• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      沙粒形狀對(duì)風(fēng)力機(jī)翼型磨損特性及臨界顆粒Stokes數(shù)的影響

      2019-08-19 03:06:58李德順王亞娥郭興鐸李銀然李仁年
      關(guān)鍵詞:磨損率風(fēng)力機(jī)當(dāng)量

      李德順,王亞娥,郭興鐸,李銀然,李仁年

      沙粒形狀對(duì)風(fēng)力機(jī)翼型磨損特性及臨界顆粒數(shù)的影響

      李德順1,2,3,王亞娥1,郭興鐸1,李銀然1,2,3,李仁年1,2,3

      (1. 蘭州理工大學(xué)能源與動(dòng)力工程學(xué)院,蘭州 730050;2. 甘肅省風(fēng)力機(jī)工程技術(shù)研究中心,蘭州 730050;3. 甘肅省流體機(jī)械及系統(tǒng)重點(diǎn)實(shí)驗(yàn)室,蘭州 730050)

      風(fēng)力機(jī)不可避免地運(yùn)行在風(fēng)沙環(huán)境下,風(fēng)沙對(duì)風(fēng)力機(jī)葉片的磨損將造成機(jī)組的氣動(dòng)性能下降和發(fā)電量降低。研究風(fēng)沙對(duì)風(fēng)力機(jī)翼型的沖蝕磨損特性時(shí),通常將沙塵顆粒簡(jiǎn)化為球形顆粒,忽略了實(shí)際非球形顆粒的影響,相關(guān)研究表明顆粒形狀對(duì)材料的沖蝕磨損率有一定的影響,該文以NACA 0012翼型直葉段為對(duì)象,研究沙塵顆粒形狀對(duì)風(fēng)力機(jī)翼型的磨損特性、氣動(dòng)性能及其臨界顆粒數(shù)的影響規(guī)律。通過(guò)對(duì)風(fēng)沙環(huán)境下NACA 0012翼型直葉段的流場(chǎng)進(jìn)行數(shù)值模擬,研究了4種不同形狀(顆粒形狀因子分別為0.671、0.75、0.846和1)顆粒情況下,風(fēng)力機(jī)翼型的磨損特性隨顆粒體積當(dāng)量直徑的變化規(guī)律,以及顆粒形狀對(duì)翼型開(kāi)始發(fā)生磨損時(shí)臨界顆粒數(shù)范圍的影響規(guī)律。結(jié)果表明:來(lái)流風(fēng)速為14.6 m/s、攻角為6°時(shí),4種顆粒形狀下翼型的最大磨損率均隨顆粒體積當(dāng)量直徑的增大先增大后減小然后再增大,顆粒直徑達(dá)到80m為翼型最大磨損率的轉(zhuǎn)折點(diǎn);同一顆粒體積當(dāng)量直徑時(shí),球形顆粒比非球形顆粒對(duì)翼型的沖蝕磨損程度??;顆粒形狀對(duì)翼型升力系數(shù)和升阻比的影響很??;4種顆粒形狀情況下,翼型表面的磨損區(qū)域均隨顆粒體積當(dāng)量直徑的增大逐漸從翼型的前緣附近沿翼型壓力面向尾緣擴(kuò)展,并且翼型磨損最嚴(yán)重區(qū)域出現(xiàn)在前緣附近;顆粒形狀會(huì)影響翼型開(kāi)始發(fā)生磨損的臨界顆粒數(shù)范圍,顆粒形狀因子越小,翼型開(kāi)始發(fā)生磨損的臨界顆粒數(shù)越大,數(shù)可以作為判斷翼型表面是否發(fā)生磨損的依據(jù)。研究結(jié)果可為風(fēng)力機(jī)葉片的防風(fēng)沙磨損設(shè)計(jì)提供參考。

      風(fēng)力機(jī);磨損;翼型;顆粒形狀;數(shù)

      0 引 言

      風(fēng)力機(jī)是將風(fēng)能轉(zhuǎn)化為機(jī)械能而做功的一種動(dòng)力機(jī)械[1],如何提高其風(fēng)能利用效率、安全性和工作壽命是人們一直探索的問(wèn)題。當(dāng)風(fēng)力機(jī)在風(fēng)沙環(huán)境下運(yùn)行時(shí),沙塵顆粒會(huì)與風(fēng)力機(jī)葉片表面發(fā)生碰撞,使葉片表面發(fā)生磨損,表面粗糙度增大,從而導(dǎo)致風(fēng)力機(jī)的氣動(dòng)性能下降、發(fā)電量減少[2-3]。Sareen等[4]研究了風(fēng)力機(jī)翼型前緣磨損對(duì)其氣動(dòng)性能的影響,結(jié)果表明前緣磨損會(huì)引起翼型的阻力增加和升力減小。Gharail等[5]研究發(fā)現(xiàn)翼型磨損的寬度是造成翼型性能下降的主要原因。Ritesh等[6]通過(guò)實(shí)驗(yàn)研究了粒子大小、碰撞角度、沖擊速度等對(duì)材料磨損特性的影響,探討了相關(guān)預(yù)測(cè)方法,并對(duì)其進(jìn)行了驗(yàn)證。張永等[7-8]對(duì)風(fēng)沙作用下風(fēng)力機(jī)葉片涂層的沖蝕磨損特性進(jìn)行了研究,研究發(fā)現(xiàn)涂層材料的磨損量隨沖擊速度的增大而增大。李德順等[9-10]研究了風(fēng)力機(jī)葉片前緣磨損對(duì)翼型氣動(dòng)性能的影響和翼型磨損的臨界顆粒數(shù),結(jié)果表明當(dāng)顆粒數(shù)達(dá)到某一特定值時(shí)翼型表面開(kāi)始出現(xiàn)磨損,并且翼型發(fā)生磨損后氣動(dòng)性能明顯降低。趙振希[11]研究了旋轉(zhuǎn)風(fēng)輪葉片的磨損特性,發(fā)現(xiàn)旋轉(zhuǎn)風(fēng)輪葉片也存在一個(gè)磨損臨界顆粒數(shù),并且其臨界顆粒數(shù)范圍為0.018~0.022。Oka等[12-13]從材料性能、顆粒直徑、顆粒形狀、沖擊角度等方面研究了固體顆粒的沖蝕性能,并得到了相關(guān)的預(yù)測(cè)方程。Giovanni等[14]研究發(fā)現(xiàn),沙塵對(duì)風(fēng)力機(jī)葉片的沖蝕率與攻角、來(lái)流速度、翼型及顆粒質(zhì)量濃度息息相關(guān)。

