王征 汪梅
摘 要:為研究無明確特征模式的煤塵顆粒圖像特性,以某煤礦煤樣為研究對(duì)象,按國(guó)標(biāo)標(biāo)準(zhǔn)運(yùn)用粉塵采樣器對(duì)粉塵溢散源處顆粒物進(jìn)行多點(diǎn)采樣。采用多決策屬性約簡(jiǎn)模糊粗糙集3個(gè)階段即提出隸屬度模型、實(shí)現(xiàn)屬性約簡(jiǎn)、確定最大信息熵閾值分割對(duì)顆粒形態(tài)特征機(jī)理進(jìn)行分析。首先建立粉塵圖像各像素點(diǎn)對(duì)應(yīng)的模糊類別隸屬度模型,利用多分段函數(shù)確定隸屬度;分析煤粉塵圖像灰度特征并將其作為條件屬性,確定條件屬性的模糊依賴度,獲取最優(yōu)值并提取模糊屬性約簡(jiǎn),進(jìn)行目標(biāo)及背景區(qū)域的模糊下近似和模糊上近似劃分;最后建立煤粉塵顆粒的信息熵模型,存儲(chǔ)信息熵并實(shí)現(xiàn)對(duì)分割閾值的提取。結(jié)果表明:依據(jù)模糊屬性約簡(jiǎn)的互異重要度可實(shí)現(xiàn)多屬性約簡(jiǎn);并確定煤粉塵圖像模塊區(qū)域的最大信息熵分割閾值。所建立模型可刪除冗余屬性,選擇出對(duì)分類更為重要的屬性,并通過屬性約簡(jiǎn)完成特征選擇分類。
關(guān)鍵詞:安全科學(xué)與工程;圖像灰度特征;信息熵;模糊類別隸屬度;多屬性約簡(jiǎn)
中圖分類號(hào):TD 76 ? 文獻(xiàn)標(biāo)志碼:A
DOI:10.13800/j.cnki.xakjdxxb.2019.0421 ? 文章編號(hào):1672-9315(2019)04-0713-07
Abstract:To investigate imagery characteristics of coal dust particles without clear characteristic mode,coal samples from a coal mine were taken as research objects,and the dust sampler was used to conduct particles multi point sampling at dust spill source according to the international standard.The multi decision attribute reduction fuzzy rough set,including three stages of the membership model,realizing attribute reduction,and determinating maximum information entropy threshold segmentation,are adopted to analyze the particle morphology characteristics.The corresponding fuzzy degree membership model was established for dust image pixels and meanwhile the membership coefficient was determined by multi segment function.In additon,the gray feature of coal dust image was analyzed and used as conditional attribute so that the fuzzy dependence of conditional attribute can be determined to obtain its maximum value and extract the fuzzy attribute reduction.At the same time the fuzzy lower approximation and the upper approximation in the target and its background regions were divided.Finally the information entropy model of coal dust particles was established with the information entropy stored and its corresponding segmentation threshold extracted.The results show that multi attribute reduction can be realized according to the mutual importance of fuzzy attribute reduction;and the maximum information entropy segmentation threshold of coal dust image module area is determined.The established model,therefore,can delete the redundant attributes,select more important classification attributes,and complete the feature selection classification through attribute reduction.
