徐佳佳,廣敏,史書林,郜紅建*
茶樹根系跨膜吸收氟的生理與分子機(jī)制
徐佳佳1,2,廣敏2,史書林2,郜紅建1,2*
1. 茶樹生物學(xué)與資源利用省部共建國家重點(diǎn)實(shí)驗(yàn)室,安徽農(nóng)業(yè)大學(xué)茶與食品科技學(xué)院,安徽 合肥 230036;2. 農(nóng)田生態(tài)保育與污染防控安徽省重點(diǎn)實(shí)驗(yàn)室,安徽農(nóng)業(yè)大學(xué)資源與環(huán)境學(xué)院,安徽 合肥 230036
茶樹[(L.) O. Kuntze]是高富集氟的植物,氟在葉片中被大量累積。飲茶是人們攝取氟的重要途徑,氟的過量攝入會影響人體健康。茶樹主要通過根系從土壤中吸收富集氟,但是根系跨膜吸收氟的生理與分子機(jī)制尚不清楚。本文綜述了茶樹根系吸收氟的主動和被動途徑,總結(jié)根系H+-ATPase和Ca2+-ATPase介導(dǎo)氟的跨膜主動吸收過程與分子機(jī)制;剖析離子通道和Al-F絡(luò)合在根系被動吸收氟過程中的作用及微觀過程;分析影響根系吸收富集氟的主要因素及其調(diào)控措施。提出通過研究茶樹根系氟跨膜吸收相關(guān)轉(zhuǎn)運(yùn)蛋白及其相關(guān)基因的克隆、表達(dá)和功能驗(yàn)證,以揭示跨膜吸收氟的分子機(jī)制;進(jìn)而研究調(diào)控根系對氟的選擇吸收,以保障茶葉質(zhì)量安全和飲茶健康。
茶樹根系;氟;跨膜吸收;生理與分子機(jī)制;影響因素
氟對人體骨骼和牙齒的生長發(fā)育至關(guān)重要[1],適量的氟可以促進(jìn)骨骼和牙齒的鈣化,增強(qiáng)骨骼強(qiáng)度,但攝入過多會引起氟斑牙、氟骨病等氟中毒癥狀[2]。氟雖然不是植物的必需元素[3],但是,因茶樹具有高量吸收、轉(zhuǎn)運(yùn)和積累氟的特殊機(jī)制和能力,可被茶樹大量吸收[4]。葉片中氟的積累量占茶樹全株的98%,尤其是成熟葉和老葉,其含量分別達(dá)到500?mg·kg-1和2?000?mg·kg-1以上[5-6]。在沒有大氣氟污染的情況下,根系是茶樹吸收、轉(zhuǎn)運(yùn)氟的主要器官[7],因此,減少根系對氟的吸收,是降低葉片累積氟的重要途徑。已有的研究表明,茶樹根系可以通過主動和被動兩種途徑吸收富集氟[8-9],其中包括H+-ATPase[10]/Ca2+-ATPase[11]參與的跨膜吸收,Al-F絡(luò)合吸收[12-13],離子通道[4]參與吸收等。這些吸收過程與根細(xì)胞膜上的轉(zhuǎn)運(yùn)/通道蛋白密切相關(guān),但其生理與分子作用機(jī)制尚不明確。本文著重闡述轉(zhuǎn)運(yùn)/通道蛋白介導(dǎo)的茶樹根系吸收氟的主動和被動過程及生理與分子機(jī)制,為調(diào)控茶樹對氟的吸收提供理論依據(jù)。
茶樹能從土壤中吸收并在體內(nèi)累積氟[14],土壤中氟的形態(tài)及其有效性是影響茶樹根系吸收氟的主要因素[15]。土壤氟主要以難溶態(tài)、交換態(tài)和水溶態(tài)等形態(tài)存在[7],難溶態(tài)和可交換態(tài)氟很難被茶樹吸收,水溶態(tài)是茶樹吸收富集的主要氟形態(tài)[16],且是土壤溶液中活性最高的氟形態(tài),并以F-、HF2-、H2F3-、H3F4-、AlF63-、FeF63-等離子或絡(luò)合物形式存在[17]。研究表明,Al-F絡(luò)合物比F-更容易被茶樹根系吸收和轉(zhuǎn)運(yùn)到新梢[6,18],土壤中的Al-F絡(luò)合物主要以AlF2+、AlF2+、AlF3形式等被根系吸收,并以AlF2+、AlF2+、AlF4-等形態(tài)被木質(zhì)部運(yùn)輸[13,19]。Ruan等[19]認(rèn)為,F(xiàn)-也易被茶樹根系吸收,最終大部分被運(yùn)輸?shù)饺~片,并以F-形式被積累[20]。張顯晨等[21]發(fā)現(xiàn),低濃度Al3+(1.05~5.26?mmol·L-1)條件下,氟主要以F-形態(tài)被茶樹根系吸收,并促進(jìn)氟在根系的富集;高濃度Al3+(10.52~31.57?mmol·L-1)條件下,氟主要以Al-F絡(luò)合態(tài)被吸收,并抑制了氟的富集。
