• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      超高有機硫煤中微量元素的地球化學規(guī)律

      2019-09-10 07:22:44張衛(wèi)國楊建業(yè)侯恩科
      西安科技大學學報 2019年1期
      關鍵詞:電離能同步性微量元素

      張衛(wèi)國 楊建業(yè) 侯恩科

      摘 要:為了研究高有機硫煤中微量元素分布與元素內部結構變化之間的規(guī)律,選取國內典型超高有機硫煤的12個樣品,分析了48種元素含量和其灰分產(chǎn)率的相關系數(shù)平方與對應元素的第一電離能、離子半徑的變化趨勢,結果顯示與元素第一電離能變化趨勢一致的有23組,相反的有24組;與元素離子半徑變化趨勢一致的有25組,相反的有22組。對比與元素第一電離能和離子半徑的變化趨勢發(fā)現(xiàn),具有相同變化趨勢的有21組,從某種程度上第一電離能表征了原子團分裂與結合的難易程度,而離子半徑?jīng)Q定了元素的親和性能,二者在不同背景條件下的主導作用造成了上述差異性的出現(xiàn)。為了定量的表征2組數(shù)據(jù)同步變化的良好程度,定義了同向同步性水平、反向同步性水平、連續(xù)同步性水平、同向連續(xù)m同步性水平和反向連續(xù)m同步性水平,根據(jù)以上幾種同步性水平的定義歸納出了同步性水平評價公式。

      關鍵詞:超高有機硫;微量元素;地球化學

      中圖分類號:P 595

      文獻標志碼:ADOI:10.13800/j.cnki.xakjdxxb.2019.0109文章編號:1672-9315(2019)01-0056-07

      Geochemical regularity of trace elements in

      superhigh organic sulfur coal

      ZHANG Wei?guo,YANG Jian?ye3,HOU En?ke

      (1.College of Geology and Environment,Xi’an University of Science and Technology,Xi’an 710054,China;

      2.Geological Research Institute for Coal Green Mining,Xi’an University of Science and Technology,Xi’an 710054,China;

      3.College of Materials Science and Engineering,Xi’an University of Science and Technology,Xi’an 710054,China)

      Abstract:In order to study the regularity between the distribution of trace elements and the internal structure of elements in high organic sulfur coal,12 samples of typical ultrahigh organic sulfur coal were selected,and the correlation coefficients of 48 elements and their ash yield were analyzed.The first ionization energy of the element and the change trend of the ion radius were investigated.The results show that there are 23 groups consistent with the change trend of the first ionization energy of the element.On the contrary,there are 24 groups.There are 25 groups with the same trend of the ion radius of the element,and 22 groups are contrary.Comparisonof the trend of changeof the first ionization energy and ion radius of the elementsfound that 21 groups are of the same trend.From a certain extent,the first ionization can represent the degree of difficulty of the division andcombination of atomic,and the ion radius determines the affinity element.The two under different background conditions led to the emergence of the above differences.In order to represent the synchronization of the two groups of data quantificationally,we propose the concept of synchronized level,?including synthetic synchronization,reverse synchronization,continuous synchronization,synthetic continuous m synchronization and reverse continuous m synchronization.Based on the definition of the synchronized level mentioned above,the evaluating formula of synchronized level is concluded.

      Key words:superhigh organic sulfur;trace elements;geochemical

      0?引?言

      地殼中有質量分數(shù)可供統(tǒng)計的元素88種[1],現(xiàn)代測試技術下從煤(燃燒產(chǎn)物)及其解吸氣體樣品中檢測到86種元素[2]。微量元素在大多數(shù)煤中的含量低于0.1%,在特殊成煤地質背景下可以達到工業(yè)品位[3-4]。其中25種微量元素對生態(tài)環(huán)境造成有害影響[5-6]。煤中微量元素豐度是微小的,卻可以揭示聚煤盆地演化過程中的許多地質問題[7-10]。因此,研究煤中微量元素的地球化學特征對于煤炭資源的開發(fā)利用和人類健康發(fā)展意義重大。

