李亞梅 彭壯 徐佳 張智敏 林麗美 夏伯候 廖端芳
〔摘要〕 目的 應(yīng)用網(wǎng)絡(luò)藥理學(xué)方法預(yù)測(cè)夏枯草抗乳腺癌的作用靶點(diǎn)及相關(guān)信號(hào)通路,挖掘其抗乳腺癌的作用機(jī)制。方法 在TCMSP和TCMID數(shù)據(jù)庫(kù)中檢索并篩選出夏枯草的潛在活性成分,在TCMSP數(shù)據(jù)庫(kù)中查詢活性成分作用靶點(diǎn)并采用Cytoscape 3.7.1軟件構(gòu)建活性成分-靶點(diǎn)網(wǎng)絡(luò)圖;在HPO和DisGeNET數(shù)據(jù)庫(kù)中檢索乳腺癌相關(guān)基因;將活性成分作用靶點(diǎn)和乳腺癌相關(guān)基因進(jìn)行比對(duì),得到重復(fù)項(xiàng)(即活性抗乳腺癌的可能靶點(diǎn));利用String平臺(tái)構(gòu)建潛蛋白互作網(wǎng)絡(luò)(PPI);使用Cytoscape 3.7.1軟件構(gòu)建夏枯草潛在活性成分-靶點(diǎn)-乳腺癌網(wǎng)絡(luò),并根據(jù)度值、介數(shù)和緊密度篩選出關(guān)鍵靶點(diǎn);應(yīng)用Metascape數(shù)據(jù)庫(kù)分析關(guān)鍵靶點(diǎn)的KEGG信號(hào)通路并進(jìn)行GO生物過(guò)程富集。結(jié)果 夏枯草中有19種活性成分,作用于253個(gè)靶點(diǎn);夏枯草有17種成分可作用于乳腺癌相關(guān)的29個(gè)靶點(diǎn),其中有7個(gè)關(guān)鍵靶點(diǎn),7種主要活性成分,9條相關(guān)信號(hào)通路。結(jié)論 夏枯草可通過(guò)雌激素受體、細(xì)胞特異性周期蛋白、表皮生長(zhǎng)因子受體等靶點(diǎn)及相關(guān)通路,發(fā)揮抗乳腺癌作用。
〔關(guān)鍵詞〕 夏枯草;乳腺癌;網(wǎng)絡(luò)藥理學(xué);活性成分
〔中圖分類(lèi)號(hào)〕R285.5 ? ? ? 〔文獻(xiàn)標(biāo)志碼〕A ? ? ? 〔文章編號(hào)〕doi:10.3969/j.issn.1674-070X.2019.08.021
〔Abstract〕 Objective To predict the anti-breast cancer target and related signaling pathways, and explore the anti-breast cancer mechanism of Prunella Vulgaris L. by network pharmacology. Methods The potential active ingredients of Prunella vulgaris L. were searched and screened in the TCMSP and TCMID databases. The targets of potential active ingredients were searched in the TCMSP database, and Cytoscape 3.7.1 software was used to construct active ingredients-target network map. The breast cancer related genes were searched in the HPO and DisGe NET databases. Comparing the target of active ingredients of breast cancer-related genes to get duplicates (i.e. possible targets of active anti-breast cancer). The potential protein interaction network (PPI) was constructed by using the String platform. The cytoscape 3.7.1 software was used to construct a potential active component-target-breast cancer network of Prunella vulgaris L., and screen out the key targets based on the median of degree, betweenness and closeness. Metascape database was applied to analyze KEGG signaling pathways of key targets and perform GO biological processes enrichment. Results There were 19 active components in Prunella vulgaris L., which acted on 253 targets, and it had 17 components that acted on 29 targets associated with breast cancer, 7 key targets, 7 main active ingredients, and 9 related signaling pathways. Conclusion Prunella vulgaris L. can play the anti-breast effect through estrogen receptor, G1/S-specific cyclin-D1, epidermal growth factor receptor and some correlation signaling pathway.