外界氟濃度決定了其進(jìn)入根細(xì)胞的途徑。當(dāng)外界低氟質(zhì)量濃度(0.1~10?mg·L-1),茶樹根系主動吸收氟,吸氟過程不僅符合Michaelis-Menten動力學(xué)模型,而且依賴能量,高氟質(zhì)量濃度范圍內(nèi)(50~100?mg·L-1),根系被動吸收氟,并隨著氟濃度升高呈線性增長[4,9]。彭傳燚等[9]認(rèn)為,主動吸收是茶樹根系攝取氟的主要途徑。
2.2.1 H+-ATPase介導(dǎo)氟的跨膜主動吸收
茶樹根系吸收氟是一個(gè)與跨質(zhì)膜電化學(xué)勢梯度、代謝能量和載體蛋白密切相關(guān)的主動運(yùn)輸過程[10]。離子的跨膜吸收和主動運(yùn)輸主要依賴質(zhì)膜H+-ATPase水解ATP在細(xì)胞膜內(nèi)外兩側(cè)建立起來的ΔH+(H+濃度梯度)和電化學(xué)勢[22],ΔH+的增加,可以刺激植物吸收營養(yǎng)物質(zhì)[23]。排出的H+導(dǎo)致質(zhì)子梯度并產(chǎn)生Δp(質(zhì)子驅(qū)動力),激發(fā)根細(xì)胞質(zhì)膜中的質(zhì)子偶聯(lián)轉(zhuǎn)運(yùn)蛋白吸收陰離子,如NO3-(NRT1和NRT2轉(zhuǎn)運(yùn)蛋白),PO43-(PHT1轉(zhuǎn)運(yùn)蛋白),SO42-(SULTR1轉(zhuǎn)運(yùn)蛋白),Cl-等[23-25]。被激活的質(zhì)膜H+-ATPase會增強(qiáng)膜外的電化學(xué)勢,驅(qū)使離子通過次級運(yùn)輸系統(tǒng)進(jìn)入細(xì)胞以提高植物對養(yǎng)分的吸收[26]。Zhang等[27]認(rèn)為,Al3+提高茶樹根系H+-ATPase活性,增加H+的跨膜外排,進(jìn)而促進(jìn)了茶樹對氟的吸收。有研究表明,H+-ATPase的水解能增加活性H+轉(zhuǎn)運(yùn)[28]。而如果H+-ATPase的水解受到抑制,會減少H+的產(chǎn)生,主動吸收所需的ΔH+合成受阻,從而降低根系質(zhì)膜內(nèi)外的Δp,使茶樹根部對氟的吸收和累積不斷減少[10]。因此,H+-ATPase水解和活性的增加是茶樹根系對F-的跨膜主動吸收的驅(qū)動力。
2.2.2 Ca2+-ATPase介導(dǎo)氟的跨膜主動吸收
茶樹對氟的吸收與質(zhì)膜Ca2+泵和鈣轉(zhuǎn)運(yùn)ATPase有關(guān),尤其是Ca2+-ATPase(ACAs),同類型ACA9可能參與茶樹氟吸收或氟脅迫的響應(yīng)[11]。Ca2+-ATPase催化質(zhì)膜內(nèi)側(cè)ATP水解,釋放能量,驅(qū)動Ca2+泵出細(xì)胞質(zhì)。質(zhì)膜H+-ATPase產(chǎn)生的H+梯度,也可以促進(jìn)Ca2+泵活動,植物體內(nèi)Ca2+信號的傳導(dǎo)可調(diào)控應(yīng)激條件下離子跨質(zhì)膜的選擇吸收[29]。如Ca2+信號調(diào)控NFA(尼氟酸)對玉米根莖中陰離子(NO3-、Cl-和I-)的選擇性吸收[30]。Al3+刺激Ca2+跨膜轉(zhuǎn)運(yùn)、誘導(dǎo)茶樹根成熟區(qū)Ca2+信號,在Al3+處理下CaM(鈣調(diào)蛋白)促進(jìn)氟的吸收[31]。研究表明,茶樹根系質(zhì)膜Ca2+-ATPase活性被抑制時(shí),引起細(xì)胞內(nèi)Ca2+的外排,產(chǎn)生Ca2+信號,激活CaM,從而促進(jìn)茶樹對氟的吸收[27]。另有研究認(rèn)為,氟激發(fā)了RLK(類受體蛋白激酶)基因的表達(dá)(RLKs是由植物基因組編碼的信號轉(zhuǎn)導(dǎo)基因的超家族),進(jìn)而激活了Ca2+-ATPase活性,活化的Ca2+-ATPase可作為茶樹攝取氟的載體促進(jìn)氟的吸收和轉(zhuǎn)運(yùn)(圖1)[11]。