      近年來由于環(huán)境問題頻發(fā),應用地球化學理論從微量元素角度分析煤炭成為了研究熱點且成果頗多[11-13]。而從微量元素含量分布特點與元素內部結構變化之間探索規(guī)律的研究鮮見報道。楊建業(yè)(2011)以渭北晚古生代太原組5號煤層9個樣品為例,分析了51種微量元素與煤中灰分、有機碳的相關系數(shù)和對應元素第一電離能、離子半徑的關系,取得了一些重要的認識,發(fā)現(xiàn)煤中微量元素的分布及賦存總體服從元素周期律,表現(xiàn)為受內部某種結構的演變支配而呈規(guī)律性變化,并對此規(guī)律作了較為完整的闡述[14],該規(guī)律在鑭系元素中更為明顯[15-17]。

      目前學術界對于高有機硫煤沒有統(tǒng)一的定義,有文章指出有機硫含量大于1%的煤界定為高有機硫煤,有機硫含量達到4%以上可稱為超高有機硫(super?high?organic?sulfur,SHOS)[18]。超高有機硫煤形成地質背景復雜且特殊,世界范圍內分布較少,國內僅在廣西合山[19-20]、扶綏[21],云南硯山[22],湖南辰溪[23,24],貴州貴定[25-26]等地有報道。前人針對我國超高有機硫煤的研究主要集中在含硫特點及成因、礦物組合特征、元素富集模式及物質來源等方面。超高有機硫煤具有獨特的地質演化背景和元素地球化學特征,它的微量元素含量特征與元素內部結構變化會有怎樣的關系?本次選取國內典型超高有機硫煤5個分布區(qū)的12組樣品進行分析,試圖揭示超高有機硫煤中微量元素與元素內部結構變化的關系。

      1?樣品特點

      本次研究選取了已報道過的超高有機硫煤5個分布區(qū)的12組樣品,下面對樣品信息進行說明,HS3U(3U?C),HS3L(3 L?C),HS4U,HS4L(4L?C)采自廣西合山[20],F(xiàn)S1(C1),F(xiàn)S2(C2)采自廣西扶綏[21],YS(M9)采自云南硯山[22],CX采自湖南辰溪[23-24],GC1(GC?1C),LHD(LHD?1C),GC3(GC?3C),HST(HST?3C)采自貴州貴定[25]。其中HS3U,HS3L,HS4L,F(xiàn)S1,F(xiàn)S2,GC1,LHD,GC3,HST和YS為全層刻槽取樣測得的數(shù)據(jù),HS4U為4U?C1和4U?C2厚度加權均值[20],YS為6個樣品均值[22],CX為J8-2等11個分層樣厚度加權均值[23-24]。

      中國超高有機硫煤主要分布在南方晚二疊世含煤地層中,其中廣西超高有機硫煤主要產(chǎn)出于晚二疊世合山組上部和下部,硯山、辰溪和貴定則賦存在于晚二疊世吳家坪組。12組超高有機硫煤灰分產(chǎn)率較高,屬于中、中高灰分煤(16.90%~41.65%),全硫含量5.41%~10.65%屬于高硫煤,有機硫含量2.50%~9.51%分別占到全硫含量的50%以上(表1)。

      2?數(shù)據(jù)分析

      元素周期律(periodic law of elements)指元素的性質隨元素的原子序數(shù)(即核外電子數(shù)或核電荷數(shù))的增加而呈現(xiàn)周期性變化的規(guī)律。例如第一電離能、離子半徑隨原子序數(shù)增加而呈周期性變化[30]。