〔Keywords〕 Prunella vulgaris L; breast cancer; network pharmacology; active ingredients
夏枯草,唇形科夏枯草屬植物夏枯草Prunella vulgaris L.的干燥成熟果穗[1],始載于《神農(nóng)本草經(jīng)》,味苦、辛,性寒,具有清肝瀉火、明目、散結(jié)消腫之功,用于目赤腫痛、目珠夜痛、頭痛眩暈、瘰疬、癭瘤、乳癰、乳癖和乳房脹痛等;《本草從新》有夏枯草“治瘰疬、鼠瘺、癭瘤、癥堅(jiān)、乳癰、乳巖”的記載;《本草經(jīng)疏》載“治乳癰,乳巖?!笨梢?jiàn)古人已對(duì)夏枯草用于治療乳腺疾病有較深的研究。
近年來(lái),夏枯草化學(xué)成分、藥理機(jī)制及臨床應(yīng)用的研究很多[2-3],目前已從夏枯草植物中分離得到約200個(gè)化合物,其中大部分為三萜、甾醇和黃酮類(lèi)化合物,其次為香豆素、苯丙醇、多糖和揮發(fā)油[4];夏枯草具有抗炎、抗菌、抗氧化、抗癌、抗病毒、抗甲狀腺腫、護(hù)肝等廣泛的藥理作用[5-9];在臨床上,夏枯草用于乳腺增生、高血壓等[10]。但整體系統(tǒng)地分析其成分、靶點(diǎn)、通路和疾病的相互關(guān)系未見(jiàn)報(bào)道。網(wǎng)絡(luò)藥理學(xué)[11]、整合藥理學(xué)[12]等概念的相繼提出,以及生物信息學(xué)、分子生物學(xué)、計(jì)算機(jī)技術(shù)的不斷發(fā)展和聯(lián)合應(yīng)用,為中醫(yī)藥現(xiàn)代化提供了新的研究思路與方法[13-14],采用整合生物信息學(xué)、分子生物學(xué)及各大相關(guān)數(shù)據(jù)庫(kù)信息,系統(tǒng)地研究“藥物-靶點(diǎn)-通路-疾病”之間相互作用,探究中醫(yī)藥“多成分、多靶點(diǎn)、多途徑”藥理機(jī)制,與中醫(yī)藥的整體觀、辨證論治、組方配伍、協(xié)同增效等原則不謀而合[15]。本研究利用網(wǎng)絡(luò)藥理學(xué)方法,探索夏枯草的主要物質(zhì)基礎(chǔ)、核心靶點(diǎn)及與疾病之間的相互關(guān)系,為進(jìn)一步闡明夏枯草抗乳腺癌作用機(jī)制提供思路和理論基礎(chǔ)。
1 材料與方法
1.1 ?所需數(shù)據(jù)庫(kù)和軟件
TCMSP數(shù)據(jù)庫(kù)(http://lsp.nwu.edu.cn/tcmsp.php);TCMID數(shù)據(jù)庫(kù)(http://119.3.41.228/tcmid/search/);STITCH數(shù)據(jù)庫(kù)(http://stitch.embl.de/);STRING數(shù)據(jù)庫(kù)(https://string-db.org/);Cytoscape 3.7.1軟件;Pubchem數(shù)據(jù)庫(kù)(https://pubchem.ncbi.nlm.nih.gov/);HPO數(shù)據(jù)庫(kù)(https://hpo.jax.org/app/);DisGeNET數(shù)據(jù)庫(kù)(http://www.disgenet.org/);Drugbank數(shù)據(jù)庫(kù)(https://www.drugbank.ca/);TTD數(shù)據(jù)庫(kù)(http://bidd.nus.edu.sg/group/cjttd/);UniProt數(shù)據(jù)庫(kù)(https://www.uniprot.org/);Metascape數(shù)據(jù)庫(kù)(http://metascape.org/gp/index.html#/main/step1);KEGG數(shù)據(jù)庫(kù)(https://www.genome.jp/kegg/)。
1.2 ?方法
