• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Thickness-dependent magnetic anisotropy in obliquely deposited Fe(001)/Pd thin film bilayers probed by VNA-FMR?

    2019-08-06 02:07:30QeematGulWeiHe何為YanLi李巖RuiSun孫瑞NaLi李娜
    Chinese Physics B 2019年7期
    關(guān)鍵詞:李巖弓子李陽

    Qeemat Gul, Wei He(何為), Yan Li(李巖), Rui Sun(孫瑞), Na Li(李娜),

    Xu Yang(楊旭)1,2, Yang Li(李陽)1,2, Zi-Zhao Gong(弓子召)1,2, Zong-Kai Xie(謝宗凱)1,2,Xiang-Qun Zhang(張向群)1, and Zhao-Hua Cheng(成昭華)1,2,3,?

    1State Key Laboratory of Magnetism and Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    2School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China

    3Songshan Lake Materials Laboratory,Dongguan 523808,China

    Keywords: oblique angle deposition,iron film thickness,magnetic anisotropy,ferromagnetic resonance

    1. Introduction

    Ferromagnetic thin films can exhibit extensively modified magnetic properties from their bulk counterparts,[1]including magnetic anisotropy, magnetic homogeneity, and intrinsic magnetic damping properties,[2]thus they have potential applications in microscale actuators and sensors,magnetic recording media components,[3]current-induced magnetization switching devices,[4]and high-density magnetic random access memory.[5]It is not easy to use conventional tools to determine the magnetic anisotropy that controls the operation of these films. The ferromagnetic resonance(FMR)technique is a very sensitive tool for studying the magnetic anisotropy,spin dynamics,and homogeneity of ferromagnetic thin films.

    Magnetic anisotropy is one of the basic properties of ferromagnetic materials. In general, there are several ways to enhance in-plane uniaxial magnetic anisotropy (UMA) in ferromagnetic films, such as oblique deposition,[6-8]magnetic annealing,[9-13]and exchange bias.[14-18]Among these,oblique deposition is easy to handle and thus is widely used in practice to increase the ferromagnetic resonance frequency of ferromagnetic thin films.[19,20]Due to the self-shadowing effect,the oblique deposition of ferromagnetic thin films on flat rigid substrates can result in elongated grains perpendicular to the direction of the incident atomic flux. Therefore,during the growth of the ferromagnetic film,UMA with an easy axis perpendicular to the direction of the incident flux is induced.[21]

    For decades, FMR has been one of the most effective techniques to determine the crystallinity of ferromagnetic materials and to measure the phenomenological magnetic anisotropy constants. With the increasing interest in research on ferromagnetic thin films, FMR has been used more and more in research into single crystal ferromagnetic thin films.[22-27]The FMR technique has also proven to be a powerful technique for measuring the magnetic properties of oblique anisotropic films.[2]At gigahertz(GHz), FMR accurately measures the static characteristics of large magnetic field saturated magnetic films.[28-30]In these experiments,magnetic resonance was detected by scanning an applied magnetic field. The resonant magnetic field provides a measure of the effective field excited by a uniform magnetic field in a uniform precession mode. The effective field includes contributions from external magnetic fields,demagnetizing fields,and magnetocrystalline energy. The standard FMR technique provides very high sensitivity because the high-quality coefficient of the cavity at the operating frequency is determined by the geometry of the cavity. It is proved that this method can accurately measure the static characteristics of a ferromagnetic film, which are given by the magnetic anisotropy constant.The dynamic characteristics are usually determined by the resonance linewidth ΔH, which provides information about the relaxation process. At present, the magnetic anisotropy behavior of the relaxation mechanism, such as the two-magnon processes at the GHz frequency, is studied using the FMR technique.[31,32]

    In this paper,we focus on the static properties of epitaxial Fe(001)/Pd thin film bilayers, which are highly attractive due to the increased switching speed of the magnetic cells in magnetic random access memory(M-RAM)devices.[32,33]In previous studies on similar Fe/MgO(001)thin films with fourfold magnetocrystalline anisotropy (MCA) and a UMA superimposed, the latter is very likely to be along an easy direction, that is, β = 0°or 90°. It is reported that at small Fe thickness, the uniaxial component dominates, and as the thickness increases,the relative anisotropy of cubic anisotropy increases. Therefore, controlling uniaxial anisotropy is important because it facilitates device applications such as magnetic tunnel junctions and spin torque oscillators.[34]In this work, we present results of thickness-dependent magnetic anisotropy of obliquely deposited Fe(001)/Pd thin films on Mg(001) via field-dependent resonant field measurements.Our experimental results are compared with the previous ones obtained from the quasistatic transverse biased inverse susceptibility (TBIS) measurements,[28,35]and high-frequency FMR measurements,[28]as well as the magneto-optical Kerr effect (MOKE) and anisotropic magnetoresistance (AMR)systems,[36]which indicates that in addition to the fourfold MCA due to the body-center cubic (bcc) structure of Fe, an additional UMA is found in the[100]easy direction.