      統(tǒng)計12組超高有機硫煤樣品中的48種元素含量與其灰分產(chǎn)率進行相關分析得到對應相關系數(shù)平方(表2),將上述相關系數(shù)平方分別與其對應元素的第一電離能和離子半徑變化趨勢進行對比分析,發(fā)現(xiàn)2組數(shù)據(jù)隨著原子序數(shù)逐漸增大呈現(xiàn)出良好的同步變化的趨勢(圖1和圖3)。所謂同步變化無非2種,“同增同減”和“此消彼長”,“同增同減”即變化趨勢一致,“此消彼長”即變化趨勢相反。

      為了詳細分析2組數(shù)據(jù)中哪些元素變化趨勢一致?哪些元素變化趨勢相反?將2組數(shù)據(jù)進行進一步處理得到圖2和圖4.數(shù)據(jù)處理過程為依次將每組數(shù)據(jù)中48個數(shù)據(jù)進行相鄰兩數(shù)做差(后數(shù)減前數(shù))分別得到47個數(shù)據(jù),再將2組數(shù)據(jù)中對應的47個數(shù)據(jù)相乘得到一組(47個)數(shù)據(jù),根據(jù)所得數(shù)據(jù)的正負性進行繪圖。X坐標線以上表示相鄰2個元素在2組數(shù)據(jù)中變化趨勢一致,記為“+”,X坐標線以下表示相鄰2個元素在2組數(shù)據(jù)中變化趨勢相反,記為“-”。

      如圖2和圖4所示,可以明了的區(qū)分出2組數(shù)據(jù)的變化趨勢一致與否。

      超高有機硫煤中Li等48種微量元素和灰分的相關系數(shù)平方與元素第一電離能變化趨勢對比圖中顯示,變化趨勢一致的元素有23組,分別是Be和F,Sc和V,As和Se,Rb和Sr,Y和Zr,Mo和Cd,In和Sn,Sn和Sb,Ba和La,La和Ce,Ce和Pr,Nd和Sm,Eu和Gd,Gd和Tb,Dy和Ho,Tm和Yb,Yb和Lu,Lu和Hf,Hf和Ta,Hg和Tl,Tl和Pb,Pb和Bi,Th和U;其中連續(xù)變化趨勢一致的元素有In,Sn和Sb;Ba,La,Ce和Pr;Eu,Gd和Tb;Tm,Yb,Lu,Hf和Ta;Hg,Tl,Pb和Bi.變化趨勢相反的元素有24組,分別是Li和Be,F(xiàn)和Sc,V和Cr,Cr和Co,Co和Ni,Ni和Cu,Cu和Zn,Zn和Ga,Ga和As,Se和Rb,Sr和Y,Zr和Nb,Nb和Mo,Cd和In,Sb和Cs,Cs和Ba,Pr和Nd,Sm和Eu,Tb和Dy,Ho和Er,Er和Tm,Ta和W,W和Hg,Bi和Th;其中連續(xù)變化趨勢相反的元素有V,Cr,Co,Ni,Cu,Zn,Ga和As;Zr,Nb和Mo;Sb,Cs和Ba;Ho,Er和Tm;Ta,W和Hg(圖2)。

      超高有機硫煤中Li等48種微量元素和灰分的相關系數(shù)平方與元素離子半徑變化趨勢對比圖中顯示,變化趨勢一致的元素有25組,分別是Li和Be,Be和F,V和Cr,As和Se,Sr和Y,Nb和Mo,Mo和Cd,Cd和In,In和Sn,Sb和Cs,Cs和Ba,Ce和Pr,Pr和Nd,Nd和Sm,Sm和Eu,Tb和Dy,Dy和Ho,Ho和Er,Er和Tm,Yb和Lu,Lu和Hf,Ta和W,Pb和Bi,Bi和Th,Th和U;其中連續(xù)變化趨勢一致的元素有Li,Be和F;Nb,Mo,Cd,In和Sn;Sb,Cs和Ba;Ce,Pr,Nd,Sm,和Eu;Tb,Dy,Ho,Er和Tm;Yb,Lu和Hf;Pb,Bi,Th和U.變化趨勢相反的元素有22組,分別是F和Sc,Sc和V,Cr和Co,Co和Ni,Ni和Cu,Cu和Zn,Zn和Ga,Ga和As,Se和Rb,Rb和Sr,Y和Zr,Zr和Nb,Sn和Sb,Ba和La,La和Ce,Eu和Gd,Gd和Tb,Tm和Yb,Hf和Ta,W和Hg,Hg和Tl,Tl和Pb;其中連續(xù)變化趨勢相反的元素有F,Sc和V;Cr,Co,Ni,Cu,Zn,Ga和As;Se,Rb和Sr;Y,Zr和Nb;Ba,La和Ce;Eu,Gd和Tb;W,Hg,Tl和Pb(圖4)。