注:RLK在感知氟信號后激活Ca2+-ATPase,Ca2+-ATPase幫助氟進(jìn)入細(xì)胞
Note: The RLKs activate Ca2+-ATPase after perceiving F signals, and Ca2+-ATPase helps F enter into cells
圖1. 氟吸收的假設(shè)示意圖
Fig. 1 Hypothetical schematic diagram of fluorine uptake
2.3.1離子通道
離子穿過通道是沿跨膜濃度梯度或電位梯度擴(kuò)散的順勢流動,與利用載體蛋白進(jìn)行協(xié)助擴(kuò)散相似,但區(qū)別于逆電化學(xué)勢梯度的主動運(yùn)輸[32]。在分子水平上,協(xié)助擴(kuò)散由單向轉(zhuǎn)運(yùn)體或通道介導(dǎo)[25]。有研究認(rèn)為,茶樹跨膜吸收氟涉及水通道和陽離子通道,但都不是主要途徑,陰離子通道才是重要途徑之一[4,33]。植物中氟的跨膜轉(zhuǎn)運(yùn)位點(diǎn)可能與轉(zhuǎn)運(yùn)Cl-的通道有關(guān)[34],Cl-通道是陰離子通道中的主要成員之一,可以介導(dǎo)Cl-、NO3-等陰離子的跨膜轉(zhuǎn)運(yùn)[35-37]。保衛(wèi)細(xì)胞中的R型陰離子通道可滲透多種陰離子,且遵循SCN->NO3->Br->F-> I->Cl-的滲透順序;S型陰離子通道除了SCN-不能被滲透,其他均可被滲透[38]。
許多單細(xì)胞生物和高等植物在其細(xì)胞膜中用氟輸出蛋白來保持細(xì)胞質(zhì)低氟濃度?,F(xiàn)已知兩個(gè)獨(dú)立的氟輸出蛋白家族,CLCF(Cl-通道F-/H+反向轉(zhuǎn)運(yùn)蛋白)和Fluc(小膜蛋白家族,又被稱為crcB)[39]。前者是CLC超家族陰離子轉(zhuǎn)運(yùn)蛋白的一個(gè)亞類,它對F-/Cl-的選擇性有特別強(qiáng)的電壓依賴性,并表現(xiàn)出F-比Cl-較高的選擇性,能從細(xì)胞質(zhì)中逆轉(zhuǎn)運(yùn)F-[40-41];后者傳輸F-是通過跨膜通道進(jìn)行熱力學(xué)被動電擴(kuò)散[39]。研究發(fā)現(xiàn),氟輸出蛋白家族的F-通道是“單管”轉(zhuǎn)運(yùn)蛋白,含有兩個(gè)孔,其中孔Ⅱ在F-轉(zhuǎn)運(yùn)中起作用[42]。
2.3.2 Al-F絡(luò)合吸收機(jī)制
鋁是植物組織中氟的最強(qiáng)配體[43]。土壤中水溶性鋁與水溶性氟含量呈顯著正相關(guān),表明土壤中的鋁和氟能夠以絡(luò)合形態(tài)合作進(jìn)入茶樹體內(nèi)[44]。研究表明,AlFn3-n絡(luò)合體是茶樹吸收氟的載體,而非運(yùn)輸形態(tài)[45]。Yang等[43]研究發(fā)現(xiàn),茶樹根細(xì)胞氟信號在NaF處理下比NaF和AlCl3共同處理強(qiáng)烈,說明氟鋁溶液中的氟形態(tài)可能以AlF2+,AlF2+和AlF30等復(fù)合物存在,表明氟主要是以Al-F絡(luò)合物被根系吸收。張顯晨等[21]認(rèn)為,高濃度Al3+存在時(shí),茶樹根系吸收主要氟形態(tài)是Al-F絡(luò)合態(tài)。前人研究也證明了土壤中能形成Al-F配合物,更容易被茶樹吸收和運(yùn)輸,并且AlF3促進(jìn)了更多的氟吸收和向葉片的轉(zhuǎn)運(yùn)[45-46]。我們推測茶樹根系吸收Al-F絡(luò)合物可能需要載體蛋白介導(dǎo),與植物吸收Fe3+需要YS(Yellow Stripe)轉(zhuǎn)運(yùn)體介導(dǎo)的螯合機(jī)制可能相似[47]。