1.2.1 ?夏枯草活性成分檢索與篩選 ?在TCMSP數(shù)據(jù)庫(kù)(中藥系統(tǒng)藥理學(xué)分析平臺(tái),http://lsp.nwu.edu.cn/tcmsp.php)查詢夏枯草成分,依據(jù)藥物ADME(吸收、分布、代謝及排泄)特性,且參照多篇文獻(xiàn)標(biāo)準(zhǔn),將數(shù)據(jù)庫(kù)中的口服利用度(OBioavail, OB)和類(lèi)藥性(drug-likeness, DL)作為篩選的關(guān)鍵參數(shù)[16],夏枯草化學(xué)成分中滿足OB>30%且DL>0.18的化合物作為活性成分。此外,藥物口服利用度低的可做成其他劑型,因此,通過(guò)TCMID數(shù)據(jù)庫(kù)和文獻(xiàn)檢索,補(bǔ)充夏枯草中的其他有效成分。將篩選出的夏枯草有效成分在Pubchem數(shù)據(jù)庫(kù)中查詢其結(jié)構(gòu)式,并采用SMILES表達(dá)式。
1.2.2 ?夏枯草活性成分靶點(diǎn)挖掘 ?通過(guò)TCMSP靶點(diǎn)查詢夏枯草活性成分的作用靶點(diǎn),并通過(guò)Uniprot數(shù)據(jù)庫(kù)將查詢到的靶點(diǎn)蛋白名轉(zhuǎn)換為基因名。采用Cytoscape 3.7.1對(duì)夏枯草活性成分和作用靶點(diǎn)進(jìn)行相關(guān)網(wǎng)絡(luò)構(gòu)建。
1.2.3 ?疾病相關(guān)基因檢索 ?在HPO數(shù)據(jù)庫(kù)和DisGeNET數(shù)據(jù)庫(kù)中檢索乳腺癌(breast cancer)的靶基因,去除重復(fù)項(xiàng),并查閱乳腺癌靶基因的相關(guān)文獻(xiàn)[17],匯總?cè)橄侔┌谢?。并在UniProt數(shù)據(jù)庫(kù)中進(jìn)行基因和蛋白的轉(zhuǎn)換。
1.2.4 ?蛋白互作網(wǎng)絡(luò)構(gòu)建 ?將“1.2.2”和“1.2.3”項(xiàng)得到的靶點(diǎn)進(jìn)行比對(duì),找出重復(fù)的靶點(diǎn),將這些重復(fù)靶點(diǎn)導(dǎo)入到STRING數(shù)據(jù)庫(kù),選擇物種為“Homo sapiens”(智人)進(jìn)行操作,最低相互作用閥值設(shè)為中等“medium confidence=0.4”,構(gòu)建靶點(diǎn)群蛋白互作網(wǎng)絡(luò)(protein protein interaction network, PPI network)[18],即“夏枯草-靶點(diǎn)-乳腺癌”網(wǎng)絡(luò)。
1.2.5 ?關(guān)鍵靶點(diǎn)的篩選 ?應(yīng)用Cytoscape 軟件的對(duì)PPI 網(wǎng)絡(luò)進(jìn)行拓?fù)鋵傩苑治?,?jì)算網(wǎng)絡(luò)整體的“節(jié)點(diǎn)度值分布(Node Degree Distribution)、介數(shù)中心性(Betweenness Centrality)”,以Degree、Betweenness和Closeness的均數(shù)為“閾值”,選取Degree、Betweenness和Closeness同時(shí)在閾值之上的靶點(diǎn)為“關(guān)鍵靶點(diǎn)”,研究關(guān)鍵靶點(diǎn)可能的藥理作用。
Degree反映了網(wǎng)絡(luò)節(jié)點(diǎn)與其他節(jié)點(diǎn)的連接數(shù)目;Betweenness是網(wǎng)絡(luò)中所有最短路徑中經(jīng)過(guò)該節(jié)點(diǎn)的路徑數(shù)目與最短路徑總數(shù)之比;Closeness是通過(guò)節(jié)點(diǎn)間的傳遞距離來(lái)對(duì)節(jié)點(diǎn)的重要度進(jìn)行衡量。Degree、Betweenness和Closeness是衡量一個(gè)節(jié)點(diǎn)在網(wǎng)絡(luò)中重要性的主要拓?fù)鋮?shù),也是判斷一個(gè)靶蛋白是否為“關(guān)鍵靶點(diǎn)”的重要依據(jù)[19]。