      研究風(fēng)沙對(duì)風(fēng)力機(jī)翼型的沖蝕磨損時(shí),通常將沙塵顆粒簡(jiǎn)化為球形顆粒開(kāi)展研究,然而相關(guān)研究表明,固體粒子的形狀對(duì)材料的沖蝕率有一定的影響[15],因此,本文通過(guò)顆粒的形狀因子對(duì)非球形沙塵顆粒進(jìn)行建模,針對(duì)美國(guó)國(guó)家航空咨詢(xún)委員會(huì)(NACA)所開(kāi)發(fā)NACA 0012翼型的直葉段,采用形狀因子為0.671的正四面體顆粒、經(jīng)Bagnold測(cè)定的接近真實(shí)風(fēng)沙顆粒的形狀因子為0.75[16]的顆粒、形狀因子為0.846的正八面體顆粒和形狀因子為1的球形顆粒分別進(jìn)行數(shù)值模擬,研究懸浮沙塵顆粒形狀對(duì)風(fēng)力機(jī)翼型的磨損特性、氣動(dòng)性能以及開(kāi)始產(chǎn)生磨損的臨界顆粒數(shù)范圍的影響規(guī)律。

      1 數(shù)值模型

      數(shù)學(xué)模型的基本方程為連續(xù)性方程[17]和動(dòng)量方程[18],并結(jié)合SST湍流模型[19]和離散相模型[20](DPM模型)求解氣固兩相流動(dòng)。

      1.1 磨損模型

      沖蝕磨損定義為粒徑小于1 mm的固體松散小顆粒,以一定的速度(粒子速度在550 m/s以?xún)?nèi))和角度沖擊材料的表面所造成的磨損,一般用材料的磨損率來(lái)衡量,磨損率定義為[21]

      1.2 顆粒Stokes數(shù)

      顆粒數(shù)是顆粒松弛時(shí)間和流動(dòng)特征時(shí)間的比值。數(shù)越小,顆粒響應(yīng)流動(dòng)變化的時(shí)間越短;反之,顆粒數(shù)越大,顆粒需要更多的時(shí)間響應(yīng)流動(dòng)的變化[22]。顆粒數(shù)()為

      1.3 顆粒形狀建模方法

      Matthias等[23]提出規(guī)則的非球形粒子的建模方法,主要有科里形狀系數(shù)、球形度和形狀因子3種方法。本文采用形狀因子法對(duì)顆粒形狀進(jìn)行建模,形狀因子指()與顆粒體積相同的球體表面積與顆粒實(shí)際表面積的比值,其定義式如下:

      為研究沙塵顆粒形狀對(duì)風(fēng)力機(jī)翼型的磨損特性、氣動(dòng)性能及其臨界顆粒數(shù)的影響規(guī)律,根據(jù)Matthias等[23]提出的規(guī)則非球形粒子的建模方法,本文將顆粒簡(jiǎn)化為4種形狀,即正四面體、正八面體、球形和文獻(xiàn)[16]中接近真實(shí)沙粒的形狀因子為0.75的多面體。根據(jù)形狀因子計(jì)算公式(3),得到正四面體顆粒的形狀因子為0.671,正八面體顆粒的形狀因子為0.846,球形顆粒的形狀因子為1。

      1.4 模型驗(yàn)證

      本文采取SST湍流模型和離散相模型求解氣固兩相流動(dòng)。文獻(xiàn)[24]根據(jù)風(fēng)洞試驗(yàn)繪制了不同雷諾數(shù)時(shí)NACA 0012翼型的升力系數(shù)和升阻比曲線(xiàn),本文模擬了雷諾數(shù)為1×106時(shí),該翼型的升阻力系數(shù)隨攻角的變化曲線(xiàn),并將模擬結(jié)果與相同工況下的試驗(yàn)值進(jìn)行對(duì)比,驗(yàn)證數(shù)值計(jì)算方法準(zhǔn)確性。如圖1所示,翼型升阻力系數(shù)的模擬值和試驗(yàn)值吻合良好,升阻力系數(shù)最大誤差出現(xiàn)在13°攻角時(shí),升力系數(shù)最大誤差為9.8%,阻力系數(shù)最大誤差為16.5%。本文選取6°攻角進(jìn)行相關(guān)數(shù)值模擬計(jì)算,該攻角時(shí),升力系數(shù)誤差為1.7%,阻力系數(shù)誤差為2.8%。

      圖1 NACA 0012翼型的升力和阻力系數(shù)曲線(xiàn)

      為了驗(yàn)證DPM模型模擬氣固兩相流動(dòng)的準(zhǔn)確性,Li等[25]采用DPM模型模擬了圓柱的氣固兩相流動(dòng),并對(duì)比了試驗(yàn)結(jié)果[26]與模擬結(jié)果。圖2為沙塵顆粒分布的試驗(yàn)與模擬結(jié)果對(duì)比,圖3為距圓柱中心2倍直徑尾流斷面上顆粒速度與實(shí)測(cè)值對(duì)比,該斷面上U/U的平均相對(duì)偏差為9.6%,總體來(lái)看,數(shù)值模擬曲線(xiàn)與試驗(yàn)曲線(xiàn)吻合良好,僅在圓柱尾流中心區(qū)域U/U的相對(duì)偏差較大,平均相對(duì)偏差為39.8%,驗(yàn)證了DPM模型能夠較好地模擬稀相氣固兩相流動(dòng),本文采用的數(shù)值模擬方法與文獻(xiàn)[25]相同。