      對比圖2和圖4發(fā)現(xiàn),2圖中具有相同變化趨勢的元素有21組,其中Be和F,As和Se,Mo和Cd,In和Sn,Ce和Pr,Nd和Sm,Dy和Ho,Yb和Lu,Lu和Hf,Pb和Bi,Th和U變化趨勢一致;F和Sc,Cr和Co,Co和Ni,Ni和Cu,Cu和Zn,Zn和Ga,Ga和As,Se和Rb,Zr和Nb,W和Hg變化趨勢相反。連續(xù)變化趨勢一致的元素有Yb,Lu和Hf;連續(xù)變化趨勢相反的元素有Cr,Co,Ni,Cu,Zn,Ga和As(圖2和圖4)。

      綜上,超高有機硫煤中Li等48種微量元素和灰分的相關系數(shù)平方與元素第一電離能、離子半徑變化趨勢存在明顯的差異性,由于第一電離能是原子失去最外層的一個電子所需能量,從某種程度上表征了原子團分裂與結合的難易程度,而離子半徑?jīng)Q定了元素的親和性能,二者在不同背景條件下的主導作用造成了上述差異性的出現(xiàn)。

      根據(jù)楊建業(yè)(2011)提出的“煤地球化學常數(shù)”的算法[14],將48種微量元素和灰分的相關系數(shù)平方乘以對應元素第一電離能(離子半徑)得出一個乘積,再將這48個乘積求平均值,該均值即為“煤地球化學常數(shù)”。按上述方法計算出第一電離能常數(shù)為22.50,離子半徑常數(shù)為0.32,以此煤地球化學常數(shù)反算出各元素相關系數(shù)平方的理想值(表2)。將理想的相關系數(shù)平方與第一電力能和離子半徑作圖,擬合效果明顯規(guī)律性增強(圖5和圖6)。

      為了定量的表征2組數(shù)據(jù)同步變化的良好程度,尋找煤中微量元素的某些特征值與元素內部結構之間的規(guī)律,本次研究引入2組數(shù)據(jù)變化趨勢“同步性水平”概念來分析圖2和圖4.設定樣本個數(shù)為n,逐步寬度為m,步長為1;則當m為1時,正數(shù)(+)的個數(shù)/n,稱為同向同步性水平;負數(shù)(-)的個數(shù)/n,稱為反向同步性水平。當出現(xiàn)連續(xù)幾個符號相同時,則稱為連續(xù)同步性水平,即m(2,3…n)個數(shù)連續(xù)符號相同的組數(shù)/總組數(shù),總組數(shù)為t,t=n-m+1;m個數(shù)連續(xù)符號為正的組數(shù)/總組數(shù),稱為同向連續(xù)m同步性水平;m個數(shù)連續(xù)符號為負的組數(shù)/總組數(shù),稱為反向連續(xù)m同步性水平。根據(jù)以上幾種同步性水平的定義歸納出同步性水平評價公式(表3)。應用2組數(shù)據(jù)變化趨勢同步性水平概念和公式評價圖2和圖4,結果見表4和表5.