溫度會影響根系對氟的攝取。當(dāng)外界溫度低于5℃,茶樹對氟的吸收速率很低;當(dāng)溫度升到15℃,吸收速率增加約1倍;當(dāng)溫度達(dá)到35℃,吸收速率顯著提高,為5℃時(shí)的3倍左右[48]。Zhang等[4]研究表明,茶樹暴露于低溫(5℃)時(shí)根系對氟的攝取受到強(qiáng)烈抑制,高溫(35℃)時(shí)根系對氟的吸收量顯著提高。王玉梅等[10]認(rèn)為,低溫(4℃)可能抑制了茶樹根系質(zhì)膜H+-ATPase活性,阻礙ATP的合成,減少水解產(chǎn)生的H+,降低質(zhì)膜內(nèi)外的質(zhì)子驅(qū)動力,從而削弱茶樹根系吸收氟的過程。
pH被認(rèn)為是影響茶樹根系吸收氟的主要因素,因?yàn)閜H顯著影響土壤的氟形態(tài),其中對水溶態(tài)氟和可交換態(tài)氟的影響最大[49]。謝忠雷等[16]認(rèn)為,茶樹對土壤中氟的吸收量與pH呈顯著負(fù)相關(guān),酸性土壤中的氟更易被吸收。Ruan等[50]研究表明,當(dāng)培養(yǎng)溶液pH值在4.0~6.0范圍內(nèi),茶樹根系氟吸收量隨著pH的升高先增加后減少,在pH 5.5時(shí)達(dá)到最大值,pH 4.0時(shí)較低。Zhang等[4]認(rèn)為,在外界低氟濃度(18?μmol·L-1)下pH影響凈F-吸收,pH 2.0和pH 5.0時(shí)的凈F-吸收速率顯著大于pH 4.0和pH 6.0,而更高氟濃度(43、150?μmol·L-1)下凈F-吸收不受pH的影響。
實(shí)際上,促進(jìn)離子吸收的轉(zhuǎn)運(yùn)蛋白很少是特異性的,相同價(jià)態(tài)的離子之間競爭進(jìn)入通道或結(jié)合載體蛋白是常見的[25]。王玉梅等[10]研究表明,氯降低茶樹對氟的吸收,可能與Cl-與F-競爭同一載體的吸附位點(diǎn)有關(guān)。這與Calvo-Polanco等[51]觀點(diǎn)一致,他認(rèn)為Cl-可能對F-的吸收轉(zhuǎn)運(yùn)具有競爭性抑制作用,同時(shí)會干擾Cl-的膜轉(zhuǎn)運(yùn)。Ruan等[19]也認(rèn)為,氟的吸收受氯的負(fù)面影響。除陰離子的影響外,陽離子也影響根系對氟的吸收,其中Al3+顯著影響茶樹中氟的吸收和轉(zhuǎn)運(yùn),鋁處理(≤0.5?mmol·L-1AlCl3)增加了根系中氟的含量,但降低了葉片中氟的含量[43]。Ca2+降低茶樹的氟吸收及葉片氟含量,不僅僅是由于溶液和土壤中的CaF2沉淀或根中Ca-F絡(luò)合物,更可能是因?yàn)镃a2+改變了茶樹根系細(xì)胞壁結(jié)構(gòu)和細(xì)胞膜滲透性,以及土壤溶液中氟形態(tài)及其數(shù)量,進(jìn)而影響氟進(jìn)入茶樹體內(nèi)[13,50,52]。
陰離子通道代謝抑制A-9-C(劑蒽-9-羧酸),CCCP(羰基氰化物間氯苯腙)強(qiáng)烈抑制茶樹對F-的吸收,而DIDS(二氫-4,4'-二異硫氰基芪-2,2'-二磺酸)對F-的吸收沒有顯著影響[4]。但Zhang等[27]研究發(fā)現(xiàn),DIDS顯著減弱了Al3+促進(jìn)茶樹對氟的積累,并且Ca2+和CaM也顯著降低。另外,Ca2+-CaM和質(zhì)膜電位去極化參與了NPPB[5-硝基-2-(3-苯基丙基氨基)苯甲酸]抑制茶樹氟的積累[53]。這些結(jié)果表明離子通道抑制劑可以通過關(guān)閉陰離子通道而降低茶樹對氟的吸收和積累。
目前,有關(guān)報(bào)道茶樹降氟措施的研究多側(cè)重于栽培、加工、施肥等方面,而從分子機(jī)制方面研究降低茶樹根系吸收氟的甚少。本文綜述了茶樹根系吸收氟的4種可能途徑,即H+-ATPase或Ca2+-ATPase介導(dǎo)的跨膜主動吸收,離子通道蛋白和Al-F結(jié)合共轉(zhuǎn)運(yùn)的被動吸收,但其吸收過程和分子機(jī)制尚不清楚。