      a. 試驗(yàn)結(jié)果b. 模擬結(jié)果 a. Experimental resultb. Simulation result

      注:U0為來(lái)流速度,m·s-1;U為顆粒速度,m·s-1;y/dc指縱向位置;dc為圓柱直徑,mm。

      2 研究對(duì)象和邊界條件

      2.1 研究對(duì)象

      本文以NACA 0012翼型直葉段為研究對(duì)象。翼型弦長(zhǎng)為1 m,展向長(zhǎng)度至少是二維分離泡高度的4~6倍[27-28],一般翼型的分離泡高度通常不超過(guò)翼型厚度的一半,因此根據(jù)所選翼型,本文翼型的展向長(zhǎng)度取為0.3。進(jìn)口邊界距翼型尾緣12.5,出口邊界距翼型尾緣16,顆粒入射面距翼型尾緣6。計(jì)算域如圖4所示,采用結(jié)構(gòu)化網(wǎng)格進(jìn)行網(wǎng)格劃分。其中,首層網(wǎng)格高度為0.01 mm,網(wǎng)格總數(shù)為3.233×106,對(duì)翼型前緣、尾緣處進(jìn)行局部網(wǎng)格加密,網(wǎng)格劃分如圖5所示。

      注:c為翼型弦長(zhǎng),m。

      圖5 翼型近壁面網(wǎng)格

      2.2 邊界條件

      采用SIMPLE算法求解二階迎風(fēng)格式離散差分方程,采用基于壓力的耦合隱式求解器求解不可壓縮的雷諾平均Navier-Stokes方程。

      氣相為空氣,空氣密度為1.225 kg/m3,黏度為1.79×10-5kg/m·s,采用SST湍流模型;對(duì)于固體顆粒,選取沙粒的主要成分二氧化硅晶體作為研究對(duì)象,密度為2 200 kg/m3,固體顆粒的質(zhì)量濃度取9 000g/m3[29],不考慮重力的影響,采用DPM模型求解固相顆粒的運(yùn)動(dòng)。

      進(jìn)口邊界條件為速度進(jìn)口,進(jìn)口速度設(shè)置為14.6 m/s(雷諾數(shù)取1×106,根據(jù)雷諾數(shù)公式計(jì)算風(fēng)速),假設(shè)固體顆粒的進(jìn)口速度與氣相速度相同;顆粒相入射源設(shè)置為面源,顆粒入射面上顆粒均勻進(jìn)入流場(chǎng),粒子總數(shù)約為7×104個(gè)。氣相出口邊界條件為壓力出口,壓力值為1個(gè)標(biāo)準(zhǔn)大氣壓;顆粒相出口條件為完全逃逸。假定所有壁面均為光滑壁面,壁面采用無(wú)滑移邊界條件,顆粒與壁面之間的碰撞為完全彈性碰撞。

      3 結(jié)果與分析

      3.1 顆粒形狀對(duì)翼型磨損特性和氣動(dòng)性能的影響

      文獻(xiàn)[30]指出,總懸浮顆粒物是指漂浮于空氣中的當(dāng)量粒徑小于100m的微小固體顆粒和液粒,主要來(lái)源于風(fēng)沙揚(yáng)塵、建筑和交通揚(yáng)塵、煙塵等。因此,本文取體積當(dāng)量直徑分別為20、40、60、80和100m的沙塵顆粒,在來(lái)流風(fēng)速為14.6 m/s、攻角為6°的情況下,研究不同形狀因子的顆粒對(duì)翼型磨損特性和氣動(dòng)性能的影響,其中,體積當(dāng)量直徑定義為顆粒的體積相同時(shí),對(duì)應(yīng)球形顆粒的直徑。圖6為不同顆粒形狀時(shí),翼型表面最大磨損率隨顆粒體積當(dāng)量直徑的變化規(guī)律。

      注:f 為顆粒形狀因子。下同。

      由圖6可知,不同顆粒形狀下,翼型的最大磨損率的變化趨勢(shì)基本相同,最大磨損率均呈現(xiàn)隨顆粒體積當(dāng)量直徑的增大先增大后減小然后再增大的趨勢(shì),粒徑=80m為翼型最大磨損率變化的轉(zhuǎn)折點(diǎn)。究其原因,當(dāng)來(lái)流風(fēng)速一定,在相同的顆粒質(zhì)量流率下,與翼型表面發(fā)生碰撞的顆粒大小和數(shù)量是影響翼型磨損率的主要因素,小粒徑顆粒的動(dòng)能小,其慣性不易克服翼型前緣邊界層內(nèi)的高壓區(qū)阻力,進(jìn)而與翼型發(fā)生碰撞,因此產(chǎn)生的磨損程度較輕;隨著顆粒直徑的增大,顆粒具有的動(dòng)能逐漸增大,顆粒對(duì)翼型表面的沖擊作用增強(qiáng),翼型的最大磨損率相應(yīng)逐漸增大;隨著顆粒粒徑的進(jìn)一步增大,即當(dāng)粒徑大于60m后,雖然單個(gè)顆粒對(duì)翼型的沖擊作用較大,但由于發(fā)生碰撞的顆粒數(shù)量相對(duì)減少,翼型的最大磨損率出現(xiàn)小幅度減小,減小幅度約為20%,隨后顆粒大小成為影響翼型磨損率的主要因素,隨著粒徑的增大,即當(dāng)粒徑大于80m后,翼型最大磨損率再次逐漸增大。

      相同體積當(dāng)量直徑時(shí),與形狀因子小于1(<1)的顆粒相比,球形(=1)顆粒對(duì)翼型的最大磨損率的影響較小,減小程度約為10%左右,即相同工況下,<1的顆粒對(duì)翼型的磨損程度大于球形顆粒對(duì)翼型的磨損程度,這一結(jié)論與文獻(xiàn)[15]中提到的一般情況下多角粒子造成的沖蝕失重量大于球狀粒子,多角粒子比球狀圓滑粒子的沖蝕破壞能力更強(qiáng)相一致。不同形狀顆粒對(duì)翼型的磨損程度不同,究其原因,相同的顆粒體積時(shí),球形顆粒表面圓滑,與翼型發(fā)生碰撞時(shí)只對(duì)翼型形成摩擦磨損,而<1的顆粒棱角分明,對(duì)翼型表面既產(chǎn)生摩擦磨損,也產(chǎn)生切削磨損,導(dǎo)致<1的顆粒對(duì)翼型表面的磨損程度更強(qiáng)。