      3?結?論

      1)48種元素含量和其灰分產(chǎn)率的相關系數(shù)平方與對應元素的第一電離能、離子半徑的變化趨勢具有一定規(guī)律性。與元素第一電離能變化趨勢對比顯示,變化趨勢一致的元素有23組,變化趨勢相反的元素有24組。與元素離子半徑變化趨勢對比顯示,變化趨勢一致的元素有25組,變化趨勢相反的元素有22組;

      2)對比與元素第一電離能和離子半徑的變化趨勢發(fā)現(xiàn),具有相同變化趨勢的元素有21組,連續(xù)變化趨勢一致的元素有Yb,Lu和Hf;連續(xù)變化趨勢相反的元素有Cr,Co,Ni,Cu,Zn,Ga和As;

      3)計算出第一電離能常數(shù)為22.50,離子半徑常數(shù)為0.32,以此煤地球化學常數(shù)逆推出各元素相關系數(shù)平方的理想值。將理想的相關系數(shù)平方與第一電力能和離子半徑作圖,擬合效果明顯規(guī)律性增強;

      4)引入2組數(shù)據(jù)變化趨勢“同步性水平”概念,并定義了同向同步性水平、反向同步性水平、連續(xù)同步性水平、同向連續(xù)m同步性水平和反向連續(xù)m同步性水平。根據(jù)以上幾種同步性水平的定義歸納出了同步性水平評價公式。

      參考文獻References

      [1] 黎?彤.地殼元素豐度的若干統(tǒng)計特征[J].地質與勘探,1992,28(10):1-7.

      LI Tong.Several statistical characteristics of crustal abundance of the elements[J].Geological and Prospecting,1992,28(10):1-7.

      [2] 唐修義,黃文輝.煤中微量元素及其研究意義[J].中國煤田地質,2002,14(13):1-4.

      TANG Xiu?yi,HUANG Wen?hui.Trace elements of coal and its significances on research[J].Coal Geology of China,2002,14(13):1-4.

      [3] 任德貽,趙峰華,代世峰,等.煤的微量元素地球化學[M].北京:科學出版社,2006.

      REN De-yi,ZHAO Feng?hua,DAI Shi?feng,et al.Geochemistry of trace elements in coal[J].Beijing:Science Press,2006.

      [4] Spears DA.The determination of trace element distributions in coals using sequential chemical leaching:a new approach to an old method[J].Fuel,2013,114(2):31-37.

      [5] Dai S,Liu J,Ward C R,et al.Petrological,geochemical,and mineralogical compositions of the low?Ge coals from the Shengli Coalfield,China:a comparative study with Ge?rich coals and a formation model for coal?hosted Ge ore deposit[J].Ore Geology Reviews,2015,71(1):318-349.

      [6]

      YANG Jian?ye,ZHAO Lei,ZHANG Wei?guo.The geochemical effect of lanthanides:its types and application for magmatic rocks:a new method to semi?quantitatively determine strength of magmatic fluid complexation and fractional crystallization[J].Journal of Earth Science,2014,25(2):252-262.

      [7] WANG Xi?bo,Hamed Sanei,DAI Shi?feng,et al.A novel method to estimate mineral compositions of mudrocks:A case study for the Canadian unconventional petroleum systems[J].Marine and Petroleum Geology,2016,73(2):322-332.

      [8] Dai S,Hower J C,Ward C R,et al.Elements and phosphorus minerals in the middle Jurassic inertinite rich coals of the Muli Coalfield on the Tibetan Plateau[J].

      Internation Journal of Coal Geology,2015:23-47.

      [9] Hower J C,Eble C F,O’Keefe J M,et al.Petrology,palynology,and geochemistry of Gray Hawk Coal(Early Pennsylvanian,Langsettian)in Eastern Kentucky,USA[J].Minerals,2015,5(1):592-622.

      [10]Scott C,Deonarine A,Kolker A,et al.Size distribution of rare earth elements in coal ash[J].Paper Presented at the World of Coal Ash Conference,Nashville,2015(5):5-7.

      [11]Dai S,Chekryzhov I Y,Seredin V V,et al.Metalliferous coal deposits in East Asia(Primorye of Russia and South China):a review of geodynamic controls and styles of mineralization[J].Gondwana,2016,29(2):60-82.

