黃文植 何林 呂楊 宋玉華
[摘要]放療能降低腫瘤的復(fù)發(fā)風(fēng)險(xiǎn)、延長癌癥病人的生存時(shí)間和提高乳癌的保乳手術(shù)率。隨著精準(zhǔn)放療技術(shù)的進(jìn)步,人們認(rèn)識(shí)到放療對(duì)不同分子分型乳癌的治療效果存在差異,表現(xiàn)為人表皮生長因子受體2(HER2)過表達(dá)型乳癌和三陰性乳癌比Luminal A型乳癌具有較高的疾病復(fù)發(fā)率和較短的生存期,這與它們之間不同的侵襲性、惡性程度和放射敏感性有關(guān)。在HER2過表達(dá)型乳癌中,核因子κB蛋白能觸發(fā)HER2與其啟動(dòng)子結(jié)合,從而導(dǎo)致HER2過表達(dá);此外,上皮細(xì)胞間質(zhì)轉(zhuǎn)化的誘導(dǎo)和Fak介導(dǎo)通路的調(diào)節(jié)都是該型乳癌放射敏感性低的原因。相比而言,Luminal A型乳癌的放射敏感性較高,二甲雙胍通過增加活性氧和硫氧還蛋白系統(tǒng)的表達(dá)、尼妥珠單抗通過降低表皮生長因子受體的磷酸化水平,誘導(dǎo)細(xì)胞凋亡和產(chǎn)生γ-H2AX組蛋白變體,而進(jìn)一步提高該型乳癌的放射敏感性。
[關(guān)鍵詞]放射療法,計(jì)算機(jī)輔助;乳腺腫瘤;輻射耐受性;綜述
[中圖分類號(hào)]R737.9
[文獻(xiàn)標(biāo)志碼]A
[文章編號(hào)] 2096-5532(2019)05-0619-05
doi:10.11712/jms201905029
[開放科學(xué)(資源服務(wù))標(biāo)識(shí)碼(OSID)]
放療是乳癌治療的重要措施之一,廣泛應(yīng)用于保乳手術(shù)和全乳切除術(shù)的病人。然而大部分病人都不可避免會(huì)受放療毒性的困擾,包括疲勞、毛細(xì)血管擴(kuò)張、血管肉瘤、皮膚紅斑以及皮膚表面損傷等[1-3]。根據(jù)雌激素受體(ER)、孕激素受體(PR)和人表皮生長因子受體2(HER2)的表達(dá)狀態(tài),可將乳癌分為Luminal A型、Luminal B型、HER2過表達(dá)型和三陰性乳癌(TNBC)[4]。有研究表明,部分分子亞型的乳癌具有放射拮抗性,它們很難從額外的放療劑量中獲益[5],提示這些分子分型的乳癌可能存在放療的劑量效益梯度。不同亞型的乳癌需要制定個(gè)體化的放療方案,以便獲得最好的治療效果和最小的放療毒性。本文對(duì)不同分子分型乳癌放療預(yù)后和其放射敏感性研究進(jìn)展進(jìn)行綜述。
1 不同分子分型乳癌的放療預(yù)后
兩項(xiàng)隨機(jī)試驗(yàn)(BCRR試驗(yàn)[5]和DBCG-82b試驗(yàn)[6])結(jié)果顯示,放療聯(lián)合化療可將乳癌的局部區(qū)域復(fù)發(fā)(LRR)率和死亡率分別下降23%~33%和9%~29%。這些結(jié)果對(duì)放療在乳癌中的臨床應(yīng)用產(chǎn)生了深遠(yuǎn)的指導(dǎo)意義。乳癌病人接受系統(tǒng)性治療后的疾病復(fù)發(fā)中位時(shí)間可能是2~4年,也可能推遲到5~8年[7-9],原因是由于不同分子分型乳癌之間的腫瘤生物學(xué)特性存在差異。有研究表明,HER2過表達(dá)型乳癌和TNBC的腫瘤復(fù)發(fā)率是Luminal型乳癌的2~3倍,而且它們的腫瘤侵襲性相對(duì)更強(qiáng),存活率相對(duì)較低[10-12]。