王顯龍,姚 遠(yuǎn),李華山,王令寶,馬偉斌,秦漢時(shí)
槽式集熱器反射鏡拋物變形對(duì)允許跟蹤誤差的影響
王顯龍1,姚 遠(yuǎn)1,李華山1,王令寶1,馬偉斌1,秦漢時(shí)2
(1.中國(guó)科學(xué)院廣州能源研究所,廣東 廣州 510640;2.國(guó)網(wǎng)電力科學(xué)研究院,湖北 武漢 430074)
為了更好地指導(dǎo)太陽能槽式集熱系統(tǒng)的設(shè)計(jì)和高效運(yùn)維,本文研究了反射鏡拋物變形對(duì)集熱器允許跟蹤誤差的影響。首先定義了寬焦比、焦偏比、焦點(diǎn)偏離率3個(gè)無量綱參數(shù),理論分析了理想狀態(tài)不同尺寸下槽式集熱器允許跟蹤誤差,進(jìn)而給出反射鏡剖面拋物變形后的允許跟蹤誤差的變化;同時(shí)計(jì)算寬焦比、焦偏比、聚光比對(duì)允許跟蹤誤差的影響并作圖,給出基于不同幾何參數(shù)的槽式集熱器在不同變形量下的允許跟蹤誤差變化及其最大變形量尺寸。結(jié)果表明:寬焦比為4時(shí)槽式聚光集熱器理論允許跟蹤誤差最大;3個(gè)無量綱數(shù)耦合影響決定允許跟蹤誤差的大小,且“膨脹”變形更加不利于集熱器聚光?;诒疚慕o出的圖表,可預(yù)測(cè)集熱器聚光損失并設(shè)計(jì)適宜跟蹤系統(tǒng),助力槽式太陽能熱利用系統(tǒng)的推廣。
太陽能;槽式集熱器;拋物變形;允許跟蹤誤差;聚光比;寬焦比;焦偏比;焦點(diǎn)偏離率
槽式聚光集熱技術(shù)是太陽能中高溫?zé)崂玫闹饕緩街唬陙淼玫酱罅ρ芯亢屯茝V[1-7],其研究方向主要集中在系統(tǒng)分析[1-3]、性能評(píng)價(jià)[4-6]和系統(tǒng)設(shè)計(jì)[7-8]等方面。跟蹤精度是槽式集熱系統(tǒng)設(shè)計(jì)和運(yùn)維的重要參數(shù),得到了較深入的研究[9-11]。Yusie Rizala和Chong等人[12-14]對(duì)太陽能跟蹤方法和算法進(jìn)行了介紹。Mussard等人[15]對(duì)1 m×1.05 m反射板開口0.5 cm吸熱管槽式集熱器的跟蹤精度影響進(jìn)行了模擬計(jì)算。Fabienne Sallaberry等[16]對(duì)某個(gè)型號(hào)槽式集熱器的跟蹤程序進(jìn)行模擬分析并給出了計(jì)算結(jié)果。王金平等[17]設(shè)計(jì)了一種槽式太陽PLC跟蹤控制系統(tǒng),并對(duì)其跟蹤精度和系統(tǒng)誤差進(jìn)行理論分析。Arian Bahrami等[18]基于所采集的相同地面高度的歐洲和非洲太陽能輻射數(shù)據(jù),分析了緯度對(duì)不同太陽跟蹤器性能的影響。胡亮等[19]分析了利用光控校正程控技術(shù)提高跟蹤精度的理論,并確認(rèn)PD調(diào)節(jié)器更有效。邵磊[20]和陸永亞[21]分別對(duì)蝶式太陽能跟蹤誤差和塔式聚光跟蹤誤差及風(fēng)載荷的影響因素進(jìn)行了分析。這些文獻(xiàn)主要針對(duì)集熱系統(tǒng)性能測(cè)試、集熱器跟蹤算法、跟蹤外部影響因素、某一型號(hào)集熱系統(tǒng)的跟蹤精度等進(jìn)行研究,鮮有文獻(xiàn)對(duì)反射板變形的影響進(jìn)行分析。
本文理論分析了理想狀態(tài)下不同幾何參數(shù)整體成型的中小槽式集熱器的允許跟蹤誤差,并計(jì)算了中小型槽式聚光集熱器整體成型反射板拋物變形對(duì)允許跟蹤誤差的影響。
槽式集熱器剖面示意如圖1所示。槽式反射面采光寬度為,吸熱管吸熱體外徑為,焦距為。太陽光入射到地面為圓錐光束,夾角約為0.54°。
圖1 槽式聚光集熱器尺寸