      [12]Li B,Zhuang X,Li J,et al.Geological controls on mineralogy and geochemistry of the late permian coals in the Liulong mine of the Liuzhi Coalfield,Guizhou province,Southwest China[J].Internation Journal of Coal Geology,2016:154-155,1-15.

      [13]YANG Jian?ye,WANG Guang?heng,ZHANG Wei?guo.The trace elements are bounded by organic functional groups in coal:A studying result based on FTIR analysis[J].Acta Geologica Sinica(English Edition),2016,90(1):154-165.

      [14]楊建業(yè).煤微量元素地球化學的一個重要規(guī)律——以渭北5#煤層為例[J].中國科學,2011,41(10):1444-1453.

      YANG Jian?ye.Coal is an important law of trace element geochemical:An example of 5# coal from Weibei[J].China science,2011,41(10):1444-1453.

      [15]楊建業(yè).鑭系元素的煤地化效應——以渭北中熟煤為例[J].中國稀土學報,2008,26(4):486-490.

      YANG Jian?ye.The effect on coal?geochemistry of rare earth elements:an example of middle rank coal from Weibei[J].Journal of Rare Earths,2008,26(4):486-490.

      [16]楊建業(yè).煤中鑭系元素有機-無機親合性及其演變規(guī)律研究——以渭北晚古生代5#煤層為例[J].中國礦業(yè)大學學報,2010,39(3):402-407.

      YANG Jian?ye.The organic or inorganic affinity of Lanthanide elements in coal and its evolution:a case study of the Late Paleozoic 5# coal from Weibei[J].Journal of China University of Mining and Technology,2010,39(3):402-407.

      [17]楊建業(yè).鑭系元素地球化學效應的一個重要應用——以稀土元素的巖石學分類和煤燃燒中的遷移富集過程為例[J].湖南科技大學學報,2016(2):113-118.

      YANG Jian?ye.The effect on geochemistry of the rare earth element:an example of important application in the REE classification for petrology and study for migrating of the REE during the burning of lignite[J].Journal of Hunan University of Science and Technology,2016(2):113-118.

      [18]Chou C L.Geological factors affecting the abundance,distribution,and speciation of sulfur in coals[C]//In:Yang,Q.(Ed.),Geology of Fossil Fuels?Coal:Proceedings of the 30th International Geological Congress,

      Part B,VSP,Utrecht,The Netherlands,

      1997,18:47-57.

      [19]SHAO Long?yi,Jones Tim,Gayer Rod,et al.Geochemistry of trace elements in Chinese coals:a review of abundances,genetic types,impac petrology and geochemistry of the high?sulphur coals from the Upper Permian carbonate coal measures in the Heshan Coalfield,southern China[J].International Journal of Coal Geology,2003,55(1):1-26.

      [20]DAI Shi?feng,ZHANG Wei?guo,Seredin V V,et al.Factors controlling geochemical and mineralogical compositions of coals preserved within marine carbonate successions:a case study from the Heshan Coalfield,southern China[J].International Journal of Coal Geology,2013(109-110):77-100.

      [21]

      DAI Shi?feng,ZHANG Wei?guo,Ward Colin R,et al.Mineralogical and geochemical anomalies of late Permian coals from the Fusui Coalfield,Guangxi Province,southern China:Influences of terrigenous materials and hydrothermal fluids[J].International Journal of Coal Geology,2013,105(5):60-84.

      [22]代世峰,任徳貽,周義平,等.煤中微量元素和礦物富集的同沉積火山灰與海底噴流復合成因[J].科學通報,2008,53(24):3120-3126.

      DAI Shi?feng,REN De?yi,ZHOU Yi?ping,et al.Trace elements in coal and mineral enriched with volcanic ash deposition and complex causes of submarine jets[J].Chinese Science Bulletin,2008,53(24):3120-3126.