TNBC病人在開始發(fā)病的2~3年內(nèi)發(fā)生遠(yuǎn)處轉(zhuǎn)移(DM)的風(fēng)險(xiǎn)顯著高于其他分子亞型乳癌,所以其預(yù)后最差[13]。為了探討放療對(duì)不同分子亞型乳癌的治療效果是否相同,MAO等[14]從METABRIC和TCGA數(shù)據(jù)庫中分別收集了1 974例和971例乳癌病人的數(shù)據(jù),來比較不同分子分型乳癌放療后的生存情況。對(duì)METABRIC數(shù)據(jù)庫中的病例分析發(fā)現(xiàn),放療顯著延長了Luminal A型乳癌的總生存期(OS),但沒有延長Luminal B型乳癌、HER2過表達(dá)型乳癌以及TNBC病人的OS;對(duì)TCGA數(shù)據(jù)庫的數(shù)據(jù)分析發(fā)現(xiàn),放療顯著延長了TNBC病人的OS,并且有延長Luminal A型乳癌OS的趨勢(P=0.053),但未改善Luminal B亞型和HER2過表達(dá)型乳癌的OS。最后他們將兩個(gè)數(shù)據(jù)庫的數(shù)據(jù)整合在一起進(jìn)行匯總分析,結(jié)果顯示放療顯著延長了Luminal A型乳癌和TNBC病人的OS。以上結(jié)果表明,放療對(duì)不同分子亞型乳癌的治療效果有顯著的差異性。
在接受保乳手術(shù)的病人中,HER2過表達(dá)型乳癌(未使用曲妥珠單抗)和TNBC的LRR率明顯高于Luminal 型乳癌[10,15]。2012年,一項(xiàng)納入15項(xiàng)臨床研究的Meta分析系統(tǒng)地評(píng)估了保乳手術(shù)和乳房切除術(shù)后不同分子亞型乳癌的LRR 率[16],結(jié)果表明,TNBC和HER2過表達(dá)型乳癌(未使用曲妥珠單抗)的LRR率是Luminal型乳癌的2倍以上。近年來,由于曲妥珠單抗的使用,HER2過表達(dá)型乳癌的LRR率已得到了明顯的降低[17]。
但是TNBC由于缺乏有效的靶向藥物,其LRR率依然較高,因此研發(fā)有效的TNBC靶向治療藥物十分必要。
傳統(tǒng)的全乳照射(CWBI)是大多數(shù)有保乳資格和保乳意愿的早期乳癌(ESBC)和導(dǎo)管原位癌(DCIS)病人廣泛采用的標(biāo)準(zhǔn)放療模式,它能顯著降低浸潤性乳癌和非浸潤性乳癌病人的局部復(fù)發(fā)風(fēng)險(xiǎn)[7,18-21]。目前,加速性部分乳房照射(APBI)由于具有相對(duì)較短的治療時(shí)程、良好的局部控制[22]和較低的放療毒性等優(yōu)點(diǎn),逐步成為CWBI的替代方案[23]。美國近距離治療協(xié)會(huì)制定了APBI治療乳癌病人的選擇標(biāo)準(zhǔn):①年齡≥45歲;②腫瘤直徑≤3 cm;③淋巴結(jié)陰性;④淋巴管間隙非侵襲性;⑤所有侵襲性分子表型和DCIS;⑥外科手術(shù)切緣陰性[24]。
近年來,比較不同分子亞型乳癌接受APBI治療的預(yù)后是一個(gè)熱門的研究課題。2016年,BEN等[25]對(duì) 278例接受APBI的ESBC病人進(jìn)行5年隨訪,結(jié)果顯示,不同分子亞型乳癌之間的同側(cè)乳腺腫瘤復(fù)發(fā)(IBTR)、局部復(fù)發(fā)(LR)、DM、局部淋巴結(jié)復(fù)發(fā)、OS、無病生存期(DFS)以及病因特異性生存期(CSS)差異均無統(tǒng)計(jì)學(xué)意義,認(rèn)為分子亞型不是影響ESBC接受APBI預(yù)后的關(guān)鍵因素。PASHTAN等[26]對(duì)98例接受三維共形外束APBI的ESBC病人的預(yù)后進(jìn)行多因素分析,結(jié)果顯示TNBC是不利的5年IBTR的唯一影響因素。這兩項(xiàng)研究結(jié)果不一致原因可能是因?yàn)楹笳咧写蠖鄶?shù)TNBC病人都在放療前接受了化療,從而推遲放療的開始時(shí)間所致。