      圖7為不同顆粒形狀下,翼型的升力系數(shù)、升阻比隨顆粒體積當(dāng)量直徑的變化。由圖可知,顆粒形狀對(duì)翼型的升力系數(shù)、升阻比的影響很小,說(shuō)明風(fēng)沙環(huán)境下,當(dāng)沙塵質(zhì)量濃度較低時(shí),沙塵顆粒對(duì)翼型的氣動(dòng)力影響微乎其微。

      圖8為不同顆粒形狀下翼型展向中間截面上磨損位置和相對(duì)磨損程度隨顆粒體積當(dāng)量直徑的變化。橫坐標(biāo)為翼面上某點(diǎn)在弦長(zhǎng)方向的投影長(zhǎng)度與弦長(zhǎng)的比值,為無(wú)量綱數(shù),其中<0代表翼型的吸力面,>0代表翼型的壓力面,=0代表翼型前緣點(diǎn);縱坐標(biāo)為翼面上某點(diǎn)處的磨損率與翼型在該工況時(shí)4種顆粒形狀下的最大磨損率的比值,為無(wú)量綱數(shù),表征某工況下翼型表面不同位置處的相對(duì)磨損程度。

      a. 升力系數(shù)隨顆粒體積當(dāng)量直徑的變化

      a. Variation of lift coefficient with particle volume equivalent diameter

      b. 升阻比隨顆粒體積當(dāng)量直徑的變化

      a. d=20 μmb. d=40 μmc. d=60 μm d. d=80 μme. d=100 μmf. d=20μm局部放大圖f. Partial enlarged drawing of d=20 μm

      由圖8可知,4種顆粒形狀時(shí),隨著顆粒體積當(dāng)量直徑的增大,翼型表面的磨損區(qū)域逐漸從翼型的前緣附近沿翼型的壓力面向尾緣擴(kuò)展,當(dāng)顆粒體積當(dāng)量直徑為100m時(shí),顆粒對(duì)翼型的磨損區(qū)域最大,約為0.38,即顆粒的體積當(dāng)量直徑越大,顆粒對(duì)翼型表面的磨損區(qū)域越大,這是由于顆粒直徑較小時(shí),其具有的動(dòng)能較小,不易穿透前緣邊界層高壓區(qū),與翼型前緣發(fā)生碰撞并使之產(chǎn)生磨損;隨著顆粒體積當(dāng)量直徑的增大,顆粒自身具有的動(dòng)能逐漸增大,顆粒較易穿透翼型周?chē)倪吔鐚痈邏簠^(qū)與翼型發(fā)生碰撞,使得翼型表面的磨損區(qū)域越來(lái)越大。

      在相同的體積當(dāng)量直徑時(shí),4種顆粒形狀下翼型磨損最嚴(yán)重的區(qū)域均位于翼型前緣附近-0.05~0.05的范圍內(nèi),這是由于顆粒對(duì)翼型前緣的沖擊角度較大,對(duì)翼型的壓力面等部分的沖擊角度小,根據(jù)本文采用的磨損模型,顆粒對(duì)翼型的磨損程度與沖擊角度有關(guān),沖擊角度越大,磨損越嚴(yán)重,因此前緣附近成為翼型磨損最嚴(yán)重的區(qū)域[31-32]。當(dāng)d≥40m時(shí),顆粒形狀對(duì)翼型表面的磨損位置及相對(duì)磨損程度的影響較小,磨損規(guī)律幾乎相同;當(dāng)=20m時(shí),由20m時(shí)的局部放大圖可知,相對(duì)于<1的顆粒,球形顆粒時(shí)翼型表面的起始磨損位置略向翼型吸力面方向移動(dòng)了0.002,這是由于相同的顆粒體積時(shí),球形顆粒表面相對(duì)圓滑,比<1的顆粒受到流場(chǎng)阻力作用小,從而容易與翼型發(fā)生碰撞。

      如前所述,顆粒體積當(dāng)量直徑為20m時(shí),與<1的顆粒相比,球形顆粒對(duì)翼型的磨損區(qū)域略向翼型前緣附近的吸力面方向擴(kuò)展,因此,預(yù)測(cè)顆粒形狀會(huì)影響翼型開(kāi)始發(fā)生磨損的臨界顆粒直徑及對(duì)應(yīng)的臨界顆粒數(shù),下面將對(duì)這一預(yù)測(cè)進(jìn)行驗(yàn)證。

      3.2 顆粒形狀對(duì)翼型磨損臨界顆粒Stokes數(shù)的影響

      相關(guān)文獻(xiàn)[10-11,33-34]曾研究并且證明了臨界顆粒數(shù)的大小可以作為判斷該翼型是否發(fā)生磨損的依據(jù)。本小節(jié)根據(jù)同一體積當(dāng)量直徑時(shí),不同形狀的顆粒是否與翼型表面發(fā)生碰撞,研究顆粒形狀是否會(huì)影響翼型磨損的臨界顆粒數(shù)范圍,從而進(jìn)一步完善翼型是否發(fā)生磨損與臨界顆粒數(shù)范圍之間的關(guān)系。在攻角為6°的情況下,對(duì)不同風(fēng)速(7.3、14.6和21.9 m/s)和不同顆粒形狀時(shí),翼型表面出現(xiàn)磨損的臨界顆粒數(shù)范圍進(jìn)行分析。圖9為不同風(fēng)速、不同顆粒形狀下,翼型開(kāi)始磨損時(shí)的顆粒軌跡圖,表1為相應(yīng)的翼型開(kāi)始磨損的臨界顆粒直徑及其對(duì)應(yīng)的臨界顆粒數(shù)范圍。

      d=13 μm,f=1d=14 μm,f=0.846d=14 μm,f=0.75d=15 μm,f=0.671

      a.=7.3 m·s-1

      d=12 μm,f=1d=12 μm,f=0.846d=13 μm,f=0.75 d=13μm,f=0.671

      b.=14.6 m·s-1

      >d=10 μm,f=1d=11 μm,f=0.846d=11 μm,f=0.75d=12 μm,f=0.671

      c.=21.9 m·s-1

      注:為風(fēng)速,m·s-1。

      Note:is wind velocity, m·s-1.