反射板的最遠(yuǎn)端點(diǎn)垂直入射光線經(jīng)過槽式反射鏡反射后的最大偏移角度為,為點(diǎn)到吸熱管中心的距離,為保證太陽光線完全入射到吸熱管,則允許最大跟蹤誤差a為[19]:
由圖2可以看出:相同的理想狀態(tài)下,槽式集熱器允許的最大跟蹤誤差隨著的提高而減?。幌嗤?i>情況下,允許的最大跟蹤誤差隨著的提高先增加后減小,這是因?yàn)殡m然隨著減小會(huì)降低,但由于的設(shè)計(jì)要求使得吸熱管直徑也降低;越高則允許跟蹤誤差的增減變化速度越快,在較大的情況下槽式集熱器設(shè)計(jì)參數(shù)中的不能過小,否則即使在理想條件下太陽光也不能全部聚光(允許跟蹤誤差小于0);隨著的增加,允許跟蹤誤差大于0的起始數(shù)值也會(huì)增加。
通過求導(dǎo)式(4)可知:在為4的情況下允許跟蹤誤差值最大;在大于25.25、32.38、45.12、74.41情況下,對(duì)應(yīng)任何的允許跟蹤誤差均小于2.0°、1.5°、1.0°、0.5°。
槽式反射鏡會(huì)因?yàn)槟ゾ呒庸ふ`差、熱彎成形誤差、環(huán)境氣溫變化導(dǎo)致支架熱脹冷縮等原因發(fā)生鏡面變形,進(jìn)而導(dǎo)致槽式集熱器允許的最大跟蹤誤差變小。本文通過計(jì)算分析反射鏡剖面整體變形因素對(duì)允許跟蹤誤差的影響。計(jì)算假設(shè):整體變形后的反射鏡左右兩個(gè)端點(diǎn)以及吸熱管位置不變,反射鏡中點(diǎn)為最大變形點(diǎn),剖面最大變形量為,其變形坐標(biāo)為(0,),且反射鏡變形后的剖面形狀仍為拋物線。反射鏡變形后的剖面拋物線方程變?yōu)槭?5),拋物變形標(biāo)注如圖3所示。
分別將10個(gè)代表性值和12個(gè)代表性值代入式(7),計(jì)算結(jié)果見表1,且基于式(7)得到和對(duì)影響如圖4所示。
由表1和圖4a)可以看出,在不同下隨著的提高,的變化越來越小,尤其在大于1時(shí),的變化數(shù)值較小。這是由于通常較大,由式(7)可知只有在小于1時(shí)分母變化較大且更可以接近1,進(jìn)而導(dǎo)致計(jì)算結(jié)果變化較大。
由圖4b)和圖4c)可以看出:隨著絕對(duì)值的增大,的變化逐漸減??;絕對(duì)值相同時(shí)且為正值,變化更大。這是因?yàn)?i>值大時(shí),為正值式(7)中的分母比為負(fù)值時(shí)小,且式中第一項(xiàng)為正值,導(dǎo)致絕對(duì)值更大,變化也更大。
表1 反射鏡焦點(diǎn)偏離率計(jì)算結(jié)果
Tab.1 The calculation results of focus deviation rate of the PTC reflector ×10–4
圖4 b 和e 對(duì)d 影響
在不變的情況下,隨著的增大,式(7)中的分母趨向無窮,因而可以認(rèn)為最終趨向于的倒數(shù)。的增大代表變形導(dǎo)致的太陽光聚光誤差增大,允許跟蹤誤差降低,可見相同中心變形距離下,槽式反射鏡變形“收縮”(反射鏡剖面中點(diǎn)向焦點(diǎn)方向變形移動(dòng))的影響要高于“膨脹”(反射鏡剖面中向焦點(diǎn)背離方向變形移動(dòng))。由式(7)也可以看出,的大小對(duì)沒有影響,即反射鏡拋物變形導(dǎo)致的焦點(diǎn)偏離僅僅受反射鏡的變形距離和的影響。
反射鏡最遠(yuǎn)端點(diǎn)與變形反射后新焦點(diǎn)連線及變形前的原有焦點(diǎn)連線的夾角∠',以1代替,(圖3)定義為焦點(diǎn)最大偏離角,表示為
在反射境剖面拋物變形后槽式集熱器允許的最大跟蹤誤差為
–1≥0.27 (a≥1) (13)