Key words:safety science and engineering;image grey feature;information entropy;fuzzy membership;multi attribute reduction
0 引 言
近幾年,隨著國(guó)家與有關(guān)專家對(duì)大規(guī)模煤炭開采所引發(fā)的煤礦環(huán)境污染等問題的重視,以圖像信息為基礎(chǔ)的煤塵識(shí)別技術(shù)憑借其高效的視覺化、智能礦山系統(tǒng)等優(yōu)勢(shì),在國(guó)內(nèi)外礦山已獲得更深入的研究[1-3]。圖像視覺特性信息技術(shù)在解決煤礦安全可靠性不高的同時(shí),也為現(xiàn)場(chǎng)惡劣環(huán)境難適應(yīng)及煤塵爆炸危害難預(yù)測(cè)等問題的解決提供了有效的途徑。但粉塵的檢測(cè)機(jī)理十分復(fù)雜,其決定因素很多,導(dǎo)致煤塵檢測(cè)結(jié)果具有很大隨機(jī)性。因此,在粉塵顆粒物特性參數(shù)檢測(cè)中,運(yùn)用了不同研究方法進(jìn)行分析。電感應(yīng)法由脈沖數(shù)目確定顆粒的數(shù)量,由電位差變化幅度測(cè)量顆粒的體積。但該方法獲得的是顆粒尺寸的二次信息,須通過轉(zhuǎn)換獲得顆粒的實(shí)際尺寸信息[4]。對(duì)于密度不大且形狀為球形的粉塵顆粒,運(yùn)用光散射法,通過光強(qiáng)分析,可獲得粒子直徑及濃度,但對(duì)于形狀不規(guī)則的煤塵顆粒,若運(yùn)用光散射法,由于煤礦的地質(zhì)結(jié)構(gòu)和綜放面煤層強(qiáng)度系數(shù)不同,且煤塵對(duì)光的吸收和散射存在差異,因此檢測(cè)結(jié)果會(huì)出現(xiàn)偏差[5-7]。
上述研究鑒于技術(shù)手段以及研究角度的局限,并沒有系統(tǒng)地分析粉塵顆粒物特性表現(xiàn)。隨著研究手段不斷發(fā)展,以圖像信息為基礎(chǔ)的粉塵識(shí)別技術(shù)具有直接觀察在不同粒度下的粉塵顆粒形狀的優(yōu)勢(shì)。Grasa等針對(duì)圖像區(qū)域內(nèi)灰度相似性及不連續(xù)性提出將粉塵圖像按不同特性進(jìn)行區(qū)域劃分,并對(duì)顆粒目標(biāo)點(diǎn)的特性參數(shù)測(cè)量及特征提取,這對(duì)研究人員進(jìn)一步研究煤塵圖像具有一定參考價(jià)值[8]。Baldevbhai等提出在圖像空間中對(duì)不同圖像信噪比運(yùn)用模糊聚類算法,由于對(duì)圖像的對(duì)比度分布性能敏感性好,可產(chǎn)生很好的分割效果,但該方法忽略圖像的細(xì)節(jié)信息,對(duì)灰度值差異不大的圖像目標(biāo)間或灰度值存在相互重疊區(qū)域的情況,分割效果不佳[9]。以上研究成果更多地考慮到圖像灰度的空間分布信息,大大提高了圖像分割的準(zhǔn)確度,但是終究無法達(dá)到理想狀況,面對(duì)各種圖像分類,運(yùn)用某種單一算法缺乏通用性。因此,采用合理的研究手段對(duì)圖像空間信息下煤塵顆粒物表現(xiàn)出來的微觀特性進(jìn)行有效解釋是必須討論的問題[10-13]。
結(jié)合圖像空間學(xué)和微觀學(xué)研究發(fā)現(xiàn),煤塵顆粒物特性信息屬于非線性和不確定性建模問題,圖像識(shí)別的難點(diǎn)在于對(duì)冗余特征剔除的準(zhǔn)確度。文中從微觀角度對(duì)煤塵顆粒物的圖像特性機(jī)理展開研究。多屬性約簡(jiǎn)為這類問題提供了新的解決思路?;趫D像灰度特征空間區(qū)域信息劃分,考慮了分類屬性重要度的選擇,以圖像像素點(diǎn)的模糊類別隸屬度、圖像灰度特征對(duì)應(yīng)的模糊依賴度入手,構(gòu)建屬性約簡(jiǎn)信息熵?cái)?shù)學(xué)模型,依據(jù)所構(gòu)建模型對(duì)煤塵顆粒特性信息表征進(jìn)行合理解釋,為后期重疊顆粒分離進(jìn)行了先期理論和試驗(yàn)驗(yàn)證,對(duì)煤粉塵顆粒識(shí)別提供依據(jù)[14-17]。
1 屬性約簡(jiǎn)圖像特征空間模型機(jī)理分析
1.1 決策信息系統(tǒng)屬性約簡(jiǎn)的建立
將樣本圖像設(shè)為對(duì)象,各種特征設(shè)為條件屬性,類別結(jié)果設(shè)為決策屬性,可形成決策表。對(duì)有用特征的提取過程實(shí)質(zhì)就是對(duì)決策表中屬性的約簡(jiǎn)過程。通過離散化處理獲得的決策表可作為用邏輯關(guān)系處理的一組公式,并對(duì)公式和規(guī)則進(jìn)行判別是否具有矛盾性以此確定其相容性,屬性約簡(jiǎn)是以決策表的相容性為基礎(chǔ)[19-20]。
