楊玉星 李曉慧
摘 要:針對以超立方體網(wǎng)絡(luò)為藍本的多處理機系統(tǒng)的可靠性和容錯能力的精準(zhǔn)度量問題,結(jié)合多處理機系統(tǒng)遭受計算機病毒攻擊時常常發(fā)生結(jié)構(gòu)性故障的特點,研究了n維超立方體網(wǎng)絡(luò)的結(jié)構(gòu)連通性和子結(jié)構(gòu)連通性評價問題。首先,使用構(gòu)造n維超立方體網(wǎng)絡(luò)的3路結(jié)構(gòu)割的方法得到其3路結(jié)構(gòu)連通度的一個上界;然后,使用構(gòu)造n維超立方體網(wǎng)絡(luò)的3路子結(jié)構(gòu)集的等價變換或約簡變換的方法,得到其3路結(jié)構(gòu)子連通度的一個下界;最后,利用任意網(wǎng)絡(luò)的3路結(jié)構(gòu)連通度不小于3路子結(jié)構(gòu)連通度的性質(zhì),證實了超立方體網(wǎng)絡(luò)的3路結(jié)構(gòu)連通度和子結(jié)構(gòu)連通度均為該超立方體網(wǎng)絡(luò)維數(shù)的一半。這一結(jié)果表明,在3路結(jié)構(gòu)故障模型下,破壞敵方以超立方體網(wǎng)絡(luò)為底層拓撲的多處理系統(tǒng)至少需要攻擊該系統(tǒng)中維數(shù)一半的3路結(jié)構(gòu)或子結(jié)構(gòu)。
關(guān)鍵詞:多處理機系統(tǒng);超立方體網(wǎng)絡(luò);容錯;可靠性;結(jié)構(gòu)連通度
Abstract: In order to evaluate the reliability and fault-tolerant ability of multi-processor system which takes hypercubes as underlying networks, combining the fact that structural faults often occur when the system is invaded by computer viruses, 3-length-path structure connectivity and substructure connectivity of the n-dimensional hypercube network were investigated. Firstly, by using the 3-length-path structure-cut of the n-dimensional hypercube network, an upper bound of 3-length-path structure connectivity of the network was obtained. Secondly, by using an equivalent transformation or a reductive transformation of the 3-length-path substructure-set of the n-dimensional hypercube network, a lower bound of 3-length-path substructure connectivity of the network was obtained. Finally, combining with the property that 3-length-path structure connectivity of a network is not less than its 3-length-path substructure connectivity, it was proved that both 3-length-path structure connectivity and substructure connectivity of the n-dimensional hypercube network were half of n. The results show that to disconnect the enemys multi-processor system which take the n-dimensional hypercubes as underlying networks under the 3-length-path structure fault model, at least half of n 3-length-path structures or substructures of the system should be attacked.
In order to evaluate the reliability and fault-tolerant ability of multi-processor system which takes hypercubes as underlying networks, combining the fact that structural faults often occur when the system is invaded by computer viruses, three-length-path structure connectivity and substructure connectivity of the n-cube network were investigated. Firstly, by using the three-length-path structure-cut of the n-cube network, an upper bound of three-length-path structure connectivity of the network was obtained. Secondly, by using an equivalent transformation or a reductive transformation of the three-length-path substructure-set of the n-cube network, a lower bound of three-length-path substructure connectivity of the network was obtained. Finally, combining with the property that three-length-path structure connectivity of a network is not less than its three-length-path substructure connectivity, it was proved that both three-length-path structure connectivity and substructure connectivity of a n-cube network were half of n. The results show that to destroy the enemys multi-processor system which take the n-cubes as underlying networks under three-length-path structure fault model, at least half of n three-length-path structures or substructures of the system should be attacked.