      圖9 不同風(fēng)速和不同顆粒形狀下翼型開(kāi)始磨損時(shí)的顆粒軌跡圖

      Fig.9 Particle trajectory of airfoil at beginning of erosion for different wind velocity and particle shape

      結(jié)合圖9和表1可知,對(duì)于球形顆粒,改變風(fēng)速時(shí),翼型發(fā)生磨損對(duì)應(yīng)的臨界顆粒數(shù)范圍在0.007~0.015之內(nèi),該計(jì)算結(jié)果與文獻(xiàn)[34]中計(jì)算結(jié)果一致;當(dāng)來(lái)流風(fēng)速為14.6 m/s時(shí),本文中NACA 0012翼型開(kāi)始發(fā)生磨損的臨界顆粒數(shù)范圍為0.012 1~0.014 4,與文獻(xiàn)[25]中S809翼型發(fā)生磨損的臨界顆粒數(shù)范圍0.013 5~0.015 1有較小區(qū)別,說(shuō)明翼型的幾何形狀,尤其是翼型前緣的幾何形狀,會(huì)對(duì)翼型發(fā)生磨損的臨界顆粒數(shù)產(chǎn)生影響。

      表1 不同風(fēng)速和不同顆粒形狀下翼型磨損的臨界顆粒直徑及Stokes數(shù)

      此外,文獻(xiàn)[11]研究了風(fēng)力機(jī)旋轉(zhuǎn)葉片的磨損特性及臨界顆粒數(shù),研究發(fā)現(xiàn),球形顆粒時(shí),風(fēng)力機(jī)葉片某斷面翼型(對(duì)應(yīng)的翼型為NACA 4430,相對(duì)入流速度為18.3 m/s,顆粒密度為750 kg/m3)開(kāi)始發(fā)生磨損的臨界顆粒數(shù)范圍為0.018~0.022,與本文中球形顆粒時(shí),來(lái)流風(fēng)速為21.9 m/s的工況下NACA 0012翼型發(fā)生磨損的臨界顆粒數(shù)相比增大45%左右,造成這種差異的原因較多,如翼型幾何形狀、顆粒密度、來(lái)流風(fēng)速、攻角及三維旋轉(zhuǎn)效應(yīng)等,后續(xù)將進(jìn)一步研究靜止直葉段發(fā)生磨損的臨界顆粒數(shù),與風(fēng)力機(jī)旋轉(zhuǎn)葉片發(fā)生磨損的臨界顆粒數(shù)存在差異的原因。

      相同風(fēng)速時(shí),形狀因子越小的顆粒越不易與翼型發(fā)生碰撞進(jìn)而使其產(chǎn)生磨損,=0.671的顆粒對(duì)翼型產(chǎn)生磨損的臨界顆粒數(shù)較球形顆粒增大20%~50%。如當(dāng)風(fēng)速取21.9 m/s時(shí),=0.671的顆粒時(shí)翼型開(kāi)始產(chǎn)生磨損時(shí)的臨界顆粒數(shù)最大,為0.021 6,球形顆粒時(shí)翼型開(kāi)始產(chǎn)生磨損時(shí)的臨界顆粒數(shù)最小,為0.015 1,這是因?yàn)橄嗤念w粒體積下,不同形狀的顆粒運(yùn)動(dòng)規(guī)律不同,顆粒的形狀因子越小,其表面積越大,在運(yùn)動(dòng)過(guò)程中受到的流動(dòng)阻力越大,顆粒不易穿透翼型前緣邊界層高壓區(qū),進(jìn)而與翼型表面發(fā)生碰撞使其產(chǎn)生磨損。

      顆粒形狀相同時(shí),隨著風(fēng)速的增大,翼型發(fā)生磨損的臨界顆粒直徑均逐漸減小,其中球形顆粒時(shí)翼型開(kāi)始發(fā)生磨損的臨界顆粒直徑最小,=0.671的顆粒時(shí)翼型開(kāi)始發(fā)生磨損的臨界顆粒直徑最大,雖然翼型發(fā)生磨損時(shí)的臨界顆粒直徑的差別僅為1~3m,但對(duì)應(yīng)的臨界顆粒數(shù)的增長(zhǎng)幅度較大,尤其是=0.671的顆粒,當(dāng)來(lái)流速度由7.3 m/s增大為21.9 m/s時(shí),翼型開(kāi)始發(fā)生磨損的臨界顆粒數(shù)增大近1倍。同時(shí)發(fā)現(xiàn),雖然顆粒形狀會(huì)對(duì)翼型開(kāi)始發(fā)生磨損的臨界顆粒數(shù)產(chǎn)生一定影響,但仍存在一個(gè)臨界顆粒數(shù)可作為判斷翼型表面是否會(huì)發(fā)生磨損的依據(jù),從而為風(fēng)沙環(huán)境下風(fēng)力機(jī)翼型和葉片的抗磨損設(shè)計(jì)提供參考。

      4 結(jié) 論

      本文研究了不同顆粒體積當(dāng)量直徑下,4種形狀因子分別為0.671、0.75、0.846和1的顆粒對(duì)風(fēng)力機(jī)翼型的磨損特性和氣動(dòng)性能的影響,以及顆粒形狀對(duì)翼型開(kāi)始發(fā)生磨損的臨界顆粒數(shù)范圍的影響規(guī)律,主要結(jié)論如下:

      1)當(dāng)來(lái)流風(fēng)速為14.6 m/s、攻角為6°時(shí),4種顆粒形狀下翼型的最大磨損率的變化規(guī)律基本一致,最大磨損率均隨顆粒體積當(dāng)量直徑的增大先增大后減小然后再增大,在顆粒直徑80m時(shí)翼型最大磨損率約減小20%;在相同的顆粒體積當(dāng)量直徑下,與形狀因子小于1的顆粒相比,球形顆粒對(duì)翼型的沖蝕磨損程度最小。

