史寶珠 李美安
摘 要:針對(duì)人工復(fù)原紙質(zhì)文物碎片存在嘗試次數(shù)多、拼接速度慢、復(fù)原準(zhǔn)確性與完成度低等問題,提出一種依據(jù)碎片角度與邊長(zhǎng)特征進(jìn)行紙質(zhì)文物碎片自動(dòng)拼接復(fù)原的算法。首先,將碎片圖像進(jìn)行預(yù)處理并根據(jù)碎片的角度值進(jìn)行粗匹配,得到角度值相等的碎片圖像;然后,在粗匹配的基礎(chǔ)上,利用碎片的角邊長(zhǎng)進(jìn)行細(xì)匹配減少重疊情況,得到碎片圖像的基本匹配結(jié)果;最后,利用凹凸函數(shù)對(duì)方向相對(duì)的碎片圖像情況進(jìn)行遺漏彌補(bǔ),并運(yùn)用震蕩函數(shù)對(duì)最終匹配圖像進(jìn)行縫隙彌補(bǔ)得到完整拼接結(jié)果。理論分析和碎片拼接仿真實(shí)驗(yàn)結(jié)果表明,與特征點(diǎn)、近似多邊形擬合、角序列匹配等碎片自動(dòng)拼接算法相比,所提算法的拼接準(zhǔn)確率、拼接完成度與拼接耗時(shí)分別至少提高了12個(gè)百分點(diǎn)、11個(gè)百分點(diǎn)與10個(gè)百分點(diǎn)。所提基于角邊特征的碎片拼接算法減少了繁瑣的圖像計(jì)算步驟,精確了碎片匹配結(jié)果,使得在實(shí)際文物修復(fù)等工程中能夠?qū)崿F(xiàn)非規(guī)則碎片高效、高精準(zhǔn)的匹配。
關(guān)鍵詞:角度;角邊長(zhǎng);凹凸函數(shù);震蕩函數(shù);誤差彌補(bǔ);碎片拼接
中圖分類號(hào): TN911.73
文獻(xiàn)標(biāo)志碼:A
Abstract: In order to solve the problems of too many attempts, slow splicing speed, low restoration accuracy and completeness in artificially restored paper-based cultural relics, an automatic splicing algorithm based on angle and edge length of fragments was proposed. Firstly, the fragment images were pre-processed and coarsely matched according to the angle value of the fragments, and the fragment images with the same angle value were found. Then, on the basis of coarse matching, thin matching was made by using the edge lengths of the angles of the fragments to reduce overlap, and the basic matching results of the fragment images were obtained. Finally, a concave-convex function was used to make up the fragment images of opposite direction, and a oscillating function was used to make up the gap of the final matching images to obtain complete splicing results. Theoretical analysis and splicing simulation experimental results show that compared with automatic splicing algorithms such as feature points, approximate polygon fitting and angle sequence matching, the splicing accuracy, splicing completion and splicing time of the proposed algorithm were improved by at least 12, 11 and 10 percentage points, respectively. The proposed algorithm based on angle and edge features reduces the cumbersome image calculation and accurately corrects the fragment matching result, which enables efficient and highly accurate matching of irregular fragments in actual relic restoration.
0 引言
隨著社會(huì)經(jīng)濟(jì)的發(fā)展與繁榮,文物收藏、淘寶正逐漸成為一種與投資緊密結(jié)合的時(shí)尚活動(dòng),而文物的收藏價(jià)值與文物的品相息息相關(guān),對(duì)于那些破損文物或文物碎片,即使年代久遠(yuǎn),即使曾經(jīng)顯赫,也不會(huì)有太高的收藏價(jià)值。因此,對(duì)文物碎片進(jìn)行拼接修復(fù),不僅能夠提升文物碎片的收藏價(jià)值,對(duì)恢復(fù)文物的考古價(jià)值與文化價(jià)值也具有十分重要的意義。