有研究認(rèn)為,50歲以上的乳癌病人接受APBI后,其中HER2過表達(dá)亞型的5年IBTR和5年區(qū)域淋巴結(jié)復(fù)發(fā)(RNR)風(fēng)險(xiǎn)都高于其他分子亞型乳癌病人,而Luminal A型乳癌的5年IBTR風(fēng)險(xiǎn)最低[27]。相似的結(jié)果在多導(dǎo)管APBI(mAPBI)[28]和單入導(dǎo)管APBI(sAPBI)[29]的臨床試驗(yàn)中得到了進(jìn)一步驗(yàn)證。在mAPBI試驗(yàn)中,HER2過表達(dá)狀態(tài)與較短的DFS、CSS和OS有顯著的相關(guān)性;在sAPBI試驗(yàn)中,HER2過表達(dá)型乳癌病人的5年IBTR和TNBC的5年RNR均明顯高于Lumina A型乳癌。綜上所述,接受APBI后,HER2過表達(dá)型乳癌和TNBC的臨床預(yù)后都明顯比Lumina A型乳癌要差。
在保乳手術(shù)后聯(lián)合CWBI的早期研究中,50.0 Gy的輻射劑量通常以25個(gè)分割、2.0 Gy的單日劑量歷時(shí)5周的時(shí)間來完成[20,30]。放射生物學(xué)模型研究表明,給予更大的單日劑量、歷經(jīng)更少分割次數(shù)的低分割全乳照射(HWBI)具有與CWBI相近的預(yù)后結(jié)果,可以將其作為CWBI的有效替代方案[31]。此外,HWBI還有實(shí)施更方便、費(fèi)用更低廉、LR率更低和放療毒性更少的優(yōu)點(diǎn)[32-34]。2002年,一項(xiàng)隨機(jī)對(duì)照試驗(yàn)將接受過保乳手術(shù)的腋窩淋巴結(jié)陰性乳癌病人1∶1隨機(jī)分配到HWBI放療模式組和CWBI放療模式組,5年的隨訪結(jié)果顯示兩組病人的LR率相同(均為3%),同時(shí)反映放療毒性的外觀效果也相似[35]。考慮到放療毒性會(huì)隨著照射時(shí)間的延長而增加[36],因此大多數(shù)乳癌病人更傾向于接受HWBI。然而研究顯示,HWBI在晚期乳癌病人中的療效比不上CWBI,具體表現(xiàn)為接受HWBI的病人較接受CWBI病人的DFS要短、DM風(fēng)險(xiǎn)要高[37-38]。
既往一項(xiàng)包含752例老年乳癌病人(年齡≥65歲)接受HWBI放療模式治療的臨床研究顯示, TNBC的5年DFS顯著低于其他分子亞型乳癌,但是不同分子分型乳癌之間的5年LRR卻沒有差異,單因素和多因素分析的結(jié)果均表明,HER2過表達(dá)型乳癌和TNBC的疾病復(fù)發(fā)均明顯高于Luminal型乳癌[39]。因此,HWBI 在 Luminal型乳癌中的應(yīng)用前景要比在HER2過表達(dá)型乳癌和 TNBC中好。
2 不同分子亞型乳癌內(nèi)在的放射敏感性