      2)顆粒形狀對(duì)翼型升力系數(shù)、升阻比的影響微乎其微。顆粒形狀對(duì)翼型表面的磨損位置和程度影響較小,隨著顆粒體積當(dāng)量直徑的增大,翼型表面的磨損區(qū)域均從翼型的前緣附近逐漸沿壓力面向尾緣擴(kuò)展,最大擴(kuò)展到0.38(為翼型表面上某點(diǎn)在弦長(zhǎng)方向的投影長(zhǎng)度與弦長(zhǎng)的比值)處,翼型前緣點(diǎn)附近-0.05~0.05范圍內(nèi)的磨損最嚴(yán)重;當(dāng)顆粒直徑為20m時(shí),與形狀因子小于1的顆粒相比,球形顆粒時(shí),翼型表面的起始磨損位置略向吸力面方向移動(dòng)了0.002。

      3)數(shù)可以作為翼型表面是否會(huì)發(fā)生磨損的判據(jù),但顆粒形狀對(duì)翼型磨損的臨界顆粒數(shù)范圍有一定影響。同一風(fēng)速時(shí),形狀因子越小的顆粒越不易與翼型發(fā)生碰撞進(jìn)而使其發(fā)生磨損,形狀因子為0.671的顆粒對(duì)翼型產(chǎn)生磨損的臨界顆粒數(shù)較球形顆粒增大20%~50%。

      [1] 吳雙群,趙丹平. 風(fēng)力發(fā)電原理[M]. 北京:北京大學(xué)出版社,2011.

      [2] Soltani M R, Birjandi A H, Seddighi Moorani M. Effect of surface contamination on the performance of a section of a wind turbine blade[J]. Scientia Iranica, 2011, 18(3): 349-357.

      [3] H M Slot, E R M Gelinck, C Rentropa, et al. Leading edge erosion of coated wind turbine blades: Review of coating life models[J]. Renewable Energy, 2015, 80: 837-848.

      [4] Sareen A, Sapre C A, Selig M S. Effects of leading edge erosion on wind turbine blade performance[J]. Wind Energy, 2014, 17(10): 1531-1542.

      [5] Gharali K, Johnson D A. Numerical modeling of an S809 airfoil under dynamic stall, erosion and high reduced frequencies[J]. Applied Energy, 2012, 93: 45-52.

      [6] Ritesh Kaundal. Role of process variables on the solid particle erosion of polymer composites: A critical review[J]. Silicon, 2014, 6(1): 5-20.

      [7] 張永,劉召,黃超,等. 挾沙風(fēng)作用下風(fēng)力機(jī)葉片涂層沖蝕磨損研究進(jìn)展[J]. 新能源進(jìn)展,2015,3(5):331-335. Zhang Yong, Liu Zhao, Huang Chao, et al. Research progress on erosion wear of wind turbine blade under the action of sand-carrying wind[J]. Progress in New Energy, 2015, 3(5): 331-335. (in Chinese with English abstract)

      [8] 張永,黃超,劉召,等. 挾沙風(fēng)作用下風(fēng)力機(jī)葉片涂層沖蝕特性研究[J]. 材料導(dǎo)報(bào),2016,30(10):95-99. Zhang Yong, Huang Chao, Liu Zhao, et al. Study on erosion characteristics of wind turbine blade coating under the action of sand-carrying wind[J]. Material Review, 2016, 30(10): 95-99. (in Chinese with English abstract)

      [9] 李德順,王成澤,李銀然,等. 葉片前緣磨損形貌特征對(duì)風(fēng)力機(jī)翼型氣動(dòng)性能的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(22):269-275. Li Deshun, Wang Chengze, Li Yinran, et al. The influence of erosion topography of blade leading edge on aerodynamic performance of wind turbine wing[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(22): 269-275. (in Chinese with English abstract)

      [10] Li Deshun, Gong Yuxiang, Li Rennian, et al. Criticalnumber for gas-solid flow erosion of wind turbine airfoil[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2016, 33(1): 67-72.

      [11] 趙振希. 基于顆粒數(shù)的風(fēng)力機(jī)葉片沖蝕磨損特性研究[D]. 甘肅:蘭州理工大學(xué),2018. Zhao Zhenxi. Study on Erosion Characteristics of Wind Turbine Blades Based on Particle Stokes Number[D]. Gansu: Lanzhou University of Technology, 2018. (in Chinese with English abstract)

      [12] Oka Y I, Okamura K, Yoshida T. Practical estimation of erosion damage caused by solid particle impact Part 1: Effects of impact parameters on a predictive equation[J]. Wear, 2005, 259(1/6): 95-101.

      [13] Oka Y I, Yoshida T. Practical estimation of erosion damage caused by solid particle impact Part 2: Mechanical properties of materials directly associated with erosion damage[J]. Wear, 2005, 259(1/6): 102-109.

      [14] Giovanni Fiore, Michael S Selig. Simulation of damage for wind turbine blades due to airborne particles[J]. Wind Engineering, 2015, 39 (4): 399-418.

      [15] 李浩. 沖蝕磨損理論及影響因素[J]. 輕工科技,2015,31(2):31-32. Li Hao. Erosion theory and its influencing factors[J]. Light Industrial Science and Technology, 2015, 31(2): 31-32. (in Chinese with English abstract)

      [16] 楊斌,高凱,李志強(qiáng),等. 形狀因素對(duì)風(fēng)沙躍移影響的數(shù)值研究[J]. 西北大學(xué)學(xué)報(bào),2013,43(1):121-126. Yang Bin, Gao Kai, Li Zhiqiang, et al. Numerical study on the influence of shape factors on sand-wind saltation[J]. Journal of Northwestern University, 2013, 43(1): 121-126. (in Chinese with English abstract)

      [17] 王文奇,王飛龍,何雅玲,等. 一種新型樹(shù)葉形翅片的數(shù)值與實(shí)驗(yàn)研究[J]. 工程熱物理學(xué)報(bào),2018,39(11):2469-2475. Wang Wenqi, Wang Feilong, He Yaling, et al. Numerical and experimental study on a new leaf-shaped fin[J]. Journal of Engineering Thermophysics, 2018, 39(11): 2469-2475. (in Chinese with English abstract)

      [18] 王辰宇,劉玉杰,高雪穎,等. 應(yīng)用CFD方法分析球填料旋轉(zhuǎn)床內(nèi)氣相流動(dòng)特征[J]. 高校化學(xué)工程學(xué)報(bào),2018,32(5):1004-1011. Wang Chenyu, Liu Yujie, Gao Xueyin, et al. The gas flow characteristics in a rotating bed with ball packing were analyzed by CFD method[J]. Journal of Chemical Engineering, 2018, 32(5): 1004-1011. (in Chinese with English abstract)

      [19] Scheuerer M, Heitsh M, Menter F. Evaluation of computational fluid dynamic methods for reactor safety analysis (ECO-RA)[J]. Nuclear Engineering and Design, 2005, 235(2/4): 359-368.