    2. Experiment

    Using ultra-high vacuum (UHV) molecular beam epitaxy, thin magnetic films of Fe(001)/Pd bilayers were prepared on cleaned MgO(001) substrates via oblique deposition at a base pressure of 2.0×10-10mbar. The substrates were put into a special template-holder and were heated up to 700°C for 2 h. Our previous study showed that this temperature range is the best choice for producing high quality samples. Detailed information on sample preparation and characterization has been provided elsewhere.[36]In this paper,three samples of Fe film thicknesses 50 monolayer(ML),45 ML,and 32 ML,which were 0°normally,and 45°,and 55°obliquely deposited, respectively, were adopted for the study.The magnetic anisotropy was analyzed using an in-plane vector network analyzer ferromagnetic resonance (VNA-FMR)technique. The measurements were performed by placing the samples with film side facing the coplanar waveguide(CPW)at room temperature. A gaussmeter was used to measure the magnetic field at each field. Microwave excitations were generated by connecting one end of the CPW to the output port of the vector network analyzer(VNA).The input port of the VNA was connected to the other end of the CPW,and the complex transmission parameter S21through the CPW was measured at a fixed frequency as the external magnetic field was swept.[37]The field-dependent resonant field measurements were performed by rotating the sample in-plane while sweeping the applied magnetic field.

    3. Results and analysis

    Figure 1(a) schematically illustrates the sample stacking and measurement configuration. FMR field Hrvalues are obtained by fitting each spectrum to a Lorentzian profile. The FMR spectra (fitted red lines) of the 0°-Fe(50 ML)/Pd sample at φH=0°in the frequency range 12-21 GHz showing the real part of the transmission parameter (ReS21) are illustrated in Fig. 2. For the samples, the magnetic field H was applied along the sample plane. In order to avoid small misalignment between the applied magnetic field and the magnetic anisotropy (the hard axis may cause a large change in resonance response),we used a fixed magnetic field H to measure, but changed the direction of the applied magnetic field φH. In this method,small misalignment is no longer a source of error, as it is now a fitting parameter. In addition, the field-dependent resonant field Hrprovides a simple illustration of the magnetic anisotropy symmetry and the values of the magnetic anisotropy constants that can be extracted from the field-dependent resonant field measurements. The magnetic anisotropy constants are extracted by fitting the resonance field Hrvalues to the following Kittel equation derived from the Landau Lifshitz equation:[38]

    Here f =ω/2π is the microwave frequency,γ =gμB/ˉh is the gyromagnetic ratio, and Hdis the demagnetization field. In addition,we have

    where Msis the saturation magnetization,μ0is the permeability of free space, and Koutis the out-of-plane uniaxial magnetic anisotropy constant. The surface/interface term is very important for ultrathin films (a few monolayers), but it becomes negligible for films exceeding several tens of monolayers. For the thickness dependence, Hdshould satisfy the condition Hd=Msas thickness t →∞.[39]Also, the samples are single crystals, and no significant Koutis present in the samples so can,therefore,be neglected in the analysis.

    Fig.1. (a)Sample stacking and the measurement configuration. Ferromagnetic resonance field Hr as a function of the in-plane azimuthal angle φH of the samples with Fe films of(b)50 ML,(c)45 ML,and(d)32 ML thicknesses and 0°,45°,and 55°deposition angles,respectively.Measurements were carried out at 16 GHz at room temperature. The red lines are theoretical fits to the experimental data using the Kittel equation.

    We also evaluate the equilibrium magnetization angle φMduring sample rotation based on numerical calculation using the following equation:[38]

    where φMdenotes the equilibrium azimuthal angle of magnetization.

    For the special case where the magnetic field is oriented along the [100]-easy or [110]-hard direction and the in-plane uniaxial term is ignored, equation (1) respectively simplifies to

    It should be noted that equations (4) and (5) are valid only if external magnetic field H is large enough to align the magnetization M parallel to its direction(φH=φM).