電離輻射可直接激活腫瘤細(xì)胞中的表皮生長因子受體(EGFR)家族,2.0 Gy的重復(fù)照射增強(qiáng)了EGFR在HER2過表達(dá)型乳癌中的表達(dá),提示HER2過表達(dá)狀態(tài)有影響放射敏感性的潛在生物學(xué)作用[40]。由于HER2過表達(dá)型乳癌的放射敏感性較低,接受全乳切除術(shù)聯(lián)合術(shù)后放療的病人普遍表現(xiàn)出較高的LRR率和較短的生存期[11,16,41-43]。許多研究正逐步揭示HER2過表達(dá)型乳癌低放射敏感性的確切機(jī)制。①核因子κB蛋白可啟動(dòng)HER2與其啟動(dòng)子結(jié)合,從而導(dǎo)致HER2過表達(dá)[44]。②HER2過表達(dá)型乳癌的低放射敏感性與其腫瘤干細(xì)胞有關(guān),并可能通過上皮細(xì)胞的間質(zhì)轉(zhuǎn)化(EMT)誘導(dǎo)。因?yàn)樵谵D(zhuǎn)移性的HER2過表達(dá)型乳癌腫瘤中可檢測到一種名為β-連環(huán)鏈蛋白的物質(zhì),它是參與EMT過程的重要分子[45-49]。③Fak介導(dǎo)途徑在調(diào)節(jié)HER2過表達(dá)型乳癌的放射拮抗中發(fā)揮著關(guān)鍵作用,抑制本途徑可獲得非常好的臨床療效[50-53]。
一些前臨床研究和臨床研究通過靶向治療乳癌的EGFR,取得了良好的抗癌效果,并且副作用輕微[54-55]。下調(diào)EGFR活性及其下游的PI3K-AKT和RAS-MAPK信號(hào)通路會(huì)增加輻射誘導(dǎo)的細(xì)胞毒效應(yīng),從而抑制腫瘤的增殖、遠(yuǎn)處轉(zhuǎn)移以及腫瘤血管生成[56-57]。尼妥珠單抗是IgG1的人源化單克隆抗體,能夠阻斷Luminal A亞型乳癌中EGF、TGF-α和其他配體與EGFR的結(jié)合[58],從而抑制DNA-PKCs的功能,增強(qiáng)該型乳癌的放射敏感性[59]。尼妥珠單抗引起的Luminal A型乳癌放射敏感性增加還與EGFR磷酸化水平降低、細(xì)胞凋亡的誘導(dǎo)及γ-H2AX組蛋白變體(輻射誘導(dǎo)的DNA解雙螺旋的一個(gè)重要指標(biāo))生成有關(guān)[59]。
硫氧還蛋白系統(tǒng)(Trx)是控制細(xì)胞氧化還原調(diào)節(jié)的核心酶家族成員之一,能夠影響放療對(duì)腫瘤細(xì)胞的作用[60]。AMPK-FOXO3途徑可以降低人原代主動(dòng)脈內(nèi)皮細(xì)胞參與氧化還原調(diào)節(jié)的活性氧簇(ROS)水平,二甲雙胍可通過該途徑來上調(diào)Luminal型乳癌中Trx的表達(dá),并能激活A(yù)MPK和抑制mTOR,從而增強(qiáng)該型乳癌的放療敏感性[61]。此外,二甲雙胍還能顯著延長患有糖尿病的Luminal亞型乳癌病人的CSS,但對(duì)TNBC無效[55]。究其原因是因?yàn)槎纂p胍能改變Luminal A亞型乳癌的ROS水平和Trx的表達(dá),但對(duì)于TNBC則沒有這種作用[62]。
3 小結(jié)
無論乳癌病人選擇何種放療模式,其中以Lumina A亞型乳癌的治療效果最好,而HER2過表達(dá)型乳癌和TNBC則相對(duì)較差。究其原因,除了后兩種乳癌亞型具有更強(qiáng)的侵襲性和更高的惡性程度外,也與它們之間不同的放射敏感性有關(guān)。其中,HER2過表達(dá)型乳癌的放射敏感性比較低,而Lumina A型乳癌的放射敏感性較高。并且二甲雙胍和尼妥珠單抗能進(jìn)一步增加Luminal A型乳癌的放射敏感性。
[參考文獻(xiàn)]
[1]WHELAN T J, LEVINE M, JULIAN J, et al. The effects of radiation therapy on quality of lifeof women with breast carcinoma: results of a randomized trial[J]. Ontario Clinical Onco-logy Group.Cancer, 2000,88(10):2260-2266.