1.2.6 ?關(guān)鍵靶點(diǎn)的代謝通路與生物過(guò)程分析 ?為進(jìn)一步研究夏枯草抗乳腺癌的作用情況,采用Metascape平臺(tái)對(duì)夏枯草的抗乳腺癌靶點(diǎn)群進(jìn)行KEGG代謝通路富集分析,研究夏枯草靶點(diǎn)的主要抗乳腺癌代謝通路;再進(jìn)行GO生物過(guò)程富集分析,詮釋夏枯草靶點(diǎn)的抗乳腺癌生物過(guò)程,Metascape平臺(tái)列表與背景均設(shè)置“Homo Sapiens”(人類(lèi))進(jìn)行操作。
2 結(jié)果
2.1 ?夏枯草活性成分
如表1所示,在TCMSP數(shù)據(jù)庫(kù)中共挖掘到夏枯草活性成分11個(gè),通過(guò)TCMID數(shù)據(jù)庫(kù)和文獻(xiàn)檢索得到8個(gè)活性成分。
2.2 ?夏枯草活性成分靶點(diǎn)
通過(guò)TCMSP數(shù)據(jù)庫(kù)查詢夏枯草活性成分靶點(diǎn)得到,19種夏枯草活性成分的靶點(diǎn)數(shù)分別為:M1, 37個(gè);M2,63個(gè);M3,3個(gè);M4,31個(gè);M5,8個(gè);M6,57個(gè);M7,2個(gè);M8,2個(gè);M9,2個(gè);M10,17個(gè);M11,149個(gè);M12,1個(gè);M13,55個(gè);M14,33個(gè);M15,9個(gè);M16,6個(gè);M17,21個(gè);M18,6個(gè);M19,45個(gè)。
去除重復(fù)項(xiàng)和非人種屬靶點(diǎn),19種活性成分共作用于253個(gè)靶點(diǎn)。
如圖1 所示,通過(guò)Cytoscape 3.7.1軟件得到夏枯草活性成分-作用靶點(diǎn)的網(wǎng)絡(luò)圖,19個(gè)菱形表示夏枯草的活性成分(M1-M19代表的化合物見(jiàn)表1),253個(gè)不規(guī)則四邊形為活性成分作用靶點(diǎn),共有540條邊代表靶點(diǎn)和化學(xué)成分之間的相互作用,體現(xiàn)了夏枯草多成分、多靶點(diǎn)的特點(diǎn)。
2.3 ?乳腺癌相關(guān)基因
在HPO數(shù)據(jù)庫(kù)和DisGeNET數(shù)據(jù)庫(kù)中檢索乳腺癌(breast cancer)的靶基因,共得到256個(gè)基因,其中HPO中檢索到23個(gè)基因,DisGeNET中檢索到253個(gè),有20個(gè)重復(fù)。
2.4 ?蛋白互作網(wǎng)絡(luò)構(gòu)建圖
在HPO數(shù)據(jù)庫(kù)和DisGeNET數(shù)據(jù)庫(kù)中檢索乳腺癌(breast cancer)的靶基因與夏枯草作用的靶基因有29個(gè)重復(fù),這29個(gè)靶基因可能為夏枯草抗乳腺癌的靶點(diǎn)。為研究各靶點(diǎn)在體內(nèi)的相互作用關(guān)系,尋找核靶點(diǎn),將潛在靶點(diǎn)蛋白群進(jìn)行PPI 網(wǎng)絡(luò)分析(見(jiàn)圖2),結(jié)果共發(fā)現(xiàn)29個(gè)靶蛋白發(fā)生相互作用,產(chǎn)生220條代表蛋白之間相互作用的邊。
2.5 ?核心靶點(diǎn)分析結(jié)果
Cytoscape計(jì)算得到,PPI 網(wǎng)絡(luò)平均度值為13.11,平均介數(shù)為2.18×10-2,平均緊密度為0.56,度值、介數(shù)和緊密度均超過(guò)平均值的靶蛋白共7個(gè),說(shuō)明以上7個(gè)靶點(diǎn)在PPI 網(wǎng)絡(luò)中處于關(guān)鍵位置,很可能是夏枯草抗乳腺癌的關(guān)鍵靶點(diǎn)(圖3)。此外,發(fā)現(xiàn)夏枯草的19種活性成分中的17種活性成分可能有抗乳腺癌的作用,且其中M1、M2、M6、M10、M11、M13、M19這7種活性成分可能是抗乳腺癌的關(guān)鍵化合物。見(jiàn)圖4和表2。
2.6 ?Metascape分析的KEGG和GO 結(jié)果