    In order to evaluate the magnetic anisotropy constants,the field-dependent resonant field measurement via the Kittel equation was performed at a fixed frequency. The experimental data are fitted with Eq.(1)to obtain a magnetic anisotropy field. The field-dependent resonant field Hrat a fixed frequency f of 16 GHz is plotted in Figs. 1(b), 1(c), and 1(d)for the samples with Fe films of 50 ML, 45 ML, and 32 ML thicknesses and 0°, 45°, and 55°deposition angles, respectively.The dependence Hr(φH)demonstrates that the variation of the deposition angle leads to a significant change of magnetic anisotropy. A rather regular fourfold pattern is clearly observed in the 0°normally deposited sample with 50 ML Fe film, confirming the classical behavior. So, in this case,fourfold MCA is stronger, though it has a character closer to bulk Fe. In addition to the fourfold MCA, an in-plane UMA that is easily magnetized in the[100]direction is observed. It has been reported that UMA components dominate at small Fe thickness,and the relative strength of MCA increases with increasing thickness. Apparently,the 45°deposited sample with 45 ML Fe film shows a contribution from the in-plane weak UMA in the easy direction.However,in the case of the 32 ML Fe film sample with 55°deposition angle, a strong in-plane UMA is induced comparatively in the same easy direction.Different amplitudes of maxima and minima show the manifestation of an additional UMA induced by oblique deposition.Its hard axis lies between the[100]and[010]directions. This UMA is interpreted as the shadowing effect of the evaporated beam away from the normal incidence.[6-8]By fitting the experimental data with Eq.(1),we obtain the in-plane magnetic anisotropy field values of UMA(twofold)H2=0 Oe,40 Oe,and 100 Oe with fourfold MCA field H4= 625 Oe, whileμ0Hd=2.18 T, and Land′e g-factor =2.07 for the samples with Fe films of 50 ML, 45 ML, and 32 ML thicknesses and 0°, 45°, and 55°deposition angles, respectively. It should be noted that the 45 ML Fe film sample with 45°deposition angle shows a poor fitting only for the conspicuousness of in-plane weak UMA along the easy direction. The anisotropy fields Hiare defined in terms of the magnetic anisotropy energy constants Ki(in units of J/m3) according to Hi=2Ki/μ0Ms.From these measurements,we obtain the magnetic anisotropy constants Kuand K1using the bulk Msvalue of Fe (Ms=1.74×106A/m). The in-plane MCA constant is found to be K1=5.4×104J/m3. The in-plane UMA constants are quantitatively determined and Ku= 0 J/m3, 3.4×103J/m3, and 8.6×103J/m3for the samples with Fe films of 50 ML,45 ML,and 32 ML thicknesses and 0°,45°,and 55°deposition angles,respectively.Table 1 is a summary of magnetic parameters obtained by VNA-FMR.For comparison, we also measured the same samples in Ref. [36] by anisotropic magnetoresistance(AMR)to cross-check the measured anisotropy constants obtained by FMR. Both techniques give almost the same value of K1, while the values of Kuobtained by FMR are slightly smaller. Indeed,stripe-like defects that may be caused by the shadow effect are known to induce such UMA in thin films by means of dipolar interactions among the defects.[40,41]The low value of Kumay suggest a low density of these defects.Moreover, it can be clearly seen in Table 1 that Kuincreases with the increase of the deposition angle,while K1has a constant value. The oblique deposition is a typical method to tune the magnetic anisotropy. In the previous study, the magnetic shape anisotropy induced by thickness-dependent oblique deposition in Fe/Si films was established.[42]Samples of Fe film(dFe=20 ML, 40 ML, 60 ML, and 70 ML) were deposited obliquely at 70°with respect to the surface normal. All samples showed twofold symmetry,which is typical for films with UMA. As the thickness of the Fe layer increases, the UMA constant Kuincreases. In our current study,the deposition angles and thicknesses are all different for the three samples. As the deposition angle increases,the UMA constant Kualso increases while the thickness of the Fe layer decreases. Conversely, as the thickness of the Fe layer increases, the UMA constant Kudecreases. These behaviors are consistent with previous experiments conducted on the AMR system, which showed an additional UMA in addition to the fourfold MCA caused by the bcc Fe structure. The hysteresis loops, measured by ex-situ MOKE,[36]are squares for the external field applied in the[100]easy direction.For the external field in the[110]hard direction,the hysteresis loops clearly show a twojump magnetic switching process,while for the external field in the[-110]hard direction,the hysteresis loops clearly show a three-jump magnetic switching process. A clearer description of the induced UMA can be seen in the ex-situ MOKE polar plots. Let us first elaborate on the expected evolution of magnetization. If H is applied strictly in the[110]hard direction and H2=0,we expect a soft mode to appear at H =H4.If we consider the measured in-plane UMA, the soft mode is not expected due to the fourfold symmetry of the system being destroyed. In this case,when H >H4,the magnetization starts to rotate in the easy[100]direction,and the minimum value in the resonance field should be observed.

    Fig.2. FMR spectra(fitted red lines)of the 0°-Fe(50 ML)/Pd sample at φH =0°in the frequency range 12-21 GHz showing the real part of the transmission parameter(ReS21).

    Table 1. Summarized magnetic parameters of Fe(001)/Pd thin films with different Fe-thicknesses and deposition angles. The error bars of the magnetic anisotropy field terms are 10%and are mainly given by the uncertainty of the sample volume.