[2]HOLLI K, SAARISTO R, ISOLA J, et al. Lumpectomy with or without postoperative radiotherapy for breast cancer with favourable prognostic features: results of a randomized study[J]. British Journal of Cancer, 2001,84(2):164-169.
[3]LILLA C, AMBROSONE C B, KROPP S, et al. Predictive factors for late normal tissue complications following radiotherapy for breast cancer[J]. Breast Cancer Research and Treatment, 2007,106(1):143-150.
[4]BRITTEN A, ROSSIER C, TARIGHT N, et al. Genomic classifications and radiotherapy for breast cancer[J]. European Journal of Pharmacology, 2013,717(1/3):67-70.
[5]RAGAZ J, JACKSON S M, LE N, et al. Adjuvant radiothe-rapy and chemotherapy in node-positive premenopausal women with breast cancer[J]. New England Journal of Medicine, 1997,337(14):956-962.
[6]OVERGAARD M, HANSEN P S, OVERGAARD J, et al. Postoperative radiotherapy in high-risk premenopausal women with breast cancer who receive adjuvant chemotherapy[J]. New England Journal of Medicine, 1997,337(14):949-955.
[7]VAN DONGEN J A, VOOGD A C, FENTIMAN I S, et al. Long-term results of a randomized trial comparing breast-conserving therapy with mastectomy: European Organization for Research and Treatment of Cancer 10 801 trial[J]. Journal of the National Cancer Institute, 2000,92(14):1143-1150.
[8]TOUBOUL E, BUFFAT L, BELKACEMI Y, et al. Local recurrences and distant metastases after breast-conserving surgery and radiation therapy for early breast cancer[J]. International Journal of Radiation Oncology Biology Physics, 1999,43(1):25-38.
[9]FREEDMAN G, FOWBLE B, HANLON A, et al. Patients with early stage invasive cancer with close or positive margins treated with conservative surgery and radiation have an increased risk of breast recurrence that is delayed by adjuvant systemic therapy[J]. International Journal of Radiation Onco-logy, Biology, Physics, 1999,44(5):1005-1015.
[10]NGUYEN P L, TAGHIAN A G, KATZ M S, et al. Breast Cancer subtype approximated by estrogen receptor, progeste-rone receptor, and HER-2 is associated with local and distant recurrence after breast-conserving therapy[J]. Journal of Clinical Oncology: Official Journal of the American Society of Clini-cal Oncology, 2008,26(14):2373-2378.
[11]VODUC K D, CHEANG M C, TYLDESLEY S, et al. Breast cancer subtypes and the risk of local and regional relapse[J]. Journal of Clinical Oncology, 2010,28(10):1684-1691.
[12]SRLIE T, PEROU C M, TIBSHIRANI R, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications[J]. Proceedings of the National Academy of Sciences of the United States of America, 2001,98(19):10869-10874.
[13]HAFFTY B G, YANG Qifeng, REISS M, et al. Locoregional relapse and distant metastasis in conservatively managed triple negative early-stage breast cancer[J]. Journal of Clinical Oncology, 2006,24(36):5652-5657.
[14]MAO JH, VAN DIEST P J, PEREZ-LOSADA J, et al. Revisiting the impact of age and molecular subtype on overall survival after radiotherapy in breast cancer patients[J]. Scientific Reports, 2017,7:12587.
[15]MILLAR E K, GRAHAM P H, O′TOOLE S A, et al. Prediction of local recurrence, distant metastases, and death after breast-conserving therapy in early-stage invasive breast cancer using a five-biomarker panel[J]. Journal of Clinical Oncology, 2009,27(28):4701-4708.
