment and Material, 2017, 46(2): 15-16. (in Chinese with English abstract)

      [26] 陳海濤,明向蘭,劉爽,等. 廢舊棉與水稻秸稈纖維基混合地膜制造工藝參數(shù)優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(13):292-300.

      Chen Haitao, Ming Xianglan, Liu Shuang, et al. Optimization of technical parameters for making mulch from waste cotton and rice straw fiber[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(13): 292-300. (in Chinese with English abstract)

      [27] 詹懷宇,李志強(qiáng),蔡再生. 纖維化學(xué)與物理[M]. 北京:科學(xué)出版社,2005:111-114.

      [28] 林寶鳳. 殼聚糖成膜劑特性的研究[J]. 食品發(fā)酵與工程,1998(1):6-17

      Lin Baofeng. Study on coating character of chitosan[J]. Food and Fermentation Industries, 1998(1): 6-17. (in Chinese with English abstract)

      [29] 劉溫霞,邱化玉. 造紙濕部化學(xué)[M]. 北京:化學(xué)工業(yè)出版社,2006.

      [30] 張景俊. 不同可降解地膜的降解特性及其覆蓋下的水-熱-鹽-氮變化特征研究[D]. 呼和浩特:內(nèi)蒙古農(nóng)業(yè)大學(xué),2017.

      Zhang Jingjun. The Study of Degradation of Different Biodegradable Film and Effects of it on Variation Characteristics of Soil Water, Temperature, Salinity and Nitrogen[D]. Hohhot: Inner Mongolia Agricultural University, 2017. (in Chinese with English abstract)

      [31] Lindstr?m T, S?derberg G. On the mechanism of sizing with alkyl ketene dimers part 3: The role of pH, electrolytes, retention aids, extractives, Ca-lignosulphonates and mode of addition on alkylketene dimer retention[J]. Nordic Pulp and Paper Research Journal, 1986, 1(2): 31.

      [32] Isogai A. Effect of cationic polymer addition on retention of alkylketene dimer[J]. Pulp Paper Science, 1997, 23(6): 276.

      [33] Champ S, Ettl R. The dynamics of alkylketene dimer (AKD) retention[J]. Pulp Paper Science, 2004, 30(12): 322.

      [34] Johansson J, Lindstr?m T. A study on AKD-size retention, reaction and sizing efficiency Part 1: The effects of pulp bleaching on AKD-sizing[J]. Nordic Pulp and Paper Research Journal, 2004, 19(3): 330.

      [35] Johansson J, Lindstr?m T. A study on AKD-size retention, reaction and sizing efficiency Part 2: The effects of electrolytes, retention aids, shear forces and mode of addition on AKD-sizing using anionic and cationic AKD-dispersions[J]. Nordic Pulp and Paper Research Journal, 2004, 19(3): 336.

      [36] Ravnjak D, Plazl I, Moze A. Kinetics of colloidal alkylketene dimer particle deposition on pulp fibers[J]. Colloid and Polymer Science, 2007, 285(8): 907-914.

      [37] 陳海濤,竹筱歆,劉爽. 水稻秸稈纖維基綠色地膜制造工藝參數(shù)優(yōu)化 [J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(7):271-279.

      Chen Haitao, Zhu Xiaoxin, Liu Shuang. Optimization of technical parameters for rice straw fiber-based mulch[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(7): 271-279. (in Chinese with English abstract)

      Optimization of manufacturing parameters for sterilizing functional straw fiber mulch

      Chen Haitao, Chen Shuangchao, Liu Shuang

      (150030,)