按照P值(校正)<0.01的標(biāo)準(zhǔn),運(yùn)用Metascape數(shù)據(jù)庫(kù)對(duì)7個(gè)關(guān)鍵靶點(diǎn)計(jì)算分析,得到關(guān)鍵靶點(diǎn)的相關(guān)通路信息。包括乳腺癌通路、子宮內(nèi)膜癌通路、膀胱癌通路、內(nèi)分泌抵抗通路、轉(zhuǎn)錄因子家族中AP-2 (TFAP2)的轉(zhuǎn)錄調(diào)控、上皮細(xì)胞增殖通路、PIP3激活A(yù)KT信號(hào)通路、雌二醇應(yīng)激通路等。見(jiàn)圖4。
3 討論
本研究采用網(wǎng)絡(luò)藥理學(xué)的方法對(duì)夏枯草的主要活性成分、作用靶點(diǎn)、相關(guān)生物信號(hào)通路和乳腺癌等幾方面的關(guān)聯(lián)性進(jìn)行了探討。通過(guò)TCMSP 數(shù)據(jù)庫(kù)和文獻(xiàn)檢索共發(fā)現(xiàn)夏枯草的主要活性成分19個(gè)。其中Beta-sitosterol, Kaempferol, Spinasterol, Stigmasterol, Delphinidin, Luteolin, Morin, Vulgaxanthin-I, Poriferasterol monoglucoside_qt, Stigmast-7-enol,Quercetin, Betulinic acid, Ursolic acid, Rosmarinic acid, Hyperoside, Oleanolic acid, Rutin,Hesperidin, Wogonin可能是夏枯草發(fā)揮藥效的主要活性物質(zhì)。檢索乳腺癌相關(guān)基因,并與夏枯草活性成分作用靶點(diǎn)進(jìn)行比對(duì),得到29個(gè)重復(fù)的基因,17種活性較好的化合物,采用Cytoscape軟件計(jì)算得到抗乳腺癌的主要成分為Beta-sitosterol, Kaempferol, Luteolin, Morin, Quercetin, Ursolic acid, Wogonin等7種;得到7個(gè)關(guān)鍵靶點(diǎn),即CCND1, EGFR, ERBB2, ESR1, MYC, PTEN和TP53。對(duì)關(guān)鍵靶點(diǎn)進(jìn)行富集,得到夏枯草抗乳腺癌的關(guān)鍵信號(hào)通路為乳腺癌通路、內(nèi)分泌抵抗通路、轉(zhuǎn)錄因子家族中AP-2 (TFAP2)的轉(zhuǎn)錄調(diào)控、上皮細(xì)胞增殖通路、PIP3激活A(yù)KT信號(hào)通路、雌二醇應(yīng)激通路等,推測(cè)夏枯草可能通過(guò)作用于相關(guān)的靶點(diǎn)從而影響相關(guān)的信號(hào)通路而發(fā)揮藥效。從網(wǎng)絡(luò)藥理學(xué)角度探討并揭示了夏枯草的主要活性成分、作用靶點(diǎn)、相關(guān)生物信號(hào)通路和乳腺癌的關(guān)系,為進(jìn)一步研究夏枯草的作用機(jī)制提供理論依據(jù)。
乳腺癌是女性高發(fā)的惡性腫瘤,女性乳腺癌死亡比例占癌癥死亡總數(shù)的11.6%,是僅次于肺癌的第二大癌癥。僅2018年,全球女性乳腺癌新增病例就達(dá)210萬(wàn),且乳腺癌的發(fā)病率依舊在不斷攀升[26]。在我國(guó),乳腺癌是45歲以下女性腫瘤死亡的最主要原因,且發(fā)病率以每年2%~3%的速度增長(zhǎng)[27]。因乳腺癌的病因和發(fā)病機(jī)制都很復(fù)雜,臨床上針對(duì)乳腺癌的治療主要以放化療和手術(shù)切除等為主。而中醫(yī)藥治療或輔助治療疾病有其獨(dú)特的優(yōu)勢(shì)。因此,探索古醫(yī)術(shù)中有記載的中藥治療疾病的作用及機(jī)制對(duì)醫(yī)學(xué)的發(fā)展有著非常重要的作用。
課題組前期研究表明,夏枯草的化學(xué)成分能抑制乳腺癌細(xì)胞MCF-7和MDA-MB-231的增殖[28-30];吳元肇等[31]研究表明夏枯草口服液能誘導(dǎo)雌激素受體陽(yáng)性的乳腺癌細(xì)胞的凋亡;徐華影等[32]研究表明夏枯草活性成分能抑制乳腺癌細(xì)胞的遷移。此外,夏枯草制劑或以夏枯草為主的復(fù)方制劑在臨床上使用很廣泛且有明顯的療效,如夏枯草片劑和口服液用于治療女性乳腺炎[33],夏枯草片加逍遙丸可治療乳腺增生和乳腺纖維瘤[34],但夏枯草抗乳腺癌的作用及機(jī)制均無(wú)系統(tǒng)的研究報(bào)道。