    Note that the resonance field Hraround the [100] easy axis changes more slowly with angle than that around the[110]hard axis. This behavior may be caused by dragging the saturation magnetization behind the external magnetic field due to a strong in-plane fourfold MCA. In general, dragging enhances the damping and only drags along the easy and hard axes of magnetization, but where M and H are parallel, the dragging contribution vanishes. Figure 3 shows the experimental data (circles) of the equilibrium magnetization angle φMas a function of the angular position φHof the applied magnetic field H of the three samples. The equilibrium azimuthal angle of magnetization φMis obtained from Eq. (3)using the magnetic anisotropy field values obtained by fitting the field-dependent resonant field curves using the Kittel equation. It can be seen that the equilibrium magnetization is not always perfectly aligned with the external magnetic field. In fact, due to the existence of MCA, when the magnetic field is weaker than the saturated magnetic field, its magnetization direction does not always align with the direction of the external magnetic field, that is, φM/=φH. The red dashed line represents the case where the magnetization M and the external magnetic field H are completely collinear. Note that the experimental misalignments are in perfect agreement with the theoretical angular position.

    Fig.3. Experimental data(circles)of the equilibrium magnetization angle φM as a function of the angular position φH of the applied magnetic field H for the samples with Fe films of 50 ML, 45 ML, and 32 ML thicknesses and 0°, 45°, and 55° deposition angles, respectively. The red dashed line represents the case of perfect collinearity between magnetization and external field.

    Fig.4. The squared resonance frequency f2 versus resonance field Hr of the samples with Fe films of 50 ML,45 ML,and 32 ML thicknesses and 0°,45°,and 55°deposition angles,respectively,along the Fe〈100〉-easy and Fe〈110〉-hard directions. The solid lines are theoretical fits to the experimental data.

    Figure 4 shows the relationship between the squared resonance frequency f2and the resonance field Hrof the three samples along the Fe 〈100〉-easy and Fe 〈110〉-hard directions. The solid lines are fits according to Eqs. (4) and (5).The Land′e g-factor is accurately extracted from the quadratic term of the dependency because the term does not depend on the magnetic anisotropy field.[43,44]The measurement results in an isotropic Land′e g-factor of 2.07.In order to further study the dynamic properties of the obliquely deposited Fe(001)/Pd thin film bilayers,a detailed FMR experiment must be carried out to arrive at a firm conclusion.

    4. Conclusion

    We study the thickness-dependent magnetic anisotropy of obliquely deposited Fe(001)/Pd thin film bilayer samples using the VNA-FMR technique. The magnetic anisotropy constants are obtained by fitting the field-dependent resonant field curves at 16 GHz using the Kittel equation. Though the normally deposited sample does not show an intrinsic UMA,it is reported that oblique deposition could cause in-plane UMA.A consequence of this is that an FMR data-fitting analysis yields precise measurement of smaller contributions to the magnetic anisotropy, such as in-plane UMA. This UMA is inferred to be the shadow effect of the evaporation flux rate deviating from the normal incidence.This study shows that the magnetic anisotropy of the Pd/Fe(001)/Mg(001)system can be modified via oblique deposition,opening up a way to control the magnetic anisotropy, which might be significant for the switching of spintronic devices. The oblique deposition method may be applicable to other systems composed of two or more elements and can be of interest in the application because the crystal quality and magnetostatic parameters are not affected by changing the growth conditions and, furthermore,the film interfaces are not involved in this procedure.[29]