可見,反射鏡拋物變形量如果超過某個(gè)確定值,則反射鏡在任何角度下都不能將所有的太陽光反射到吸熱管上,進(jìn)而降低槽式集熱系統(tǒng)太陽能光熱效率。由式(12)可以看出,的大小對(duì)焦點(diǎn)最大偏離角沒有影響。由式(13)可知,在某個(gè)特定尺寸情況下,拋物變形導(dǎo)致的最大跟蹤誤差值為此尺寸所采用聚光比的允許理想最大跟蹤誤差值減去焦點(diǎn)最大偏離角值。由式(12)計(jì)算得到和對(duì)焦點(diǎn)最大偏離角影響結(jié)果見表2,以此繪制出其影響曲線如圖5所示。
表2和對(duì)焦點(diǎn)最大偏離角影響
Tab.2 The influence of width focus ration and focus deviation ratio on the maximum focus deviation angle
由表2和圖5可以看出,和對(duì)焦點(diǎn)最大偏離角均有較大影響。隨著的提高和絕對(duì)值的增加,焦點(diǎn)最大偏離角減小,相同絕對(duì)值下的正負(fù)所引起的焦點(diǎn)最大偏離角的變化非常小。
圖5 b 和e 對(duì)焦點(diǎn)最大偏離角影響曲線
將圖2和圖5整合得到、、對(duì)拋物變形允許跟蹤誤差的影響,結(jié)果如圖6所示。由圖6可見:當(dāng)拋物變形導(dǎo)致焦點(diǎn)最大偏離角值大于特定聚光比理想跟蹤誤差值時(shí),任何跟蹤系統(tǒng)都不能將太陽光全部反射到吸熱管上;相同下,隨著的增加和的減小,拋物變形后的允許跟蹤誤差減小。
圖6 拋物變形允許跟蹤誤差
1)理想狀態(tài)下,槽式集熱器的允許跟蹤誤差值最大對(duì)應(yīng)的寬焦比為4,且隨著聚光比的增大,寬焦比4對(duì)應(yīng)的允許跟蹤誤差變化率會(huì)迅速增大,其寬焦比的上下限差值也會(huì)迅速降低。
2)反射鏡拋物變形會(huì)導(dǎo)致集熱器焦點(diǎn)偏離,相對(duì)而言“膨脹”變形更不利于集熱器聚光。
3)通過作圖給出特定參數(shù)下的不同變形量對(duì)應(yīng)的允許跟蹤誤差,可有效幫助設(shè)計(jì)人員和使用客戶基于使用地的冬夏溫差匹配適宜跟蹤系統(tǒng),并為槽式聚光集熱器的運(yùn)維提供幫助
[1] DESIDERI U, ZEPPARELLI F, MORETTINI V, et al. Comparative analysis of concentrating solar power and photovoltaic technologies: Technical and environmental evaluations[J]. Applied Energy, 2013, 102: 765-784.
[2] QUASCHNING V. Technical and economical system comparison of photovoltaic and concentrating solar thermal power systems depending on annual global irradiation[J]. Solar Energy, 2004, 77: 171-178.
[3] 黃予春, 曹成濤, 顧海. 基于IKFCM與多模態(tài)SSO優(yōu)化SVR的光伏發(fā)電短期預(yù)測(cè)[J]. 電力系統(tǒng)保護(hù)與控制, 2018, 46(24): 96-103.HUANG Yuchun, CAO Chengtao, GU Hai. Short-term photovoltaic power generation forecasting scheme based on IKFCM and multi-mode social spider optimization SVR[J]. Power System Protection and Control, 2018, 46(24): 96-103.