Ca2+-ATPase介導(dǎo)茶樹吸收氟的RLK基因已被報(bào)道[11],一些質(zhì)膜H+-ATPase基因也已經(jīng)被鑒定與植物營養(yǎng)元素吸收有關(guān)。例如,玉米體內(nèi)與NO3-攝取有關(guān)的和基因[54],水稻中參與磷的獲取和轉(zhuǎn)運(yùn)的同種型基因[55]等。但是H+-ATPase介導(dǎo)的茶樹吸收氟的相關(guān)基因目前還沒有文獻(xiàn)報(bào)道。研究表明,氟會提高茶樹根系H+-ATPase活性[56],該酶活性的增加可能會促進(jìn)茶樹根系對氟的吸收,氟還可抑制玉米根系H+-ATPase[57]和酵母質(zhì)膜H+-ATPase[58]活性,而該酶活性的變化部分地由該酶基因的表達(dá)模式變化引起[59]。因此,利用分子生物學(xué)手段,研究茶樹跨膜吸收氟相關(guān)轉(zhuǎn)運(yùn)蛋白的作用及其基因的克隆和表達(dá)分析,將主效基因轉(zhuǎn)化到煙草/擬南芥中進(jìn)行功能驗(yàn)證,以揭示茶樹跨膜吸收氟的分子機(jī)制,調(diào)控茶樹根系對氟的選擇吸收。此外,突破轉(zhuǎn)基因茶樹品種的選育及表達(dá)體系構(gòu)建的障礙,為研究茶樹根系跨膜吸收氟的分子機(jī)制提供試驗(yàn)材料,將是今后努力的重要方向。
按照農(nóng)業(yè)部制定的行業(yè)標(biāo)準(zhǔn)(NY 659—2003),茶葉氟含量(F-)不能超過200?mg·kg-1。茶樹新梢氟含量在100~300?mg·kg-1[60],成熟葉和老葉已經(jīng)嚴(yán)重超標(biāo)[5-6]。減少茶樹根系對土壤氟的吸收富集是調(diào)控茶葉氟含量的重要措施,已有的研究多采用施肥,調(diào)節(jié)pH,添加生石灰和生物質(zhì)炭改良劑等措施降低土壤氟的生物有效性,減少茶樹對土壤氟的吸收富集[50,61-62]。但是,這些調(diào)控措施是否會影響茶樹對其他營養(yǎng)元素的吸收,是否會影響茶葉中氨基酸、咖啡堿等次生代謝物質(zhì)的含量及茶葉品質(zhì),目前還不清楚,值得進(jìn)一步研究。此外,選育低氟茶樹品種也是生產(chǎn)低氟茶葉產(chǎn)品的有效途徑。
[1] Dey S, Giri B. Fluoride fact on human health and health problems: A review [J]. Medical & Clinical Reviews, 2016, 2(1): 2. DOI: 10.21767/2471-299X.1000011.
[2] 張楠, 張凌云. 茶葉中氟的安全性與檢測方法研究進(jìn)展[J]. 茶葉, 2009, 35(1): 3-6.
[3] Weinstein L H, Davison A. Fluorides in the environment: effects on plants and animals [M]. Oxfordshire: CABI, 2004.
[4] Zhang L, Li Q, Ma L, et al. Characterization of fluoride uptake by roots of tea plants (, (L.) O. Kuntze) [J]. Plant & Soil, 2013, 366(1/2): 659-669.
[5] Lu Y, Guo W F, Yang X Q. Fluoride content in tea and its relationship with tea quality [J]. Journal of Agricultural and Food Chemistry, 2004, 52(14): 4472-4476.
[6] Shu W S, Zhang Z Q, Lan C Y, et al. Fluoride and aluminium concentrations of tea plants and tea products from Sichuan Province, PR China [J]. Chemosphere, 2003, 52(9): 1475-1482.
[7] 董青華, 孫威江, 楊賢強(qiáng). 茶樹吸收氟的根際效應(yīng)及富集機(jī)理研究進(jìn)展[J]. 亞熱帶農(nóng)業(yè)研究, 2009, 5(3): 162-166.