    猜你喜歡
    李巖弓子李陽
    求MDS 碼權(quán)多項(xiàng)式的組合方法
    李巖國畫選
    天竺取經(jīng)之二
    金秋(2021年24期)2021-12-01 11:15:21
    特殊的考卷
    李陽 讓品茶成為視覺藝術(shù)
    海峽姐妹(2020年11期)2021-01-18 06:16:06
    紀(jì)念照片
    紀(jì)念照片
    李巖繪畫作品選登
    開在心頭的花
    小小說月刊(2017年1期)2017-01-13 17:53:46
    那一夜(短篇小說)
    免费久久久久久久精品成人欧美视频| 国产精品蜜桃在线观看| 婷婷色av中文字幕| 婷婷成人精品国产| 亚洲国产精品成人久久小说| 另类精品久久| 国产日韩欧美在线精品| 亚洲第一av免费看| 亚洲男人天堂网一区| 国产在线免费精品| 捣出白浆h1v1| 女人久久www免费人成看片| 国产精品偷伦视频观看了| 亚洲内射少妇av| 一区二区三区乱码不卡18| 天天躁夜夜躁狠狠躁躁| 免费高清在线观看日韩| 最近最新中文字幕免费大全7| 男男h啪啪无遮挡| 麻豆乱淫一区二区| 久久av网站| 最新的欧美精品一区二区| 免费久久久久久久精品成人欧美视频| 亚洲五月色婷婷综合| 男女无遮挡免费网站观看| 免费女性裸体啪啪无遮挡网站| 亚洲国产av影院在线观看| 亚洲精品av麻豆狂野| 麻豆乱淫一区二区| 亚洲在久久综合| 街头女战士在线观看网站| 亚洲精品国产色婷婷电影| 在线 av 中文字幕| 精品人妻在线不人妻| 在线看a的网站| 成人国产av品久久久| 多毛熟女@视频| 老司机影院成人| 久久久a久久爽久久v久久| 久久久久久久久久人人人人人人| 亚洲美女黄色视频免费看| 中国国产av一级| 少妇 在线观看| 秋霞伦理黄片| 在线观看免费日韩欧美大片| 啦啦啦中文免费视频观看日本| 建设人人有责人人尽责人人享有的| av视频免费观看在线观看| 亚洲av欧美aⅴ国产| 又粗又硬又长又爽又黄的视频| 又黄又粗又硬又大视频| 亚洲精品久久成人aⅴ小说| 国产福利在线免费观看视频| av一本久久久久| 久久久久国产一级毛片高清牌| 好男人视频免费观看在线| 18禁观看日本| 日韩熟女老妇一区二区性免费视频| 美女主播在线视频| av国产久精品久网站免费入址| 国产深夜福利视频在线观看| 黄频高清免费视频| 黑人猛操日本美女一级片| 欧美精品亚洲一区二区| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 男女高潮啪啪啪动态图| 亚洲精品中文字幕在线视频| 国产免费现黄频在线看| 视频区图区小说| 少妇猛男粗大的猛烈进出视频| 999久久久国产精品视频| 欧美激情极品国产一区二区三区| 亚洲综合色惰| 热99国产精品久久久久久7| 日本欧美视频一区| 电影成人av| 少妇人妻 视频| 日日撸夜夜添| xxx大片免费视频| 高清不卡的av网站| 欧美日韩精品网址| 久久久精品区二区三区| 女的被弄到高潮叫床怎么办| 一级爰片在线观看| 男的添女的下面高潮视频| 日韩av免费高清视频| 97人妻天天添夜夜摸| 欧美变态另类bdsm刘玥| 波多野结衣一区麻豆| 啦啦啦在线免费观看视频4| 三上悠亚av全集在线观看| 黄色一级大片看看| 亚洲成国产人片在线观看| 不卡av一区二区三区| 欧美97在线视频| 永久免费av网站大全| 欧美中文综合在线视频| 九色亚洲精品在线播放| 日本黄色日本黄色录像| 中国三级夫妇交换| 久久人人爽人人片av| 尾随美女入室| 精品一区二区免费观看| 亚洲欧美清纯卡通| h视频一区二区三区| 1024视频免费在线观看| 久久人人爽av亚洲精品天堂| 亚洲国产精品国产精品| 在线天堂最新版资源| 国产一区亚洲一区在线观看| 三级国产精品片| 欧美人与善性xxx| 婷婷色综合大香蕉| 不卡av一区二区三区| 日韩一区二区视频免费看| 最新的欧美精品一区二区| 日韩成人av中文字幕在线观看| 中文字幕制服av| 亚洲成色77777| 七月丁香在线播放| 久久久久国产精品人妻一区二区| 99re6热这里在线精品视频| 久久精品久久久久久噜噜老黄| 亚洲婷婷狠狠爱综合网| 日韩欧美一区视频在线观看| 99香蕉大伊视频| 大片免费播放器 马上看| 国产亚洲精品第一综合不卡| 久久99精品国语久久久| 国产成人免费无遮挡视频| 国产在线一区二区三区精| av.在线天堂| 国产男女内射视频| 欧美成人精品欧美一级黄| 久久久久久久久久人人人人人人| 熟女少妇亚洲综合色aaa.