[4] CONRADO S L, RODRIGUEZ-PULIDO A, CALDERóN G. Thermal performance of parabolic trough solar collectors[J]. Renewable and Sustainable Energy Reviews, 2017, 67: 1345-1359.
[5] BELLOSA E, TZIVANIDISA C, BELESSIOTIS V. Daily performance of parabolic trough solar collectors[J]. Solar Energy, 2017, 158: 663-678.
[6] 高志強(qiáng), 李松, 周雪松, 等. 線性自抗擾在光伏發(fā)電系統(tǒng)MPPT中的應(yīng)用[J]. 電力系統(tǒng)保護(hù)與控制, 2018, 46(15): 52-59.GAO Zhiqiang, LI Song, ZHOU Xuesong, et al. Design of MPPT controller for photovoltaic generation system based on LADRC[J]. Power System Protection and Control, 2018, 46(15): 52-59.
[7] HAFEZA A Z, ATTIAA A M, ELTWABA H S, et al. Design analysis of solar parabolic trough thermal collectors[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 1215-1260.
[8] 傅金洲, 孫鳴. 基于氣候條件的光伏儲(chǔ)能一體發(fā)電系統(tǒng)的能量管理策略[J]. 電力系統(tǒng)保護(hù)與控制, 2018, 46(24): 142-149.FU Jinzhou, SUN Ming. Energy management strategy based on weather condition for photovoltaic-energy storage integrated power system[J]. Power System Protection and Control, 2018, 46(24): 142-149.
[9] ZHAO D M, XU E S, WANG Z F, et al. Influences of installation and tracking errors on the optical performance of a solar parabolic trough collector[J]. Renewable Energy, 2016, 97: 197-212.
[10] SALLABERRY F, JALóN A G, TORRES J L, et al. Optical losses due to tracking error estimation for a low concentrating solar collector[J]. Energy Conversion and Management, 2015, 92: 194-206.
[11] 李響, 范建業(yè), 曹麗璐, 等. 大型光伏電站并網(wǎng)適應(yīng)性分析[J]. 電力系統(tǒng)保護(hù)與控制, 2018, 46(8): 164-169.LI Xiang, FAN Jianye, CAO Lilu, et al. Analysis on the adaptability of large-scale grid-connected PV station[J]. Power System Protection and Control, 2018, 46(8): 164-169.
[12] RIZALA Y, WIBOWOA S H, FERIYADI A. Application of solar position algorithm for sun-tracking system[J]. Energy Procedia, 2013, 32: 160-165.
[13] THARAMUTTAM J K, KEONG A. Design and development of an automatic solar tracker[J]. Energy Procedia, 2017, 143: 629-634.
[14] CHONG K K, WONG C W. General formula for on-axis sun-tracking system and its application in improving tracking accuracy of solar collector[J]. Solar Energy, 2009, 83: 298-305.
[15] MUSSARD M, NYDAL O J. Influence of solar tracking inaccuracy and sun rays modeling on the efficiency of a small-scale parabolic trough[J]. Energy Procedia, 2014, 57: 1508-1515.
[16] SALLABERRY F, PUJOL-NADAL R, LARCHER M, et al. Direct tracking error characterization on a single-axis solar tracker[J]. Energy Conversion and Management, 2015, 105: 1281-1290.
[17] 王金平, 王軍, 馮煒, 等. 槽式太陽能跟蹤控制系統(tǒng)的研制及應(yīng)用[J]. 農(nóng)業(yè)工程學(xué)報(bào), 2015, 31(2): 45-52. WANG Jinping, WANG Jun, FENG Wei, et al. Development and application of sun-tracking control system for parabolic trough solar collector[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(2): 45-52.
[18] BAHRAMI A, OKOYE A O, ATIKOL U. The effect of latitude on the performance of different solar trackers in Europe and Africa[J]. Applied Energy, 2016, 177: 896-906.