[8] 蔡薈梅, 彭傳燚, 李成林, 等. 三個(gè)品種茶樹氟富集特性及其在亞細(xì)胞中的分布[J]. 中國農(nóng)業(yè)科學(xué), 2013, 46(8): 1668-1675.
[9] 彭傳燚, 陳靜, 蔡薈梅, 等. 茶樹對氟的吸收動力學(xué)特性研究[J]. 熱帶作物學(xué)報(bào), 2013, 34(3): 495-500.
[10] 王玉梅, 柴如山, 郜紅建. 茶樹根系跨膜主動吸收氟的表觀特征[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2016, 35(8): 1473-1479.
[11] Li Q S, Lin X M, Qiao R Y, et al. Effect of fluoride treatment on gene expression in tea plant () [J]. Scientific Reports, 2017, 7(1): 9847. DOI: https://www.nature.com/articles/s41598-017-08587-6.
[12] Nagata T, Hayatsu M, Kosuge N. Identification of aluminium forms in tea leaves by27Al NMR [J]. Phytochemistry, 1992, 31(4): 1215-1218.
[13] Nagata T, Hayatsu M, Kosuge N. Aluminium kinetics in the tea plant using27Al and19F NMR [J]. Phytochemistry, 1993, 32(4): 771-775.
[14] Cao J, Luo S F, Liu J W, et al. Safety evaluation on fluoride content in black tea [J]. Food Chemistry, 2004, 88(2): 233-236.
[15] Yi X Y, Qiao S, Ma L F, et al. Soil fluoride fractions and their bioavailability to tea plants (L.) [J]. Environmental Geochemistry & Health, 2017, 39(5): 1005-1016.
[16] 謝忠雷, 陳卓, 孫文田, 等. 不同茶園茶葉氟含量及土壤氟的形態(tài)分布[J]. 吉林大學(xué)學(xué)報(bào)(地球科學(xué)版), 2008, 38(2): 293-298.
[17] 謝正苗, 吳衛(wèi)紅. 環(huán)境中氟化物的遷移和轉(zhuǎn)化及其生態(tài)效應(yīng)[J]. 環(huán)境工程學(xué)報(bào), 1999(2): 40-53.
[18] Ruan J Y, Wong M H. Accumulation of fluoride and aluminium related to different varieties of tea plant [J]. Environmental Geochemistry and Health, 2001, 23(1): 53-63.
[19] Ruan J T, Ma L, Shi Y, et al. Uptake of fluoride by tea plant (L.) and the impact of aluminium [J]. Journal of the Science of Food & Agriculture, 2003, 83(13): 1342-1348.
[20] Horie H, Nagata T, Mukai T, et al. Determination of the chemical form of fluorine in tea infusions by19F-NMR [J]. Bioscience Biotechnology and Biochemistry, 1992, 56(9): 1474-1475.
[21] 張顯晨, 郜紅建, 張正竹, 等. 鋁對氟在茶樹體內(nèi)吸收與分配的影響[J]. 食品科學(xué), 2013, 34(5): 147-150.
[22] Palmgren M, Harper J. Pumping with plant P-type ATPases [J]. Journal of Experimental Botany, 1999, 50: 883-893.
[23] Sperandio M V L, Santos L A, Bucher C A, et al. Isoforms of plasma membrane H+-ATPase in rice root and shoot are differentially induced by starvation and resupply of NO3?, or NH4+[J]. Plant Science, 2011, 180(2): 251-258.
[24] Teakle N L, Tyerman S D. Mechanisms of Cl-transport contributing to salt tolerance [J]. Plant Cell & Environment, 2010, 33(4): 566-589.
[25] White P J. Ion uptake mechanisms of individual cells and roots: short-distance transport [J]. Marschners Mineral Nutrition of Higher Plants, 2012, 1(5): 7-47.
[26] Shen H , Chen J , Wang Z , et al. Root plasma membrane H+-ATPase is involved in the adaptation of soybean to phosphorus starvation [J]. Journal of Experimental Botany, 2006, 57(6): 1353-1362.
[27] Zhang X C, Gao H J, Yang T Y, et al. Al3+-promoted fluoride accumulation in tea plants () was inhibited by an anion channel inhibitor DIDS [J]. Journal of the Science of Food & Agriculture, 2016, 96(12): 4224-4230.
[28] Pedchenko V K, Nasirova G F, Palladina T A. Lysophosphatidylcholine specifically stimulates plasma membrane H+-ATPase from corn roots [J]. FEBS Letters, 1990, 275(1/2): 205-208.