文物碎片修復(fù)主要針對(duì)紙質(zhì)文物與陶瓷碎片,而早期的文物修復(fù)主要通過修復(fù)專家手工完成。對(duì)破損較少的文物,或者碎片較少的文物,可以通過肉眼觀察并手工進(jìn)行拼接復(fù)原;但對(duì)于那些碎片很多,有些甚至可能有殘缺的文物,肉眼觀察和手工復(fù)原在拼接準(zhǔn)確性、速度與完成度等方面已經(jīng)不能讓人滿意,甚至不可能完成。
計(jì)算機(jī)圖形圖像技術(shù)的發(fā)展為文物碎片的修復(fù)提供了另一種手段,人們可以通過計(jì)算機(jī)對(duì)破損文物進(jìn)行預(yù)拼接與預(yù)修復(fù)。周豐等[1]提出了基于角序列的文物碎片拼接算法,利用角點(diǎn)信息進(jìn)行碎片位置匹配。該方法需要計(jì)算所有像素的像素梯度,且需要進(jìn)行多尺度特征計(jì)算,這一方法在具體的操作過程中,存在眾多經(jīng)驗(yàn)參數(shù)需確定,且部分?jǐn)?shù)據(jù)還和實(shí)際待處理碎片材質(zhì)相關(guān),使得實(shí)驗(yàn)操作計(jì)算量增大,且易受外界因素干擾,拼接速度、準(zhǔn)確性較低。李羿辰等[2]提出了基于圖像點(diǎn)特征的文物碎片匹配算法,利用圖像的點(diǎn)云特征進(jìn)行碎片匹配。該方法需要提取大量像素點(diǎn)的特征信息,例如位置分布、色彩等信息,增加了后期的碎片圖像處理對(duì)于前期信息提取的依賴性以及后期圖像拼接的計(jì)算量,降低了拼接速度。
Karmakar等[3]提出了基于近似多邊形擬合碎片輪廓的方法,該方法利用兩個(gè)多邊形邊長(zhǎng)與夾角的變化判斷輪廓的相似性,在多邊形擬合過程中,由于是在誤差范圍內(nèi)進(jìn)行擬合,所以當(dāng)碎片輪廓信息變得多而復(fù)雜時(shí)會(huì)導(dǎo)致誤差增大,最終導(dǎo)致碎片圖像的錯(cuò)誤匹配率增大。
針對(duì)特征點(diǎn)、近似多邊形擬合、角序列匹配等碎片自動(dòng)拼接算法所存在的計(jì)算量大、誤差大、受外界因素干擾、單一特征碎片信息遺漏、經(jīng)驗(yàn)參數(shù)確定等降低拼接速度與準(zhǔn)確率的問題,提出了一種基于角度與邊長(zhǎng)組合特征的文物碎片自動(dòng)拼接復(fù)原方法。該方法利用碎片的角度與角邊長(zhǎng)特征進(jìn)行碎片的匹配拼接,克服了單一特征碎片信息遺漏、經(jīng)驗(yàn)參數(shù)確定、計(jì)算量大的缺陷;并利用凹凸函數(shù)與震蕩函數(shù)減少匹配誤差、增強(qiáng)圖像融合效果,最終實(shí)現(xiàn)高準(zhǔn)確率的快速非規(guī)則碎片拼接。由于該算法是基于圖形學(xué)的,因此該算法對(duì)于規(guī)則碎片不適用,例如碎紙機(jī)所得碎片等。
5 結(jié)語(yǔ)
針對(duì)特征點(diǎn)、近似多邊形擬合、角序列匹配等碎片自動(dòng)拼接算法所存在的計(jì)算量大、誤差大、受外界因素干擾、單一特征碎片信息遺漏、經(jīng)驗(yàn)參數(shù)需確定等降低拼接速度與準(zhǔn)確率的問題,提出了基于角度與角邊長(zhǎng)特征相結(jié)合的紙質(zhì)文物碎片自動(dòng)拼接復(fù)原算法。該算法通過基于角度的粗匹配,篩選出基礎(chǔ)匹配碎片,然后基于角邊長(zhǎng)的細(xì)匹配以及基于凹凸函數(shù)的補(bǔ)漏,完成后續(xù)碎片的精準(zhǔn)匹配,并解決了由于單一特征信息而引起的碎片信息遺漏的問題,最后基于震蕩函數(shù)的縫隙彌補(bǔ),解決了匹配過程中的由于縫隙而影響匹配信息提取以及碎片拼接效果不佳的問題。由于該算法對(duì)碎片的提取信息少、代碼簡(jiǎn)潔、擁有多層篩選特征以及對(duì)縫隙的彌補(bǔ),因此,不僅能夠提高紙質(zhì)文物碎片的拼接復(fù)原速度,還能夠提高紙質(zhì)文物碎片的拼接準(zhǔn)確率與完成度。實(shí)驗(yàn)結(jié)果表明,在碎片數(shù)量分別為4、8、16、30的情況下,本文算法在拼接速度上至少比目前速度最快的基于近似多邊形擬合碎片拼接算法提高10個(gè)百分點(diǎn);在拼接準(zhǔn)確率方面比目前準(zhǔn)確率最高的多尺度信息的角序列碎片匹配算法至少提高12個(gè)百分點(diǎn);在拼接完成度方面比目前完成度最高的多尺度信息的角序列碎片匹配算法至少提高11個(gè)百分點(diǎn)。因此,本文提出的紙質(zhì)文物碎片自動(dòng)拼接復(fù)原算法在拼接完成度與準(zhǔn)確率,以及拼接耗時(shí)方面都比其他拼接算法有較大提高。
目前,該算法僅適用于二維非規(guī)則紙質(zhì)碎片,不適用于規(guī)則紙質(zhì)碎片。通過算法改進(jìn),增加碎片信息提取方式,今后還可以將本文算法應(yīng)用于三維文物碎片拼接以及多目視頻實(shí)時(shí)拼接方面;還可以通過改進(jìn)震蕩函數(shù)相應(yīng)參數(shù),改善縫隙彌補(bǔ)效果,進(jìn)一步提高拼接準(zhǔn)確率與拼接完成度。
參考文獻(xiàn):
[1] 周豐,黃曉鳴.基于角序列的二維碎片輪廓匹配算法[J].科學(xué)技術(shù)與工程,2007,7(15):3757-3760. (ZHOU F, HUANG X M. Algorithm of 2D contours matching based on angle-sequence [J]. Science Technology and Engineering, 2007, 7(15): 3757-3760.)