[16]LOWERY A J, KELL M R, GLYNN R W, et al. Locoregio-nal recurrence after breast cancer surgery: a systematic review by receptor phenotype[J]. Breast Cancer Research and Treatment, 2012,133(3):831-841.
[17]TSENG Y D, UNO H, HUGHES M E, et al. Biological subtype predicts risk of locoregional recurrence after mastectomy and impact of postmastectomy radiation in a large National database[J]. International Journal of Radiation Oncology Biology Physics, 2015,93(3):622-630.
[18]BIJKER N, MEIJNEN P, PETERSE J L, et al. Breast-conserving treatment with or without radiotherapy in ductal carcinoma-in-situ:ten-year Results of European Organisation for Research and Treatment of Cancer randomized phase Ⅲ trial 10 853-a study by the EORTC Breast Cancer Cooperative Group and EORTC Radiotherapy Group[J]. Journal of Clinical Oncology, 2006,24(21):3381-3387.
[19]HOUGHTON J, GEORGE W D, CUZICK J, et al. Radiotherapy and tamoxifen in women with completely excised ductal carcinoma in situ of the breast in the UK and New Zealand: randomised controlled trial[J]. Lancet(London,England), 2003,362(9378):95-102.
[20]FISHER B, ANDERSON S, BRYANT J, et al. Twenty-year follow-up of a randomized trial comparing total mastectomy, lumpectomy, and lumpectomy plus irradiation for the treatment of invasive breast cancer[J]. The New England Journal of Medicine, 2002,347(16):1233-1241.
[21]VERONESI U, CASCINELLI N, MARIANI L, et al. Twenty-year follow-up of a randomized study comparing breast-conserving surgery with radical mastectomy for early breast cancer[J]. The New England Journal of Medicine, 2002,347(16):1227-1232.
[22]STRNAD V, OTT O J, HILDEBRANDT G A, et al. 5-yearresults of accelerated partial breast irradiation using sole interstitial multicatheter brachytherapy versus whole-breast irradiation with boost after breast-conserving surgery for low-risk invasive and in-situ carcinoma of the female breast[J]. Lancet, 2016,387(115):229-238.
[23]BITTER S M, HEFFRON-CARTWRIGHT P, WENNERSTROM C, et al. WBRT vs. APBI: an interim report of patient satisfaction and outcomes[J]. Journal of Contemporary Brachytherapy, 2016,8(1):17-22.
[24]SHAH C, VICINI F, WAZER D E, et al. The American brachytherapy society consensus statement for accelerated partial breast irradiation[J]. Brachytherapy, 2013,12(4):267-277.
[25]BEN WILKINSON J, SHAH C, AMIN M, et al. Outcomes according to breast cancer subtype in patients treated with accelerated partial breast irradiation[J]. Clinical Breast Cancer, 2017,17(1):55-60.
[26]PASHTAN I M, RECHT A, ANCUKIEWICZ M, et al. External beam accelerated partial-breast irradiation using 32 Gy in 8 twice-daily fractions:5-year results of a prospective study[J]. International Journal of Radiation Oncology Biology Phy-sics, 2012,84(3):E271-E277.
[27]ANDERSON B M, KAMRAVA M, WANG P C, et al. Locoregional recurrence by molecular subtype after multicatheter interstitial accelerated partial breast irradiation: results from the pooled registry of multicatheter interstitial sites research group[J]. Brachytherapy, 2016,15(6):788-795.
[28]WADASADAWALA T, MONDAL M, PAUL S N, et al. Should molecular subtype be recommended as one of the selection criteria for accelerated partial breast irradiation? Preliminary results from an Asian cohort[J]. Journal of Contemporary Brachytherapy, 2018,10(1):47-57.
[29]SAINI A, KUSKE R, QUIET C, et al. Outcomes by molecular subtype after accelerated partial breast irradiation using single-entry catheters[J]. Brachytherapy, 2018,17(2):415-424.