[29] Pottosin I, Velarde-Buendía A M, Bose J, et al. Polyamines cause plasma membrane depolarization, activate Ca2+-, and modulate H+-ATPase pump activity in pea roots [J]. Journal of Experimental Botany, 2014, 65(9): 2463-2472.
[30] Roberts S K. Plasma membrane anion channels in higher plants and their putative functions in roots [J]. New Phytologist, 2006, 169(4): 647-666.
[31] Zhang X C, Gao H J, Wu H H, et al. Ca2+and CaM are involved in Al3+pretreatment-promoted fluoride accumulation in tea plants (L.) [J]. Plant Physiology and Biochemistry, 2015, 96: 288-295.
[32] 何龍飛, 劉友良, 沈振國, 等. 植物離子通道特征、功能、調(diào)節(jié)與分子生物學(xué)[J]. 植物學(xué)報(bào), 1999, 16(5): 517-525.
[33] Zhang X C, Gao H J, Zhang Z Z, et al. Influences of different ion channel inhibitors on the absorption of fluoride in tea plants (L.) [J]. Plant Growth Regulation, 2013, 69(1): 99-106.
[34] Chapman B E, Kuchel P W. Fluoride transmembrane exchange in human erythrocytes measured with19F NMR magnetization transfer [J]. European Biophysics Journal, 1990, 19(1): 41-45.
[35] Chen Z, Beck T L. Free energies of ion binding in the bacterial CLC-ec1 chloride transporter with implications for the transport mechanism and selectivity [J]. Journal of Physical Chemistry B, 2016, 120(12): 3129-3139.
[36] Tyerman S D. Anion channels in plants [J]. Annual Review of Plant Biology, 1992, 43(1): 351-373.
[37] 戴松香, 陳少良. 植物根細(xì)胞離子通道研究進(jìn)展[J]. 北京林業(yè)大學(xué)學(xué)報(bào), 2005, 27(3): 98-103.
[38] White P J, Broadley M R. Chloride in soils and its uptake and movement within the plant: a review [J]. Annals of Botany, 2001, 88(6): 967-988.
[39] Stockbridge R B, Robertson J L, Ludmila K P, et al. A family of fluoride-specific ion channels with dual-topology architecture [J]. eLife, 2013, 2: e01084. DOI: 10.7554/eLife.01084.
[40] Stockbridge R B, Lim H H, Otten R, et al. Fluoride resistance and transport by riboswitch-controlled CLC antiporters [J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(38): 15289-15294.
[41] Brammer A E, Stockbridge R B, Miller C. F-/Cl-selectivity in CLCF-type F-/H+antiporters [J]. The Journal of General Physiology, 2014, 144(2): 129-136.
[42] Berbasova T, Nallur S, Sells T, et al. Fluoride export (FEX) proteins from fungi, plants and animals are ‘single barreled’ channels containing one functional and one vestigial ion pore [J]. Plos One, 2017, 12(5): e0177096. https://doi.org/10.1371/journal.pone.0177096.
[43] Yang Y, Liu Y, Huang C F, et al. Aluminium alleviates fluoride toxicity in tea () [J]. Plant & Soil, 2016, 402(1/2): 179-190.
[44] Xie Z L, Chen Z, et al. Distribution of aluminum and fluoride in tea plant and soil of tea garden in central and southwest China [J]. Chinese Geographical Science, 2007, 17(4): 376-382.
[45] Takmaz-Nisancioglu S, Davison A W. Effects of aluminium on fluoride uptake by plants [J]. New Phytologist, 1988, 109(2): 149-155.
[46] Xie Z M, Ye Z H, Wong M H. Distribution characteristics of fluoride and aluminum in soil profiles of an abandoned tea plantation and their uptake by six woody species [J]. Environment International, 2001, 26(5): 341-346.
[47] Kobayashi T, Nishizawa N K. Iron uptake, translocation, and regulation in higher plants [J]. Ann. rev. plant Biol, 2012, 63(1): 131-152.
[48] 張磊. 茶樹氟吸收動力學(xué)特性的研究[D]. 北京: 中國農(nóng)業(yè)科學(xué)院, 2008.
[49] 吳衛(wèi)紅, 謝正苗, 徐建明, 等. 不同土壤中氟賦存形態(tài)特征及其影響因素[J]. 環(huán)境科學(xué), 2002, 23(2): 104-108.
[50] Ruan J, Lifeng M A, Shi Y, et al. The impact of pH and calcium on the uptake of fluoride by tea plants (L.) [J]. Annals of Botany, 2004, 93(1): 97-105.