Key words: multi-processor system; hypercube network; fault tolerance; reliability; structure connectivity
0 引言
多處理系統(tǒng),尤其是超級并行計算機系統(tǒng)通常以某個拓撲性質(zhì)優(yōu)秀的圖作為底層網(wǎng)絡(luò)的藍本。在諸多底層網(wǎng)絡(luò)中,超立方體網(wǎng)絡(luò)以其正則性[1-2]、對稱性[3]、遞歸性[4]等拓撲特性脫穎而出,成為搭建超級并行計算機系統(tǒng)最常用的底層網(wǎng)絡(luò),諸如iWarp、J-machine、Cray T3D、Cray T3E等超級并行計算機系統(tǒng)均以超立方體網(wǎng)絡(luò)為底層網(wǎng)絡(luò)。
在實際系統(tǒng)中,處理器和通信線路故障在所難免,反映到底層網(wǎng)絡(luò)中就是網(wǎng)絡(luò)節(jié)點和連線難免發(fā)生故障。在網(wǎng)絡(luò)發(fā)生故障時,用戶希望網(wǎng)絡(luò)中任意兩個節(jié)點之間依然連通,因此,網(wǎng)絡(luò)的連通度可以在一定程度上度量網(wǎng)絡(luò)的可靠性。然而,在等概故障模型下與系統(tǒng)的同一節(jié)點相鄰的其余節(jié)點同時發(fā)生故障是一個小概率事件[5],因此在等概故障模型下,傳統(tǒng)連通度嚴重低估了系統(tǒng)的可靠性[6]。在此背景下,各種條件連通度被相繼提出并得到廣泛的關(guān)注與深入的研究。其中,近幾年被提出的條件連通度有嵌入限制連通度[7-9]、分支連通度[10]、結(jié)構(gòu)連通度和子結(jié)構(gòu)連通度[11-14]等。其中,2016年,Lin等[11-12]考慮到多處理系統(tǒng)度遭受計算機病毒入侵時往往發(fā)生結(jié)構(gòu)性故障的實際特征,聯(lián)合提出了兩個系統(tǒng)可靠性度量的新參數(shù)——結(jié)構(gòu)連通度和子結(jié)構(gòu)連通度,確定了超立方體網(wǎng)絡(luò)的星型和4圈結(jié)構(gòu)連通度及子結(jié)構(gòu)連通度。2018年,Mane[13]研究了超立方體網(wǎng)絡(luò)中故障結(jié)構(gòu)為低維子網(wǎng)及圈的結(jié)構(gòu)連通度問題,并得到了一些上界。同年,Sabir等[14]得到了H為長度小于n的路、長度不超過2n的偶圈及4星時,n維超立方體網(wǎng)絡(luò)的H結(jié)構(gòu)連通度及子結(jié)構(gòu)連通度,但其結(jié)論依賴于Yang等[2]關(guān)于超立方體網(wǎng)絡(luò)的g超結(jié)構(gòu)連通度的結(jié)論。本文提出超立方體網(wǎng)絡(luò)的H結(jié)構(gòu)集及子結(jié)構(gòu)集的等價變換和約簡變換的概念,在故障結(jié)構(gòu)或故障子結(jié)構(gòu)有公共節(jié)點或公共邊的情形下,通過構(gòu)造超立方體網(wǎng)絡(luò)的P3子結(jié)構(gòu)集的等價變換(或約簡變換)這一新的方法,確定超立方體網(wǎng)絡(luò)的P3結(jié)構(gòu)連通度和P3子結(jié)構(gòu)連通度,為以超立方體網(wǎng)絡(luò)為底層拓撲的超級計算機系統(tǒng)的安全防護提供參考。
4 結(jié)語
網(wǎng)絡(luò)的結(jié)構(gòu)連通度和子結(jié)構(gòu)連通度的計算對攻擊敵方系統(tǒng)以及防護我方系統(tǒng)均具有指導(dǎo)性的意義。當(dāng)確定這兩個參數(shù)后,便可得知攻擊敵方系統(tǒng)所需要攻擊的最少結(jié)構(gòu)的數(shù)目,若是攻擊敵方系統(tǒng),可據(jù)此設(shè)計攻擊算法,若是保護我方系統(tǒng),可據(jù)此完善防御策略。譬如:由“n維超立方體網(wǎng)絡(luò)的3路結(jié)構(gòu)連通度和子結(jié)構(gòu)連通度均為「n/2”可知,當(dāng)攻擊敵方以n維超立方體為底層拓撲構(gòu)建的系統(tǒng)時,至少需要破壞敵方「n/2個3路(子)結(jié)構(gòu)才可使得敵方系統(tǒng)不再連通;而當(dāng)敵方攻擊我方系統(tǒng)時,我方應(yīng)設(shè)法保護所有可能受攻擊的3路(子)結(jié)構(gòu)。
結(jié)構(gòu)連通度和子結(jié)構(gòu)連通度的計算往往通過構(gòu)造相等的上下界的方法來確定。在確定下界時,需要證明當(dāng)該網(wǎng)絡(luò)中刪除任一元素個數(shù)小于該下界的結(jié)構(gòu)集(或子結(jié)構(gòu)集)后,網(wǎng)絡(luò)依舊連通。若已知該網(wǎng)絡(luò)的g超連通度,網(wǎng)絡(luò)連通性不難證明。然而對于g超連通度未知的網(wǎng)絡(luò),則需選擇恰當(dāng)?shù)姆绞綄⒏呔S網(wǎng)絡(luò)劃分為若干個不相交的子網(wǎng),使得該結(jié)構(gòu)集(或子結(jié)構(gòu)集)中的邊盡可能少地占據(jù)橫跨邊。即便如此,由于結(jié)構(gòu)集(或子結(jié)構(gòu)集)的多個元素有可能共用某條橫跨邊,這使得落在子網(wǎng)中子結(jié)構(gòu)集的元素個數(shù)陡增,從而影響使用歸納前提。針對上述問題,本文提出了網(wǎng)絡(luò)的結(jié)構(gòu)集(或子結(jié)構(gòu)集)的等價變換和約簡變換的概念,并以超立方體網(wǎng)絡(luò)中的3路子結(jié)構(gòu)集為例,給出了構(gòu)造結(jié)構(gòu)集和子結(jié)構(gòu)集的等價變換(或約簡變換)的方法,通過該方法構(gòu)造的等價變換和約簡變換使得構(gòu)造出的新的結(jié)構(gòu)集和子結(jié)構(gòu)集中只有一個元素包含某一橫跨邊,排除了解決網(wǎng)絡(luò)結(jié)構(gòu)連通度和子結(jié)構(gòu)連通度度量問題的瓶頸。