| 国产日韩欧美视频二区| 免费高清在线观看日韩| 成人影院久久| 亚洲精品一区蜜桃| 伊人亚洲综合成人网| 精品第一国产精品| 精品人妻一区二区三区麻豆| 老鸭窝网址在线观看| 成人18禁高潮啪啪吃奶动态图| 老汉色∧v一级毛片| 色94色欧美一区二区| 少妇的丰满在线观看| 亚洲国产色片| 在线天堂中文资源库| 日韩一卡2卡3卡4卡2021年| 在线 av 中文字幕| 久久av网站| 日本wwww免费看| 99久久精品国产国产毛片| 久久这里有精品视频免费| 黄片无遮挡物在线观看| 人妻人人澡人人爽人人| 亚洲男人天堂网一区| 久久久精品国产亚洲av高清涩受| 少妇人妻精品综合一区二区| 久久久久久久久久人人人人人人| 亚洲欧洲精品一区二区精品久久久 | 精品少妇内射三级| 热99久久久久精品小说推荐| 桃花免费在线播放| 天堂俺去俺来也www色官网| 黄色一级大片看看| 一级毛片电影观看| 高清在线视频一区二区三区| 2022亚洲国产成人精品| 亚洲综合精品二区| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 97人妻天天添夜夜摸| 亚洲国产日韩一区二区| 高清av免费在线| 蜜桃国产av成人99| 精品国产露脸久久av麻豆| 有码 亚洲区| 超碰97精品在线观看| 色网站视频免费| 日韩av免费高清视频| 欧美亚洲日本最大视频资源| 亚洲一码二码三码区别大吗| 久久韩国三级中文字幕| 18禁国产床啪视频网站| 精品午夜福利在线看| 韩国高清视频一区二区三区| 高清黄色对白视频在线免费看| 亚洲av电影在线观看一区二区三区| 三上悠亚av全集在线观看| 满18在线观看网站| 国产1区2区3区精品| 男女无遮挡免费网站观看| 国产 一区精品| 人妻人人澡人人爽人人| 亚洲久久久国产精品| 国产精品二区激情视频| 可以免费在线观看a视频的电影网站 | 青春草国产在线视频| 成人亚洲精品一区在线观看| 中国国产av一级| 十八禁高潮呻吟视频| 精品人妻偷拍中文字幕| 亚洲欧美清纯卡通| 女性生殖器流出的白浆| 成人18禁高潮啪啪吃奶动态图| 久久精品国产鲁丝片午夜精品| 欧美精品人与动牲交sv欧美| 性色avwww在线观看| 国产精品不卡视频一区二区| 亚洲av福利一区| 美女视频免费永久观看网站| 电影成人av| 91精品国产国语对白视频| 国产淫语在线视频| 性少妇av在线| 欧美成人精品欧美一级黄| 国产福利在线免费观看视频| 亚洲精品av麻豆狂野| 精品一品国产午夜福利视频| 久久久精品国产亚洲av高清涩受| 亚洲av综合色区一区| 亚洲第一区二区三区不卡| 天堂8中文在线网| 丁香六月天网| 看非洲黑人一级黄片| 亚洲国产色片| 欧美激情高清一区二区三区 | 久久精品久久久久久久性| av.在线天堂| 人人妻人人添人人爽欧美一区卜| 亚洲国产看品久久| 亚洲av男天堂| 欧美日韩亚洲高清精品| 国产成人精品在线电影| 日日撸夜夜添| 日本爱情动作片www.在线观看| 水蜜桃什么品种好| 日韩欧美一区视频在线观看| 一级,二级,三级黄色视频| 成人影院久久| 一二三四在线观看免费中文在| 日韩欧美一区视频在线观看| 只有这里有精品99| 国产成人免费无遮挡视频| 超碰97精品在线观看| 人人妻人人爽人人添夜夜欢视频| 日本午夜av视频| 午夜免费鲁丝| 在线观看www视频免费| 在线天堂中文资源库| 亚洲av福利一区| 激情视频va一区二区三区| 在线天堂最新版资源| 欧美精品av麻豆av| 男人舔女人的私密视频| 最近中文字幕2019免费版| 午夜久久久在线观看| 麻豆精品久久久久久蜜桃| 亚洲国产日韩一区二区| 啦啦啦在线观看免费高清www| 热re99久久精品国产66热6| 熟女电影av网| 久久综合国产亚洲精品| 国产野战对白在线观看| 亚洲av欧美aⅴ国产| 卡戴珊不雅视频在线播放| 日韩精品免费视频一区二区三区| 国产 一区精品| 色婷婷久久久亚洲欧美| 成年人免费黄色播放视频| 亚洲精品国产一区二区精华液| 黄色 视频免费看| 叶爱在线成人免费视频播放| 自拍欧美九色日韩亚洲蝌蚪91| 99热全是精品| 大香蕉久久网| 一本—道久久a久久精品蜜桃钙片| 欧美成人午夜精品| 丝袜美腿诱惑在线| 青春草亚洲视频在线观看| 99久久人妻综合| 这个男人来自地球电影免费观看 | 韩国高清视频一区二区三区| 精品国产露脸久久av麻豆| 青青草视频在线视频观看| 久久国产精品男人的天堂亚洲| 波多野结衣一区麻豆| 亚洲国产色片| 国产成人精品在线电影| 亚洲av电影在线观看一区二区三区| 波多野结衣av一区二区av| 午夜av观看不卡| 女性被躁到高潮视频| 