[51] Calvo-Polanco M, Zwiazek J J, Jones M D, et al. Effects of NaCl on responses of ectomycorrhizal black spruce (), white spruce () and jack pine () to fluoride [J]. Physiologia Plantarum, 2009, 135(1): 51-61.
[52] 馬立鋒, 阮建云, 石元值, 等. 鈣[Ca(NO3)2和CaO]對茶樹氟吸收的影響[J]. 土壤通報(bào), 2005, 36(1): 85-87.
[53] Zhang X C, Gao H J, Yang T Y, et al. Anion channel inhibitor NPPB-inhibited fluoride accumulation in tea plant () is related to the regulation of Ca2+, CaM and depolarization of plasma membrane potential [J]. International Journal of Molecular Sciences, 2016, 17(1): 57. https://doi.org/10.3390/ijms17010057.
[54] Santi S, Locci G, Monte R, et al. Induction of nitrate uptake in maize roots: expression of a putative high-affinity nitrate transporter and plasma membrane H+-ATPase isoforms [J]. Journal of Experimental Botany, 2003, 54(389): 1851-1864.
[55] Chang C, Hu Y, Sun S, et al. Proton pump OsA8 is linked to phosphorus uptake and translocation in rice [J]. Journal of Experimental Botany, 2009, 60(2): 557-565.
[56] 王玉梅. 茶樹根系跨膜吸收氟的微觀機(jī)制和轉(zhuǎn)錄組學(xué)特征[D]. 合肥: 安徽農(nóng)業(yè)大學(xué), 2017.
[57] Facanha A R, De Meis L. Inhibition of maize root H+-ATPase by fluoride and fluoroaluminate complexes [J]. Plant Physiology, 1995, 108(1): 241-246.
[58] Pedersen J T, Falhof J, Ekberg K, et al. Metal fluoride inhibition of a P-type H+Pump: Stabilization of the phosphoenzyme intermediate contributes to post-translational pump activation [J]. Journal of Biological Chemistry, 2015, 290(33): 20396-20406.
[59] Han N, Ji X L, Du Y P, et. al. Identification of a novel alternative splicing variant of VvPMA1 in grape root under salinity [J]. Frontiers in Plant Science, 2017, 8: 1-10.
[60] 劉艷麗, 金孝芳, 曹丹, 等. 茶樹鋁、氟富集研究進(jìn)展[J]. 植物科學(xué)學(xué)報(bào), 2016, 34(6): 972-977.
[61] 張永利, 王燁軍, 廖萬有, 等. 施氮對茶園土壤氟和茶樹新梢氟含量的影響[J]. 中國生態(tài)農(nóng)業(yè)學(xué)報(bào), 2015, 23(12): 1562-1570.
[62] Gao H J, Zhang Z Z, Wan X C. Influences of charcoal and bamboo charcoal amendment on soil-fluoride fractions and bioaccumulation of fluoride in tea plants [J]. Environmental Geochemistry and Health, 2012, 34(5): 551-562.
Physiological and Molecular Mechanisms of Transmembrane Fluoride Uptake by Tea Roots
XU Jiajia1,2, GUANG Min2, SHI Shulin2, GAO Hongjian1,2*
1. State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology of Anhui Agricultural University, Hefei 230036, China; 2. Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment of Anhui Agricultural University, Hefei 230036, China
Tea plant is a fluoride hyper-accumulator and most of fluoride is accumulated in the leaves. Drinking tea is an important way to absorb fluoride for human, which affects human health. Fluoride is usually absorbed from the soil by tea roots. However, the physiological and molecular mechanisms of transmembrane fluoride uptake by the tea roots were still poorly documented. Therefore, this paper reviewed the active and passive pathways of fluoride uptake by the roots of tea. The active transmembrane uptake fluoride process and molecular mechanism by H+-ATPase and Ca2+-ATPase, the role and microscopic process of ion channel and Al-F complexation by passive fluoride uptake were analyzed. The main influencing factors and control measures of fluoride accumulation in tea roots were also investigated. In order to reveal the molecular mechanism of transmembrane fluoride uptake, regulate the selective fluoride uptake in tea roots, and ensure the tea quality and safety for consumption, cloning, expression, and functional verification of transport proteins and genes related to fluoride transmembrane uptake in tea plant should receive more attention in future studies.
tea roots, fluoride, transmembrane uptake, physiological and molecular mechanism, influencing factor
S571.1
A
1000-369X(2019)04-365-07
2019-01-17
2019-03-22
安徽省自然科學(xué)基金(1808085QC56)
徐佳佳,女,碩士研究生,主要從事茶樹吸收氟元素的生理與生物學(xué)方面的研究。*通信作者:hjgao@ahau.edu.cn