      [20] 張濤,李紅文. 管道復(fù)雜流場(chǎng)氣固兩相流DPM仿真優(yōu)化[J]. 天津大學(xué)學(xué)報(bào):自然科學(xué)與工程技術(shù)版,2015,48(1):39-48 Zhang Tao, Li Hongwen. Simulation and optimization of gas-solid two-phase flow in complex flow field by DPM[J]. Journal of Tianjin University: Natural Science and Engineering Technology Edition, 2015, 48(1): 39-48. (in Chinese with English abstract)

      [21] 許留云,李翔,李偉峰,等. 三通管中不同流體介質(zhì)沖蝕磨損的數(shù)值模擬[J]. 當(dāng)代化工,2014,43(12):2718-2720. Xu Liuyun, Li Xiang, Li Weifeng, et al. Numerical simulation of erosion wear of different fluid medium in tee pipe[J]. Modern Chemical Industry, 2014, 43(12): 2718-2720. (in Chinese with English abstract)

      [22] Anand Samuel Jebakumar, John Abraham. Comparison of the structure of computed and measured particle-laden jets for a wide range of Stokes numbers[J]. International Journal of Heat and Mass Transfer, 2016, 97: 779-786.

      [23] Matthias Mand?, Chungen Yin, Henrik S?rensen, et al. On the modelling of motion of non-spherical particles in two-phase flow[C]. 6th International Conference on Multiphase Flow, ICMF 2007, Leipzig, Germany, 2007.

      [24] NACA 0012翼型的截面與升阻力曲線(xiàn)圖[Z]. 2014-01-07: http://www.360doc.com/content/14/0107/17/12109864_343374113.shtml. [2019-03-07]

      [25] Li Deshun, Zhao Zhenxi, Li Rennian, et al. Influence of particlenumber on wind turbine airfoils erosion[J]. Applied Mathematics and Mechanics (English Edition), 2018, 39(5): 639-652. (in English with Chinese abstract)

      [26] 羅坤,陳松,蔡丹云,等. 氣固兩相圓柱繞流近場(chǎng)特性的實(shí)驗(yàn)研究[J]. 中國(guó)電機(jī)工程學(xué)報(bào),2006,26(24):116-120. Luo Kun, Chen Song, Cai Danyun, et al. Experimental study on the near field characteristics of gas-solid two- phase cylinder flow around[J]. Proceedings of the CSEE, 2006, 26(24): 116-120. (in Chinese with English abstract)

      [27] 劉周,楊云軍,周偉江,等. 基于RANS-LES混合方法的翼型大迎角非定常分離流動(dòng)研究[J]. 航空學(xué)報(bào),2014,35(2):372-380. Liu Zhou, Yang Yunjun, Zhou Weijiang, et al. Unsteady separation flow of airfoil at high Angle of attack based on RANS-LES hybrid method[J]. Journal of Aviation, 2014, 35(2): 372-380. (in Chinese with English abstract)

      [28] Deck S. Detached-eddy simulation of transonic buffet over a supercritical airfoil, AIAA-2004-5378[R]. Reston: AIAA, 2004.

      [29] 嬌梅燕,趙琳娜,盧晶晶,等. 沙塵天氣定量分級(jí)方法研究與應(yīng)用[J]. 氣候與環(huán)境研究,2007,12(3):350-357. Jiao Meiyan, Zhao Linna, Lu Jinjin, et al. Research and application of quantitative grading method for sand and dust weather[J]. Climate and Environmental Studies, 2007, 12(3): 350-357. (in Chinese with English abstract)

      [30] 金朝暉. 環(huán)境監(jiān)測(cè)[M]. 天津:天津大學(xué)出版社,2007.

      [31] Li Deshun, Gong Yuxaing, Li Rennian, et al. Numerical simulation of sand erosion behavior of wind turbine blade[R]. Mechanics and Mechatronics (ICMM2015). 2015-10-28: http: //www. world scientific. com. [2019-03-07]

      [32] 李德順,王成澤,李銀然,等. 風(fēng)沙環(huán)境下風(fēng)力機(jī)葉片沖蝕磨損的數(shù)值研究[J]. 太陽(yáng)能學(xué)報(bào),2018,39(3):627-632. Li Deshun, Wang Chengze, Li Yinran, et al. Numerical study on erosion wear of wind turbine blades under wind-sand environment[J]. Acta Solar, 2018, 39(3): 627-632 (in Chinese with English abstract)

      [33] 李仁年,趙振希,李德順,等. 風(fēng)沙流動(dòng)對(duì)風(fēng)力機(jī)翼型繞流及其氣動(dòng)性能的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018. 7,34(14):205-211,303. Li Rennian, Zhao Zhenxi, Li Deshun, et al. The influence of sand-blown flow on wind-induced airfoil flow and its aerodynamic performance[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(14): 205-211, 303. (in Chinese with English abstract)

      [34] 龔玉祥. 風(fēng)沙環(huán)境下風(fēng)力機(jī)翼型的磨損及其St數(shù)臨界范圍研究[D]. 甘肅:蘭州理工大學(xué),2015. Gong Yuxiang. Study on Erosion of Wind Turbine Airfoil and its Stokes Critical Range Under Wind-Sand Environment[D]. Gansu: Lanzhou University of Technology, 2015. (in Chinese with English abstract)