十八禁网站网址无遮挡| 精品久久蜜臀av无| 国产精品国产三级国产专区5o| 免费大片黄手机在线观看| 亚洲成国产人片在线观看| 一级黄片播放器| www.av在线官网国产| 多毛熟女@视频| 亚洲精品第二区| 成年人免费黄色播放视频| 国产精品人妻久久久影院| 伊人久久大香线蕉亚洲五| 久久99蜜桃精品久久| 最近2019中文字幕mv第一页| 美女大奶头黄色视频| 最近手机中文字幕大全| 你懂的网址亚洲精品在线观看| 亚洲成人手机| 国产白丝娇喘喷水9色精品| 久久人人爽av亚洲精品天堂| 国产毛片在线视频| 亚洲国产精品一区三区| 亚洲男人天堂网一区| av一本久久久久| 美女中出高潮动态图| 色吧在线观看| 欧美av亚洲av综合av国产av | 亚洲欧美一区二区三区久久| 夫妻性生交免费视频一级片| 国产免费一区二区三区四区乱码| 国产精品蜜桃在线观看| 精品国产乱码久久久久久小说| 久久精品久久久久久久性| 老鸭窝网址在线观看| 不卡av一区二区三区| 国产精品av久久久久免费| 国产免费视频播放在线视频| 黄色一级大片看看| 毛片一级片免费看久久久久| 国产白丝娇喘喷水9色精品| 最近中文字幕高清免费大全6| 久久亚洲国产成人精品v| 欧美另类一区| 1024香蕉在线观看| 黑人欧美特级aaaaaa片| 99re6热这里在线精品视频| 丰满迷人的少妇在线观看| av视频免费观看在线观看| 国产精品三级大全| 国产又色又爽无遮挡免| 亚洲欧洲精品一区二区精品久久久 | 三上悠亚av全集在线观看| 国产 一区精品| 另类精品久久| 欧美人与性动交α欧美精品济南到 | 日韩在线高清观看一区二区三区| 国产亚洲欧美精品永久| 精品视频人人做人人爽| 有码 亚洲区| 天天躁夜夜躁狠狠躁躁| 亚洲国产av影院在线观看| www.自偷自拍.com| 国产成人91sexporn| 精品亚洲乱码少妇综合久久| 国产成人免费观看mmmm| 晚上一个人看的免费电影| 国产精品一国产av| 国产精品久久久久久久久免| 最新中文字幕久久久久| 女人高潮潮喷娇喘18禁视频| 18禁裸乳无遮挡动漫免费视频| 国产亚洲精品第一综合不卡| xxx大片免费视频| 天天影视国产精品| 国产亚洲欧美精品永久| 少妇被粗大的猛进出69影院| 国产精品一区二区在线不卡| 欧美人与善性xxx| 天堂8中文在线网| 91精品三级在线观看| 我的亚洲天堂| 看免费成人av毛片| 精品卡一卡二卡四卡免费| videosex国产| 国语对白做爰xxxⅹ性视频网站| 国产男女超爽视频在线观看| 国产精品久久久久成人av| 国产有黄有色有爽视频| 成年人午夜在线观看视频| 亚洲精品aⅴ在线观看| 曰老女人黄片| 国产精品国产三级专区第一集| 国产乱来视频区| 免费人妻精品一区二区三区视频| 婷婷成人精品国产| 搡女人真爽免费视频火全软件| av线在线观看网站| 日韩大片免费观看网站| 久久狼人影院| 亚洲精品国产色婷婷电影| a级片在线免费高清观看视频| 久久午夜综合久久蜜桃| 国产在线视频一区二区| 亚洲成人手机| 黄频高清免费视频| 亚洲欧美一区二区三区国产| 黄片无遮挡物在线观看| 欧美日韩亚洲高清精品| 久久久久久伊人网av| 丝袜喷水一区| 国产激情久久老熟女| 精品视频人人做人人爽| 亚洲av电影在线观看一区二区三区| 人妻一区二区av| 我的亚洲天堂| 午夜福利在线免费观看网站| 99久久精品国产国产毛片| 国产女主播在线喷水免费视频网站| 国产成人aa在线观看| 日韩av在线免费看完整版不卡| 人妻系列 视频| 国产 一区精品| 成年av动漫网址| 欧美日韩精品成人综合77777| 如何舔出高潮| 日本vs欧美在线观看视频| 欧美av亚洲av综合av国产av | 丝袜脚勾引网站| 亚洲激情五月婷婷啪啪| 久久久久久免费高清国产稀缺| 麻豆av在线久日| 国产在视频线精品| 我的亚洲天堂| 日韩中文字幕欧美一区二区 | 午夜激情久久久久久久| 午夜精品国产一区二区电影| 交换朋友夫妻互换小说| 亚洲,一卡二卡三卡| 在线观看免费视频网站a站| 街头女战士在线观看网站| 五月天丁香电影| 亚洲成色77777| 精品久久蜜臀av无| 狂野欧美激情性bbbbbb| 美女高潮到喷水免费观看| 午夜激情久久久久久久| 最近2019中文字幕mv第一页| 欧美日韩一区二区视频在线观看视频在线| 午夜免费鲁丝| 高清在线视频一区二区三区| 中文字幕人妻熟女乱码| 一边摸一边做爽爽视频免费| 精品国产一区二区久久| 国产片内射在线| 午夜福利乱码中文字幕| 青草久久国产| 亚洲欧美中文字幕日韩二区| 国产精品av久久久久免费| 天堂8中文在线网| 人妻 亚洲 视频| 