      [23]李薇薇,唐躍剛,鄧秀杰,等.湖南辰溪高有機硫煤的微量元素特征[J].煤炭學報,2013,38(7):1227-1233.

      LI Wei?wei,TANG Yue?gang,DENG Xiu?jie,et al.Geochemistry of the trace elements in the high organic sulfur coals from Chenxi Coalfield[J].China Coal Soc,2013,38(7):1227-1223.

      [24]LI Wei?wei,

      TANG Yue?gang.Sulfur isotopic composition of superhigh?organic?sulfur coals from the Chenxi Coalfield,southern China[J].International Journal of Coal Geology,2014,127:3-13.

      [25]

      DAI Shi?feng,Vladimir V Seredin,Colin R.Ward,et al.Enrichment of U Se Mo Re V in coals preserved within marine carbonate successions:geochemical and mineralogical data from the Late Permian Guiding Coalfield,Guizhou,China[J].Miner Deposita,2015,50:159-186.

      [26]

      LIU Jing?jing,YANG Zong,

      YAN Xiao?yun,et al.Modes of occurrence of highly?elevated trace elements in superhigh?organic?sulfur coals[J].Fuel,2015:190-197.

      [27]

      唐躍剛.四川晚二疊世煤中硫的賦存機制黃鐵礦礦物學及其磁性研究[D].北京:中國礦業(yè)大學,1993.

      TANG Yue?gang.Sichuan occurrence mechanism of the sulfur in coal of late Permian pyrite mineralogy and its magnetic studies[D].Beijing:China University of Mining and Technology(Beijing),1993.

      [28]劉英俊,曹勵明.元素地球化學導論[M].北京:地質出版社,1987.

      LIU Ying?jun,CAO Li?ming.Guidelines of elemental geochemistry[M].Beijing:Publishing House of Geology,1987.

      [29]高勝利,陳三平,謝?鋼.化學元素周期表使用指南[M].北京:科學出版社,2007.

      GAO Sheng?li,CHEN San?ping,XIE Gang.Use guide chemical element periodic table[M].Beijing:Science Press,2007.

      [30]鄭化桂,倪小敏.高等無機化學[M].北京:中國科學技術大學出版社,2006.

      ZHENG Hua?gui,NI Xiao?min.Higher inorganic chemistry[M].University of Science and Technology of China Press,2006.

      猜你喜歡
      電離能同步性微量元素
      學科融合視野下的探究教學實踐*
      ——以物質結構與性質模塊“元素周期律”教學為例
      化學教與學(2023年3期)2023-02-09 08:33:22
      時滯非線性復雜動態(tài)網(wǎng)絡的牽引自適應控制同步性
      ICP-OES法測定鋼和鐵中微量元素
      昆鋼科技(2020年6期)2020-03-29 06:39:40
      解析中微量元素
      淺談A Level 化學中電離能的影響因素及變化趨勢與普高教學的差異
      產(chǎn)品裝配中的時間同步性測量技術
      電子測試(2018年6期)2018-05-09 07:31:50
      終極股權結構、分析師跟進與股價同步性實證研究
      提高變電站基礎量測數(shù)據(jù)時間同步性的方法
      基于圖表分析的課堂知識建構與能力提升
      化學教與學(2014年6期)2014-07-03 10:04:09
      微量元素與人體健康
      河南科技(2014年15期)2014-02-27 14:12:31
      呼伦贝尔市| 仪征市| 翼城县| 汨罗市| 汶上县| 南江县| 全椒县| 若尔盖县| 景泰县| 吉安县| 洛浦县| 顺平县| 周口市| 济南市| 色达县| 浪卡子县| 武威市| 遂平县| 桐柏县| 乐安县| 简阳市| 乾安县| 北票市| 兴安盟| 永和县| 商城县| 闸北区| 湛江市| 老河口市| 漳州市| 东乡县| 甘孜县| 宝应县| 遂宁市| 五台县| 永寿县| 滨海县| 莱阳市| 宜黄县| 社旗县| 阳东县|