此外,已有文獻(xiàn)報(bào)道從茴香中提取的beta-sitosterol能有效抑制乳腺癌MCF-7細(xì)胞的轉(zhuǎn)移[35],且有研究表明beta-sitosterol可作為乳腺癌的雌激素受體α的潛在抑制劑[36];kaempferol能促進(jìn)乳腺癌細(xì)胞的凋亡[37];luteolin能有效抑制乳腺癌細(xì)胞的增殖[38];Quercetin納米脂質(zhì)載體能在乳腺癌化學(xué)預(yù)防中有很好的應(yīng)用前景[39];Ursolic acid為潛在的抗乳腺癌化合物[40];Wogonin可通過(guò)抑制PI3K/Akt/NF- B信號(hào)通路而抑制LPS誘導(dǎo)的腫瘤血管新生[41]。
本研究的結(jié)論仍存在一定的局限性,因?yàn)楸狙芯績(jī)H依托數(shù)據(jù)庫(kù),通過(guò)數(shù)據(jù)檢索來(lái)對(duì)藥物的功效進(jìn)行預(yù)測(cè),因此,還需要進(jìn)行實(shí)驗(yàn)研究來(lái)驗(yàn)證;僅以O(shè)B和DL作為活性化合物篩選的指標(biāo)有一定的局限性,所以在化合物篩選時(shí),也考慮多個(gè)中藥數(shù)據(jù)庫(kù)和文獻(xiàn)檢索。本研究?jī)H為中藥科研提供一個(gè)思路,仍需通過(guò)系統(tǒng)的實(shí)驗(yàn)研究進(jìn)一步證實(shí)。
參考文獻(xiàn)
[1] 國(guó)家藥典委員會(huì).中華人民共和藥典·一部[S].北京:中國(guó)醫(yī)藥科技出版社,2015:280.
[2] HAN E H, CHOI J H, HWANG Y P, et al. Immunostimulatory activity of aqueous extract isolated from Prunella vulgaris[J]. Food and Chemical Toxicology, 2009, 47(1): 62-69.
[3] MENG G, WANG M, ZHANG K J, et al. Research Progress on the Chemistry and Pharmacology of Prunella vulgaris Species[J].Open Access Library Journal, 2014,1(3):1-19.
[4] S J, WANG X H, DAI Y Y, et al. Prunella vulgaris: A comprehensie review of chemical constituents, pharmacological effects and clinical applications[J]. Current Pharmaceutical Design,2019,25(3):359-369.
[5] KOMAL S, KAZMI S A J, KHAN J A, et al. Antimicrobial activity of Prunella Vulgaris extracts against multi-drug resistant Escherichia Coli from patients of urinary tract infection[J]. Pakistan Journal of Medical Sciences, 2018,34(3):616.
[6] HWANG Y J, LEE E J, KIM H R, et al. In vitro antioxidant and anticancer effects of solvent fractions from Prunella vulgaris var. lilacina[J]. BMC Complementary and Alternative Medicine, 2013, 13(1): 310.