      Effects of particle shape on erosion characteristic and critical particlenumber of wind turbine airfoil

      Li Deshun1,2,3, Wang Ya’e1, Guo Xingduo1, Li Yinran1,2,3, Li Rennian1,2,3

      (1.,,730050,;2.,730050,;3.,730050,)

      Wind power generation is one of the most development prospect power generation modes. How to increase power generation has become the focus of attention. As an important device for wind power generation, wind turbine's operating environment will directly affect the amount of power generation. When wind turbine runs in a wind-sand environment, the sand particles collide with the blades, causing erosion on the surface of the blade, affecting the aerodynamic performance of wind turbine and reducing the power generation efficiency of wind turbine. Therefore, it is necessary to study the erosion characteristics of wind turbine airfoil in wind-sand environment. When studying the erosion characteristics of wind turbine airfoil, sand is usually simplified into spherical particles, ignoring the influence of particle shape. Relevant researches show that particle shape has a certain influence on the erosion rate of materials, and the multi-angular particles have stronger erosion damage ability to materials than the spherical smooth particles. Therefore, this paper mainly studies the influence of particle shape on the airfoil erosion characteristic and the range of critical particlenumber when the airfoil begain to erosion, and the flow field of NACA 0012 straight blade in wind-sand environment is simulated by SSTmodel and discrete phase model (DPM). Four types of particle with particle shape factors of 0.671, 0.75, 0.846 and 1 are defined by shape factor. The effects of particles with four different shapes on erosion characteristics and aerodynamic performance of wind turbine airfoil are studied, and the influence of the particle shape on the range of criticalnumber at the beginning of erosion is also researched. The results show that the maximum erosion rate of airfoil varies with particle volume equivalent diameter in the same way for four particle shapes. The maximum erosion rate of airfoil increases with the increases of particle volume equivalent diameter, but decreases slightly when particle volume equivalent diameter is 80m. The erosion degree of airfoil surface for four particle shapes is different, when the volume equivalent diameter of particles is the same, the erosion effect of spherical particles on airfoil is less than that of aspherical particles. The particle shape has little effect on the erosion zone of airfoil surface, the increases of the particle volume equivalent diameter, the erosion zone of airfoil surface gradually expands from the vicinity of airfoil leading edge along airfoil pressure surface toward airfoil trailing edge, and the most severe erosion area on the airfoil surface appears near the leading edge. When the particle diameter is 20m, compared with the non-spherical particles whose shape factor is less than 1, the initial erosion zone of the spherical particles on the airfoil surface moves slightly to the suction surface. Particle shape has little effect on lift coefficient and lift-to-drag ratio of airfoil, which is almost negligible. The particle shape has some influence on the range of critical particlenumber that airfoil begain to erosion. Thenumber of the airfoil when it begins to erosion is different for different particle shapes. The smaller the particle shape factor is, the larger the critical particlenumber of airfoil begains to erosion is. Although the particle shape has a certain influence on the critical particlenumber of airfoil erosion, there is still a critical particlenumber which can be used to determine whether the airfoil surface is eroded. The research results can provide guidance for wind turbine blade anti-sand erosion design.

      wind turbines; erosion; airfoil; particle shape;number

      2019-03-27

      2019-04-18

      國(guó)家自然科學(xué)基金(51766009,51566011);國(guó)家基礎(chǔ)研究計(jì)劃(973計(jì)劃)(2014CB046201)

      李德順,博士,副教授,主要從事風(fēng)力機(jī)空氣動(dòng)力學(xué)、氣固兩相流及其磨損方向的研究。Email:lideshun_8510@sina.com

      10.11975/j.issn.1002-6819.2019.12.027

      TK83

      A

      1002-6819(2019)-12-0224-08

      李德順,王亞娥,郭興鐸,李銀然,李仁年. 沙粒形狀對(duì)風(fēng)力機(jī)翼型磨損特性及臨界顆粒數(shù)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(12):224-231. doi:10.11975/j.issn.1002-6819.2019.12.027 http://www.tcsae.org

      Li Deshun, Wang Ya'e, Guo Xingduo, Li Yinran, Li Rennian. Effects of particle shape on erosion characteristics and critical particlenumber of wind turbine airfoil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(12): 224-231. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.12.027 http://www.tcsae.org

      猜你喜歡
      磨損率風(fēng)力機(jī)當(dāng)量
      Si3N4/PTFE復(fù)合材料轉(zhuǎn)移膜形貌與磨損率定量分析
      結(jié)構(gòu)參數(shù)對(duì)水力旋流器壁面磨損的影響研究
      煤炭工程(2024年1期)2024-02-22 11:17:46
      空間組合彎頭氣固兩相流動(dòng)磨損特性的數(shù)值模擬
      P2離合器摩擦片磨損率臺(tái)架測(cè)試方法
      基于UIOs的風(fēng)力機(jī)傳動(dòng)系統(tǒng)多故障診斷
      黃河之聲(2016年24期)2016-02-03 09:01:52
      大型風(fēng)力機(jī)整機(jī)氣動(dòng)彈性響應(yīng)計(jì)算
      小型風(fēng)力機(jī)葉片快速建模方法
      超壓測(cè)試方法對(duì)炸藥TNT當(dāng)量計(jì)算結(jié)果的影響
      環(huán)空附加當(dāng)量循環(huán)密度的計(jì)算方法
      斷塊油氣田(2014年5期)2014-03-11 15:33:50
      上高县| 重庆市| 临江市| 新建县| 津南区| 辽源市| 介休市| 孝感市| 信阳市| 安图县| 通海县| 清丰县| 阜平县| 梓潼县| 石嘴山市| 延庆县| 崇义县| 巴东县| 中江县| 舞钢市| 张家界市| 罗山县| 涞水县| 福泉市| 泽普县| 滁州市| 武夷山市| 枞阳县| 明水县| 巴彦淖尔市| 辽源市| 石棉县| 临澧县| 松阳县| 磴口县| 牡丹江市| 宜州市| 江陵县| 赣榆县| 连南| 安化县|