[30]VERONESI U, LUINI A, DEL VECCHIO M, et al. Radiotherapy after breast-preserving surgery in women with loca-lized cancer of the breast[J]. The New England Journal of Medicine, 1993,328(22):1587-1591.
[31]FOWLER J F. The linear-quadratic formula and progress in fractionated radiotherapy[J]. The British Journal of Radiology, 1989,62(740):679-694.
[32]ASH D V, BENSON E A, SAINSBURY J R, et al. Seven-year follow-up on 334 patients treated by breast conserving surgery and short course radical postoperative radiotherapy:a report of the Yorkshire Breast Cancer Group[J]. Clinical Oncology (Royal College of Radiologists (Great Britain)), 1995,7(2):93-96.
[33]OLIVOTTO I A, WEIR L M, KIM-SING C, et al. Late cosmetic results of short fractionation for breast conservation[J]. Radiotherapy and Oncology: Journal of the European Society for Therapeutic Radiology and Oncology, 1996,41(1):7-13.
[34]SHELLEY W, BRUNDAGE M, HAYTER C, et al. A shorter fractionation schedule for postlumpectomy breast cancer patients[J]. International Journal of Radiation Oncology Biology Physics, 2000,47(5):1219-1228.
[35]WHELAN T, MACKENZIE R, JULIAN J, et al. Rando-mized trial of breast irradiation schedules after lumpectomy for women with lymph node-negative breast cancer[J]. Journal of the National Cancer Institute, 2002,94(15):1143-1150.
[36]CURRAN D, VAN DONGEN J P, AARONSON N K, et al. Quality of life of early-stage breast cancer patients treated with radical mastectomy or breast-conserving procedures: results of EORTC trial 10 801[J]. European Journal of Cancer, 1998,34(3):307-314.
[37]WHELAN T J, PIGNOL J P, LEVINE M N, et al. Long-term results of hypofractionated radiation therapy for breast cancer[J]. The New England Journal of Medicine, 2010,362(6):513-520.
[38]BELLEFQIH S, ELMAJJAOUI S, AARAB J, et al. Hypofractionated regional nodal irradiation for women with node-positive breast cancer[J]. International Journal of Radiation Oncology Biology Physics, 2017,97(3):563-570.
[39]DE SANTIS M C, BONFANTINI F, DI SALVO F, et al. Hypofractionated whole-breast irradiation with or without boost in elderly patients:clinical evaluation of an Italian expe-rience[J]. Clinical Breast Cancer, 2018,18(5): ?e1059-e1066.
[40]BUCHHOLZ T, HUANG EH, BERRY D, et al. Her2/neu-positive disease does not increase risk of locoregional recurrence for patients treated with neoadjuvant doxorubicin-based chemotherapy,mastectomy,and radiotherapy[J]. International Journal of Radiation Oncology, Biology, Physics, 2004,59(5):1337-1342.
[41]RIBELLES N, PEREZ-VILLA L, JEREZ J M, et al. Pattern of recurrence of early breast Cancer is different according to intrinsic subtype and proliferation index[J]. Breast Cancer Research, 2013,15(5):98-101.
[42]PARK S, KOO J S, KIM M S, et al. Characteristics and outcomes according to molecular subtypes of breast cancer as classified by a panel of four biomarkers using immunohistochemistry[J]. Breast (Edinburgh, Scotland), 2012,21(1):50-57.
[43]PAIK S, KIM C, WOLMARK N. HER2 status and benefit from adjuvant trastuzumab in breast cancer[J]. New England Journal of Medicine, 2008,358(13):1409-1411.
[44]CAO Ning, LI Shiyong, WANG Zhaoqing, et al. NF-kappaB-mediated HER2 overexpression in radiation-adaptive resistance[J]. Radiation Research, 2009,171(1):9-21.
[45]DURU Nadire, FAN Ming, CANDAS D, et al. HER2-asso-ciated radioresistance of breast cancer stem cells isolated from HER2-negative breast cancer cells[J]. Clinical Cancer Research: an Official Journal of the American Association for Cancer Research, 2012,18(24):6634-6647.