[7] OH C S, PRICE J, BRINDLEY M A, et al. Inhibition of HIV-1 infection by aqueous extracts of Prunella vulgaris L[J]. Virology journal, 2011,8(1):188.
[8] YIN D T, LEI M, XU J, et al. The Chinese herb Prunella vulgaris promotes apoptosis in human well-differentiated thyroid carcinoma cells via the B-cell lymphoma-2/Bcl-2-associated X protein/caspase-3 signaling pathway[J]. Oncology Letters, 2017, 14(2):1309-1314.
[9] HU Y X, YU C H, WU F, et al. Antihepatofibrotic effects of aqueous extract of prunella vulgaris on carbon tetrachloride-induced hepatic fibrosis in rats[J]. Planta Medica, 2016, 82(1/2): 97-105.
[10] 謝軍芳.夏枯草湯對(duì)老年高血壓的臨床治療效果分析[J].臨床醫(yī)學(xué)研究與實(shí)踐,2018,3(2):116-117.
[11] HOPKINS A L. Network pharmacology[J]. Nature Biotechnology,2007,25:1110-1111.
[12] 許海玉,楊洪軍.整合藥理學(xué):中藥現(xiàn)代研究新模式[J].中國(guó)中藥雜志,2014,39(3):357-362.
[13] LI S, ZHANG B. Traditional Chinese medicine network pharmacology: theory, methodology and application[J]. Chinese Journal of Natural Medicine, 2013,11(2):110-120.
[14] 趙 ?靜,方海洋,張衛(wèi)東.中藥網(wǎng)絡(luò)藥理學(xué)研究中的生物信息學(xué)方法[J].藥學(xué)進(jìn)展,2014,38(2):97-103.
[15] 張彥瓊,李 ?梢.網(wǎng)絡(luò)藥理學(xué)與中醫(yī)藥現(xiàn)代研究的若干進(jìn)展[J].中國(guó)藥理學(xué)與毒理學(xué)雜志,2015,29(6):883-891.
[16] SHI X Q, YUE S J, TANG Y P, et al. A network pharmacology approach to investigate the blood enriching mechanism of Danggui buxue Decoction[J]. Journal of Ethnopharmacology, 2019, 235: 227-242.
[17] MICHAILIDOU K, LINDSTR?魻M S, DENNIS J, et al. Association analysis identifies 65 new breast cancer risk loci[J]. Nature, 2017, 551(7678): 92.
[18] FRANCESCHINI A, SZKLARCZYK D, FRANKILD S, et al. STRING v9. 1: protein-protein interaction networks, with increased coverage and integration[J]. Nucleic Acids Research, 2012, 41(D1): D808-D815.
[19] MISSIURO P V, LIU K, ZOU L, et al. Information flow analysis of interactome networks[J]. PLoS Computational Biology, 2009, 5(4): e1000350.
[20] RYU S Y, OAK M H, YOON S K, et al. Anti-allergic and anti-inflammatory triterpenes from the herb of Prunella vulgaris[J]. Planta Medicine, 2000,66(4):358-360.
[21] XU Y C,X G L, LIU L, et al. Anti-invasion effect of rosmarinic acid via the extracellular signal-regulated kinase and oxidation-reduction pathway in Ls174-T cells[J]. Journal of CelluLar Biochemistry, 2010, 111(2): 370-379.
[22] XU Y C, JIANG Z J, JI G, et al. Inhibition of bone metastasis from breast carcinoma by rosmarinic acid[J]. Planta Medica, 2010, 76(10): 956-962.
[23] KIM H I, QUAN F S, KIM J E, et al. Inhibition of estrogen signaling through depletion of estrogen receptor alpha by ursolic acid and betulinic acid from Prunella vulgaris var. lilacina[J]. Biochemical and Biophysical Research Communications, 2014, 451(2): 282-287.
[24] KHAMIS A A A, ALI E M M, EL-MONEIM M A A, et al. Hesperidin, piperine and bee venom synergistically potentiate the anticancer effect of tamoxifen against breast cancer cells[J]. Biomedicine & Pharmacotherapy, 2018, 105: 1335-1343.