[19] 胡亮, 彭佑多, 譚新華, 等. 太陽能“程控+光控”跟蹤誤差校正分析[J]. 計(jì)算機(jī)工程與應(yīng)用, 2015, 51(10): 257-260. HU Liang, PENG Youduo, TAN Xinhua, et al. Solar “programmed+light control” tracking control system in photoelectric detector error correction analysis[J]. Computer Engineering and Applications, 2015, 51(10): 257-260.
[20] 邵磊. 碟式太陽能自動(dòng)跟蹤系統(tǒng)傳動(dòng)機(jī)構(gòu)誤差研究[D]. 蘭州: 蘭州理工大學(xué), 2014: 33. SHAO Lei. The research of driving mechanism errors of dish solar auto-tracking system[D]. Lanzhou: Lanzhou University of Technology, 2014: 33.
[21] 陸永亞. 塔式定日鏡受風(fēng)載荷和跟蹤誤差影響的聚光效率特性研究[D]. 重慶: 重慶大學(xué), 2013: 38. LU Yongya. Focusing efficiency characteristics of the tower heliostat under the influence of wind load and tracking error[D]. Chongqing: Chongqing University, 2013: 38
Influence of reflector deformation on allowed tracking error of parabolic trough collector
WANG Xianlong1, YAO Yuan1, LI Huashan1, WANG Lingbao1, MA Weibin1, QIN Hanshi2
(1. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; 2. State Grid Electric Power Research Institute (Wuhan) Energy Efficiency Evaluation Co., Ltd., Wuhan 430074, China)
To better guide the design and efficient operation and maintennce of solar trough collector system, the influence of the reflector’s parabolic deformation on the allowed tracking error of the collector is investigated. Three dimensionless parameters, such as width focus ratio, focus deviation ratio and focus position deviation rate, are defined. The ideal allowed tracking error of the parabolic trough collector in different sizes is calculated, and the allowed tracking error variation with parabolic deformation of the reflector are given. Moreover, the effect of wide focus ratio, focal deviation ratio and concentration ratio on the allowed tracking error is calculated, and the result is drawn, then the variation of the allowed tracking error and the maximum deformation size are given based on different geometric sizes. The calculation results show that, the theoretical allowed tracking error reaches the maximum when the width focus ratio is 4, the coupling effects of the above three dimensionless parameters determine the value of the allowed tracking error, and the“expansion”deformation is unfavorable for the collector optical concentration. On the basis of the chart given in this paper, the concentrating loss of the collector can be predicted and the suitable tracking system can be designed to promote the application of the parabolic trough solar thermal utilization system.
solar energy, parabolic tough collector, parabolic deformation, allowed tracking error, concentration ratio, width focus ratio, focus deviation ratio, focus position deviation rate
TK513.1
A
10.19666/j.rlfd.201812187
王顯龍, 姚遠(yuǎn), 李華山, 等. 槽式集熱器反射鏡拋物變形對(duì)允許跟蹤誤差的影響[J]. 熱力發(fā)電, 2019, 48(7): 86-91. WANG Xianlong, YAO Yuan, LI Huashan, et al. Influence of reflector deformation on allowed tracking error of parabolic trough collector[J]. Thermal Power Generation, 2019, 48(7): 86-91.
2018-12-10
廣東省科技計(jì)劃項(xiàng)目(2017A030223009);廣東省自然科學(xué)基金項(xiàng)目(2018A0303130181);國(guó)家電網(wǎng)公司總部科技項(xiàng)目(SGHB0000KXJS1800477);中國(guó)科學(xué)院可再生能源重點(diǎn)實(shí)驗(yàn)室基金(Y807J21001)
Supported by:Science and Technology Planning Project of Guangdong Provice (2017A030223009); Natural Science Foundation of Guangdong Provice (2018A0303130181); State Grid Corporation Headquarters Science and Technology Project (SGHB0000KXJS1800477); Key Laboratory Foundation of Renewable Energy, CAS (Y807J21001)
王顯龍(1979—),男,碩士,高級(jí)工程師,主要研究方向?yàn)樘柲軣崂煤凸?jié)能余熱利用技術(shù),wangxl@ms.giec.ac.cn。
(責(zé)任編輯 楊嘉蕾)