色吧在线观看| 天天躁夜夜躁狠狠躁躁| 青草久久国产| 一边摸一边做爽爽视频免费| 中文天堂在线官网| 一本大道久久a久久精品| 欧美最新免费一区二区三区| 亚洲精品av麻豆狂野| 亚洲,欧美,日韩| 中国国产av一级| 另类亚洲欧美激情| 大片电影免费在线观看免费| 在线观看人妻少妇| 日韩制服骚丝袜av| 久久久久久久大尺度免费视频| 中文欧美无线码| 97精品久久久久久久久久精品| 午夜福利网站1000一区二区三区| 美国免费a级毛片| 亚洲av电影在线进入| 卡戴珊不雅视频在线播放| 婷婷色麻豆天堂久久| 丝袜脚勾引网站| 国产精品一国产av| 久久久国产欧美日韩av| 欧美少妇被猛烈插入视频| 不卡视频在线观看欧美| 99久久精品国产国产毛片| 亚洲一区二区三区欧美精品| 久久久久久久国产电影| 久久久久国产一级毛片高清牌| 宅男免费午夜| 精品国产国语对白av| 欧美精品一区二区大全| 国产精品蜜桃在线观看| 久久久久国产一级毛片高清牌| 1024香蕉在线观看| 国产免费一区二区三区四区乱码| 日韩人妻精品一区2区三区| 欧美成人精品欧美一级黄| 中国三级夫妇交换| 国产精品不卡视频一区二区| videossex国产| 欧美精品一区二区大全| 欧美日韩亚洲高清精品| 啦啦啦在线观看免费高清www| 国产成人一区二区在线| 亚洲国产最新在线播放| 这个男人来自地球电影免费观看 | 欧美日本中文国产一区发布| av不卡在线播放| 国产精品国产三级专区第一集| 日韩制服丝袜自拍偷拍| 欧美中文综合在线视频| 性高湖久久久久久久久免费观看| a 毛片基地| 美女主播在线视频| 精品一区二区三卡| 亚洲 欧美一区二区三区| 中文字幕另类日韩欧美亚洲嫩草| 一级黄片播放器| 国产麻豆69| 一区福利在线观看| 一二三四中文在线观看免费高清| 亚洲av欧美aⅴ国产| 久久久久久人人人人人| 777米奇影视久久| 99国产精品免费福利视频| 一本大道久久a久久精品| 只有这里有精品99| 免费黄频网站在线观看国产| 人人澡人人妻人| 欧美日韩综合久久久久久| 亚洲精品第二区| 精品一区二区免费观看| 国产不卡av网站在线观看| 久久午夜福利片| 精品人妻偷拍中文字幕| 国产深夜福利视频在线观看| 亚洲精品国产色婷婷电影| xxx大片免费视频| 日韩在线高清观看一区二区三区| 亚洲欧美一区二区三区久久| 超色免费av| 久久久国产欧美日韩av| 国产综合精华液| 香蕉丝袜av| 曰老女人黄片| 国产欧美日韩综合在线一区二区| 午夜免费观看性视频| 91精品伊人久久大香线蕉| 日韩av不卡免费在线播放| 成年av动漫网址| 丰满乱子伦码专区| 波野结衣二区三区在线| 麻豆乱淫一区二区| 18禁裸乳无遮挡动漫免费视频| 人妻一区二区av| 2021少妇久久久久久久久久久| 亚洲色图 男人天堂 中文字幕| 波多野结衣av一区二区av| 综合色丁香网| 纵有疾风起免费观看全集完整版| 男人舔女人的私密视频| 91久久精品国产一区二区三区| 人人妻人人澡人人爽人人夜夜| 水蜜桃什么品种好| 亚洲伊人久久精品综合| 亚洲精华国产精华液的使用体验| 久久 成人 亚洲| 男女啪啪激烈高潮av片| av线在线观看网站| 国产日韩一区二区三区精品不卡| 欧美激情高清一区二区三区 | 国产一区二区三区综合在线观看| av女优亚洲男人天堂| 亚洲av成人精品一二三区| 蜜桃在线观看..| 人妻人人澡人人爽人人| 亚洲色图 男人天堂 中文字幕| 精品国产一区二区三区四区第35| 亚洲精品av麻豆狂野| 1024视频免费在线观看| 日本91视频免费播放| 久久99热这里只频精品6学生| 国产成人精品无人区| 熟妇人妻不卡中文字幕| 国产精品一区二区在线不卡| 黄频高清免费视频| 久久久久久久国产电影| 国产视频首页在线观看| 免费女性裸体啪啪无遮挡网站| 欧美成人精品欧美一级黄| 97在线视频观看| 色网站视频免费| 婷婷成人精品国产| 国产亚洲午夜精品一区二区久久| 免费高清在线观看日韩| 超碰97精品在线观看| 免费久久久久久久精品成人欧美视频| 色94色欧美一区二区| 久久久精品区二区三区| 亚洲精品国产一区二区精华液| 国产男女超爽视频在线观看| 亚洲av综合色区一区| 亚洲欧洲日产国产| 精品国产露脸久久av麻豆| 亚洲国产欧美日韩在线播放| 一级毛片电影观看| 中文字幕人妻丝袜制服| 久久久久久久国产电影| 亚洲av电影在线观看一区二区三区| 亚洲av日韩在线播放| 久久久久久人妻| 国产高清国产精品国产三级| 国产成人精品久久久久久| 熟妇人妻不卡中文字幕| 久久久久久久久免费视频了| 成人毛片a级毛片在线播放| 极品少妇高潮喷水抽搐|