[2] 李羿辰,耿國(guó)華,張雨禾,等.基于區(qū)域擴(kuò)張的三維點(diǎn)云模型配準(zhǔn)算法[J].計(jì)算機(jī)工程,2017,43(11):204-209. (LI Y C, GENG G H, ZHANG Y H, et al. Registration algorithm of three-dimensional point-cloud models based on region expansion [J]. Computer Engineering, 2017, 43(11): 204-209.)
[3] KARMAKAR D, MURTHY C A. Face recognition using face-autocropping and facial feature points extraction [C]//ICPMI 2015: Proceedings of the 2nd International Conference on Perception and Machine Intellige. New York: ACM, 2015: 116-122.
[4] 詹燁,陸佳浩.碎片拼接復(fù)原技術(shù)研究[J].科技視界,2014(31):177-178. (ZHAN Y, LU J H. Research on debris mosaic restoration technology [J]. Science and Technology Vision, 2014(31): 177-178.)
[5] 岳園.碎紙片自動(dòng)拼接復(fù)原模型的實(shí)現(xiàn)[J].科學(xué)技術(shù)創(chuàng)新,2014(29):87-88. (YUE Y. Realization of automatic mosaic reconstruction model of shredded paper [J]. Science and Technology Innovation, 2014(29): 87-88.)
[6] LIN Y, WANG C, CHENG J, et al. Line segment extraction for large scale unorganized point clouds [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 102: 172-183.
[7] 房然然.二維碎片自動(dòng)拼接技術(shù)研究[D].濟(jì)南:山東師范大學(xué),2015:18-24. (FANG R R. Research on 2D fragment automatic splicing technology [D]. Jinan: Shandong Normal University, 2015:18-24.)
[8] 馬俊明,賴楚廷,卜尚明,等.基于文字特征的規(guī)則碎紙片自動(dòng)拼接[J].汕頭大學(xué)學(xué)報(bào)(自然科學(xué)版),2014,29(2):4-10. (MA J M, LAI C T, BU S M, et al. Auto-matching algorithm of regular fragments based on character characteristic [J]. Journal of Shantou University (Natural Science Edition), 2014, 29(2): 4-10.).
[9] 曹戴,陳麗芳.基于杰卡德度量的智能拼圖改進(jìn)算法[J].計(jì)算機(jī)工程與應(yīng)用,2018,54(2):188-192. (CAO D, CHEN L F. Improved intelligent puzzle algorithm based on Jachards metric[J]. Computer Engineering and Applications, 2018, 54(2): 188-192.)
[10] 陸羽翃.一種在極小人工干預(yù)下的碎片拼接復(fù)原方法[J].信息與電腦,2017(14):51-54. (LU Y H. A method of fragment mosaic reconstruction under minimal manual intervention [J]. China Computer & Communication, 2017(14): 51-54.)
[11] 張志華,孔玲君,王勇,等.一種新的彩色圖像碎片全自動(dòng)拼接算法[J].包裝工程,2017,38(17):206-210. (ZHANG Z H, KONG L J, WANG Y, et al. A new automatic mosaic algorithm for color image fragments [J]. Packaging Engineering, 2017, 38(17): 206-210.)
[12] 魏陽(yáng),周明全,耿國(guó)華,等.基于多特征和SVM的兵馬俑碎片分類[J].西北大學(xué)學(xué)報(bào)(自然科學(xué)版),2017,47(4):497-504. (WEI Y, ZHOU M Q, GENG G H, et al. Classification of terra-cotta warriors and fragments based on multi-feature and SVM[J]. Journal of Northwest University (Natural Science Edition), 2017, 47(4): 497-504.)
[13] 李旭茹,韓冬,劉德磊.一種基于形狀匹配的碎紙片拼接系統(tǒng)設(shè)計(jì)[J].電腦知識(shí)與技術(shù),2017,13(16):148-150. (LI X R, HAN D, LIU D L. A system design of reconstructing ripped-up documents based on shape matching [J]. Computer Knowledge and Technology, 2017, 13(16): 148-150.)
[14] 周明全,袁潔,耿國(guó)華,等.基于輪廓線特征點(diǎn)的交互式文物拼接[J].光學(xué)精密工程,2017,25(6):1597-1606. (ZHOU M Q, YUAN J, GENG G H, et al. Interactive reassembly of fractured fragments based on feature points of contour line [J]. Optics and Precision Engineering, 2017, 25(6): 1597-1606.)
[15] 危輝,李俐瑢.拱序列的曲線描述與匹配[J].中國(guó)圖象圖形學(xué)報(bào),2017,22(8):1045-1055. (WEI H, LI L R. Curve description and matching using arch sequence [J]. Journal of Image and Graphics, 2017, 22(8): 1045-1055.)