[25] SABRA S A, ELZOGHBY A O, SHEWEITA S A, et al. Self-assembled amphiphilic zein-lactoferrin micelles for tumor targeted co-delivery of rapamycin and wogonin to breast cancer[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 128: 156-169.
[26] BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA: A Cancer Journal for Clinicians, 2018, 68(6): 394-424.
[27] CHEN W, ZHENG R, BAADE P D, et al. Cancer statistics in China, 2015[J]. CA: A Cancer Journal for Clinicians, 2016, 66(2): 115-132.
[28] 周亞敏,唐 ?潔,熊蘇慧,等.夏枯草極性部位的化學(xué)成分及其抗乳腺癌活性研究[J].中國(guó)藥學(xué)雜志,2017,52(5):362-366.
[29] 嚴(yán)東,謝文劍,李 ?春,等.夏枯草化學(xué)成分及其體外抗腫瘤活性研究[J].中國(guó)實(shí)驗(yàn)方劑學(xué)雜志,2016,22(11):49-54.
[30] 柏玉冰,李 ?春,周亞敏,等.夏枯草的化學(xué)成分及其三萜成分的抗腫瘤活性研究[J].中草藥,2015,46(24):3623-3629.
[31] 吳元肇,曾 ?勇,鄭克思,等.夏枯草口服液對(duì)雌激素受體陽(yáng)性乳腺癌細(xì)胞凋亡的影響[J].上海中醫(yī)藥大學(xué)學(xué)報(bào),2016,30(2):78-81.
[32] 徐華影,金 ?妍.夏枯草抗腫瘤轉(zhuǎn)移活性成分及其作用機(jī)制研究[J].中藥新藥與臨床藥理,2015,26(3):351-355.
[33] 李 ?新,劉 ?薇,牛 ?冰,等.夏枯草口服液聯(lián)合頭孢地尼分散片治療慢性乳腺炎的臨床效果觀察[J].中藥藥理與臨床,2017,33(2):190-192.
[34] 張志強(qiáng).夏枯草片加逍遙丸治療乳腺增生癥臨床分析[J].中醫(yī)臨床研究,2017,9(32):104-105.
[35] LIAO Y F, RAO Y K, TZENG Y M. Aqueous extract of Anisomeles indica and its purified compound exerts anti-metastatic activity through inhibition of NF-κB/AP-1-dependent MMP-9 activation in human breast cancer MCF-7 cells[J]. Food and Chemical Toxicology, 2012, 50(8): 2930-2936.
[36] MUSTARICHIEI R, LEVITAS J, ARPINA J. In silico study of curcumol, curcumenol, isocurcumenol, and β-sitosterol as potential inhibitors of estrogen receptor alpha of breast cancer[J]. Medical Journal of Indonesia, 2014, 23(1): 15-24.
[37] NOOLU B, GOGULOTHU R, BHAT M, et al. In vivo inhibition of proteasome activity and tumour growth by Murraya koenigii leaf extract in breast cancer xenografts and by its active flavonoids in breast cancer cells[J]. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents), 2016, 16(12): 1605-1614.
[38] LE BAIL J C, VARNAT F, NICOLAS J C, et al. Estrogenic and antiproliferative activities on MCF-7 human breast cancer cells by flavonoids[J]. Cancer Letters, 1998, 130(1-2): 209-216.
[39] SUN M,NIE S F,PAN X, et al. Quercetin-nanostructured lipid carriers: Characteristics and anti-breast cancer activities in vitro[J]. Colloids and Surfaces B: Biointerfaces, 2014, 133: 15-24.
[40] YIN R, LI T, TIAN J X, et al. Ursolic acid, a potential anticancer compound for breast cancer therapy[J]. Critical Reviews in Food Science and Nutrition, 2018, 58(4): 568-574.
[41] ZHAO K, SONG X, HUANG Y, et al. Wogonin inhibits LPS-induced tumor angiogenesis via suppressing PI3K/Akt/NF-kappaB signaling[J]. European Journal of Pharmacology, 2014, 737:57-69.
湖南中醫(yī)藥大學(xué)學(xué)報(bào)2019年8期