[46]GIORDANO A, GAO Hui, ANFOSSI S, et al. Epithelial-mesenchymal transition and stem cell markers in patients with HER2-positive metastatic breast cancer[J]. Molecular Cancer Therapeutics, 2012,11(11):2526-2534.
[47]ARIAS-ROMERO L E, VILLAMAR-CRUZ O, HUANG M, et al. Pak1 kinase links ErbB2 to beta-Catenin in transformation of breast epithelial cells[J]. Cancer Research, 2013,73(12):3671-3682.
[48]SCHADE B, LESURF R, SANGUIN-GENDREAU V A, et al. beta-Catenin signaling is a critical event in ErbB2-mediated mammary tumor progression[J]. Cancer Research, 2013,73(14):4474-4487.
[49]OLIVERAS-FERRAROS C, COROMINAS-FAJA B, CUFI S, et al. Epithelial-to-mesenchymal transition (EMT) confers primary resistance to trastuzumab (Herceptin)[J]. Cell cycle (Georgetown, Tex.), 2012,11(21):4020-4032.
[50]TALIAFERRO-SMITH L T, OBERLICK E, LIU T A, et al. FAK activation is required for IGF1R-mediated regulation of EMT, migration, and invasion in mesenchymal triple negative breast cancer cells[J]. Oncotarget, 2015,6(7):4757-4772.
[51]WILSON C, NICHOLES K, BUSTOS D, et al. Overcoming EMT-associated resistance to anti-cancer drugs via Src/FAK pathway inhibition[J]. Oncotarget, 2014,5(17):7328-7341.
[52]HAO H, NAOMOTO Y, BAO X, et al. Focal adhesion kinase as potential target for cancer therapy (review)[J]. Onco-
logy Reports, 2009,22(5):973-979.
[53]HOU Jing, ZHOU Zhirui, CHEN Xingxing, et al. HER2 reduces breast cancer radiosensitivity by activating focal adhesion kinase in vitro and in vivo[J]. Oncotarget, 2016,7(29):45186-45198.
[54]VERHEIJ M, VENS C, VAN TRIEST B. Novel therapeutics in combination with radiotherapy to improve cancer treatment: rationale, mechanisms of action and clinical perspective[J]. Drug Resistance Updates, 2010,13(1/2):29-43.
[55]XIAO Yuanting, ZHANG Sheng, HOU Guofang, et al. Clinical pathological characteristics and prognostic analysis of diabetic women with luminal subtype breast cancer[J]. Tumor Biology, 2014,35(3):2035-2045.
[56]CHEN D J, NIRODI C S. The epidermal growth factor receptor: a role in repair of radiation-induced DNA damage[J]. Clinical Cancer Research, 2007,13(22,1):6555-6560.
[57]ZHUANG Hongqing, SUN Jian, YUAN Zhiyong, et al. Ra-diosensitizing effects of gefitinib at different administration times in vitro[J]. Cancer Science, 2009,100(8):1520-1525.
[58]BOLAND W, BEBB G. The emerging role of nimotuzumab in the treatment of non-small cell lung cancer[J]. Biologics: Targets & Therapy, 2010,4:289-298.
[59]QU Yuanyuan, HU Songliu, XU Xiangying, et al. Nimotuzumab enhances the radiosensitivity of cancer cells in vitro by inhibiting radiation-induced DNA damage repair[J]. PLoS One, 2013,8(8): e70727.
[60]ZHANG Y, MARTIN S G. Redox proteins and radiotherapy[J]. Clinical Oncology, 2014,26(5):289-300.
[61]SONG C W, LEE H, DINGS R P, et al. Metformin kills and radiosensitizes cancer cells and preferentially kills cancer stem cells[J]. Scientific Reports, 2012,2:362-267.
[62]ZHANG Y M, STORR S J, JOHNSON K, et al. Involvement of metformin and AMPK in the radioresponse and prognosis of luminal versus basal-like breast cancer treated with radiotherapy[J]. Oncotarget, 2014,5(24):12936-12949.
(本文編輯 黃建鄉(xiāng))