      At present, amount of pesticides used in agricultural production in China is relatively large, and the application method is not scientific enough, which brings about problems such as increased agricultural production costs, excessive pesticide residue in agricultural products, and environmental pollution. Pesticide controlled release technology is an effective method to improve pesticides utilization efficiency, reduce the amount of pesticides use, and reduce environmental pollution. The straw fiber based film is a fully degradable mulch film made from crop straw as raw material. It has the functions of increasing soil temperature, preserving soil moisture, inhibiting grass, protecting fertilizer and controlling soil erosion during the cultivation process. If the straw fiber based film is used as a carrier to load the pesticide and form the sterilizing functional mulch, the stability and effective period of the pesticides can be improved because the straw fiber base film is protected from light. In this study broad-spectrum fungicide carbendazim was mixed with chitosan, which work as adhesive, at normal temperature and coated on the rice straw fiber film. To improve the sustained release effect and the effective utilization rate of carbendazim pesticide, the manufacturing parameters of the sterilizing functional mulch were optimized by applying the four factors and five levels quadratic regression orthogonal rotation center combined experimental method. Using the wood pulp fibers to build skeleton and adding rice straw fiber as the main filling material, through pre-experiment and reference, the wet strength agent, sizing agent, adhesive concentration and the coating thickness were selected as influencing factors, and the dry tensile strength, wet tensile strength, air permeability, degradation cycle, and effective utilization rate of pesticides were selected as the performance evaluation indexes. Under the performance evaluation indexes of the dry tensile strength ≥ 35 N, the wet tensile strength ≥ 15 N, the air permeability ≤ 2m/Pa·s, the degradation cycle ≥ 60 d, the effective utilization rate of pesticide ≥ 80%. The optimized factors range is determined as follow: wet strength agent addition of 0.8% to 0.9%, sizing agent addition of 0.5% to 0.7%, adhesive concentration of 2.0%, and coating thickness of 20m. The results showed that the adhesive concentration and coating thickness could change the morphology of the straw fiber based film and affect inter-fiber force, thereby change the dry tensile strength, the wet tensile strength, the air permeability, and the degradation cycle of the straw fiber base film. Compared to straw fiber based film, the sterilizing functional straw fiber mulch not only improved the dry tensile strength and the wet tensile strength, but also reduced the air permeability and prolonged the degradation cycle. And the most important thing was the sterilizing functional straw fiber increased a new function which could sterilize innovatively. And the sterilizing functional straw fiber mulch provides a functional trend for the straw fiber mulch and provides a reference to improve pesticides utilization efficiency and reduce the amount of pesticides use of broad-spectrum fungicide carbendazim. Our study also provides a reference for the research and development of broad-spectrum sterilizing functional straw fiber mulch.

      pesticide; films; straw; sterilization; optimization

      2019-01-30

      2019-04-01

      “十三五”國(guó)家重點(diǎn)研發(fā)計(jì)劃資助(2018YFD0201000);黑龍江省普通本科高等學(xué)校青年創(chuàng)新人才培養(yǎng)計(jì)劃(UNPYSCT-2016130);山東省煙草專賣局(公司)2018年面上科技項(xiàng)目

      陳海濤,教授,博士生導(dǎo)師,主要從事生物質(zhì)材料技術(shù)裝備和旱作農(nóng)業(yè)裝備技術(shù)方向的研究。Email:htchen@neau. edu. cn

      10.11975/j.issn.1002-6819.2019.11.035

      S216

      A

      1002-6819(2019)-11-0306-09

      陳海濤,陳雙超,劉 爽. 殺菌型水稻秸稈纖維基地膜制造工藝參數(shù)優(yōu)化研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(11):306-314. doi:10.11975/j.issn.1002-6819.2019.11.035 http://www.tcsae.org

      Chen Haitao, Chen Shuangchao, Liu Shuang. Optimization of manufacturing parameters for sterilizing functional straw fiber mulch[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(11): 306-314. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.11.035 http://www.tcsae.org

      猜你喜歡
      強(qiáng)劑施膠黏劑
      早強(qiáng)劑在混凝土中的應(yīng)用與研究進(jìn)展
      新型乳液型表面施膠劑的開發(fā)
      新型兩性聚丙烯酰胺干強(qiáng)劑的開發(fā)和應(yīng)用
      硅酸鈉作為膠黏劑的保溫隔熱材料及其性能研究
      上海建材(2018年4期)2018-11-13 01:08:50
      膠黏劑黏彈性對(duì)粘貼式FBG應(yīng)變傳遞的影響
      表面施膠淀粉對(duì)箱紙板的滲透及增挺作用
      兩性聚丙烯酰胺干強(qiáng)劑在牛皮箱板紙機(jī)上的應(yīng)用
      可替代中性松香施膠劑的新型施膠劑
      蓖麻油基多元醇改性聚氨酯膠黏劑的研究
      西卡推出新型建筑用膠黏劑
      塑料制造(2015年6期)2015-04-07 21:09:13
      营口市| 白沙| 承德市| 云龙县| 沙洋县| 龙山县| 卢龙县| 聂荣县| 南川市| 壶关县| 灯塔市| 肇庆市| 柳林县| 垦利县| 嘉黎县| 台山市| 丰城市| 天峻县| 都江堰市| 龙南县| 竹山县| 东台市| 乌兰浩特市| 梅河口市| 家居| 昭通市| 永川市| 深圳市| 洪江市| 兰考县| 永修县| 鲁山县| 慈利县| 久治县| 南丹县| 济源市| 宣恩县| 盐城市| 贡嘎县| 仁化县| 财经|