使用文中的方法求解其他網(wǎng)絡(luò)的結(jié)構(gòu)連通度和子結(jié)構(gòu)連通度也是值得進一步研究的問題。
參考文獻:
[1] XU J M, ZHU Q, HOU X M, ZHU T. On restricted connectivity and extra connectivity of hypercubes and folded hypercubes [J]. Journal of Shanghai Jiaotong University (Science), 2005, E-10(2): 203-207. 上海交通大學(xué)學(xué)報(英文版)
[2] YANG W, MENG J. Extraconnectivity of hypercubes [J]. Applied Mathematics Letters, 2009, 22(6): 887-891.
[3] MORRISION N, NOEL J A. Extremal bounds for bootstrap percolation in the hypercube [J]. Journal of Combinatorial Theorey, Series A, 2018, 156: 61-84.
[4] WANG F, ZHANG H. Hamiltonian laceability in hypercubes with faulty edges[J].Discrete Applied Mathematics,2018,236:438-445.
[5] 邱亞娜,楊玉星.增廣泡型網(wǎng)絡(luò)的邊連通性和限制邊連通性[J]. 計算機應(yīng)用,2016,36(11):3006-3009. (QIU Y N, YANG Y X. Link connectivity and restricted link connectivity of augmented bubble-sort networks [J]. Journal of Computer Applications, 2016, 36(11): 3006-3009.)
[6] 李際超,吳俊,譚躍進,等.基于有向自然連通度的作戰(zhàn)網(wǎng)絡(luò)抗毀性研究[J].復(fù)雜系統(tǒng)與復(fù)雜性科學(xué),2015,12(4):25-31. (LI J C, WU J, TAN Y J, et al. Robustness of combat networks based on directed natural connectivity [J]. Complex Systems and Complexity Science, 2015, 12(4): 25-31.)
[7] YANG Y, WANG S. Conditional connectivity of star graph networks under embedding restriction [J]. Information Sciences, 2012, 199: 187-192.
[8]?YANG Y, WANG S, LI J. Conditional connectivity of recursive interconnection networks respect to embedding restriction [J]. Information Sciences, 2014, 279: 273-279.
[9] LI X-J, DONG Q-Q, YAN Z, et al. Embedded connectivity of recursive networks [J]. Theoretical Computer Science, 2016, 653: 79-86.
[10] ZHAO S, YANG W, ZHANG S. Component connectivity of hypercubes [J]. Theoretical Computer Science, 2016, 640: 115-118.
[11] LIN C-K, ZHANG L, FAN J, et al. Structure connectivity and substructure connectivity of hypercubes [J]. Theoretical Computer Science, 2016, 634: 97-107.
[12] LYU Y, FAN J, HSU D F, et al. Structure connectivity and substructure connectivity of k-ary n-cube networks [J]. Information Sciences, 2018, 433/434: 115-124.
[13] MANE S A. Structure connectivity of hypercubes[J].AKCE International Journal of Graphs and Combinatorics,2018,15(1):49-52.
[14] SABIR E, MENG J. Structure fault tolerance of hypercubes and folded hypercubes [J]. Theoretical Computer Science, 2018, 711: 44-55.
[15] BONDY J A, MURTY U S R. Graph Theory [M]. New York: Springer, 2008: 633-641.