根據(jù)圖像中對(duì)象或區(qū)域的顏色、形狀、紋理和空間位置等重要的圖像信息特征來進(jìn)行分析和檢索,獲取圖像的有用信息,實(shí)現(xiàn)對(duì)圖像的識(shí)別。圖像特征的選取通過反復(fù)試驗(yàn),在極大似然分類精度原則下從10多種特征中確定了用于分類的6個(gè)特征,經(jīng)比較確定為一組對(duì)分割精度較為敏感的有效特征信息。設(shè)灰度均值、灰度方差、對(duì)比度、紋理均值、粗糙度、均勻度6個(gè)特征信息表示條件屬性A.由于這些特征值為連續(xù)值,因此通過相應(yīng)算法進(jìn)行離散化處理。通過獲取有效特征信息,確定目標(biāo)類別屬性即決策屬性C,實(shí)現(xiàn)對(duì)圖像的識(shí)別[21-22]。
1.2 屬性約簡(jiǎn)算法描述
通過下述算法可實(shí)現(xiàn)對(duì)決策表的屬性約簡(jiǎn)。
輸入:決策表T={U,A∪C,V,f},其中U表示論域,A,C分別對(duì)應(yīng)為條件屬性集和決策屬性集。
輸出:決策表的相對(duì)屬性約簡(jiǎn)。
3 實(shí)驗(yàn)結(jié)果與分析
為了驗(yàn)證文中提出的信息熵多屬性約簡(jiǎn)模型及其性能反應(yīng)的合理性,首先采用文獻(xiàn)[24]、文獻(xiàn)[25]及IEMAR算法對(duì)比展示,依據(jù)30組不同類別的煤塵圖像作為訓(xùn)練樣本,類別按照取像光源、取像時(shí)段、取像溫度不同條件劃分,對(duì)不同粒度大小的煤塵顆粒圖像特性信息進(jìn)行識(shí)別。每組取像20幅圖片,限于篇幅,僅列出部分樣本。在Pentium Dual Core G3420CPU,4GRAM的PC機(jī)、OlympusBX41通過Olympus BX41顯微放大裝置獲取圖像(顯微放大倍數(shù):目鏡×10,物鏡×10)以及Matlab2014b軟件環(huán)境下,實(shí)驗(yàn)對(duì)象取自某煤礦選煤廠采集的不同粒度大小的煤塵圖像,像素大小均為512×512.煤塵粒度> 200 μm如圖1(a)所示,75 μm <煤塵粒度 < 200 μm如圖2(a)所示,煤塵粒度< 75 μm如圖3(a)所示。并通過幾種不同的算法對(duì)圖像進(jìn)行分割,分割效果分別如圖1,圖2,圖3中(b)、(c)、(d)所示。
從表1可以得出,文中提出算法與其他同類方法相比,融合了信息系統(tǒng)中的模糊性和粗糙性形成的模糊分類規(guī)則,具有更強(qiáng)的泛化能力,而且提高了搜索效率,并在一定程度上使得圖像分割的有效性和魯棒性得到保證。從權(quán)衡分割精度同計(jì)算效率的角度考慮,文中算法是一種實(shí)用有效的圖像分割算法。無論在閾值還是分割性能指標(biāo)上都擁有顯著的優(yōu)勢(shì),能滿足精確分割的要求,這也為煤塵圖像處理的后續(xù)研究提供精確數(shù)據(jù)。
4 結(jié) 論
1)屬性約簡(jiǎn)數(shù)據(jù)庫(kù)模型對(duì)連續(xù)數(shù)值離散化處理后消失的屬性有序關(guān)系可提供很好的借鑒。分析表明屬性約簡(jiǎn)模型的建立極大程度上降低了因?qū)傩缘挠行蜿P(guān)系消失而導(dǎo)致連續(xù)值屬性信息丟失造成的影響。而模型結(jié)構(gòu)的半序關(guān)系在一定程度上可使得信息的丟失量降低。
2)煤塵圖像的有效獲取受到多種因素的影響,比如監(jiān)控環(huán)境中空間、濕度、氣流等,目前的研究多關(guān)注的是外在環(huán)境參數(shù)的影響規(guī)律,忽略了包含內(nèi)在因素等其他因素的影響效應(yīng),有待進(jìn)一步研究。
3)煤塵粒度、粒度分布和煤塵濃度是煤塵爆炸的關(guān)鍵因素,而對(duì)煤塵圖像進(jìn)行圖像特性機(jī)理分析是研究煤塵粒度、粒度分布和煤塵濃度,解決煤塵檢測(cè)問題的關(guān)鍵。目前對(duì)煤塵顆粒群的宏觀問題研究較多,后期研究可考慮對(duì)微觀尺度下的煤塵顆粒研究,以期提高識(shí)別精度。
參考文獻(xiàn)(References):
[1] 王國(guó)法,趙國(guó)瑞,任懷偉.智慧煤礦與智能化開采關(guān)鍵核心技術(shù)分析[J].煤炭學(xué)報(bào),2019,44(1):34-41.
WANG Guo fa,ZHAO Guo rui,REN Huai wei. Analysis on key technologies of intelligent coal mine and intelligent mining[J].Journal of China Coal Society,2019,44(1):34-41.
[2]韓建國(guó).神華智能礦山建設(shè)關(guān)鍵技術(shù)研發(fā)與示范[J].煤炭學(xué)報(bào),2016,41(12):3181-3189.
HAN Jian guo.Key technology research and demonstration of intelligent mines in Shenhua Group[J].Journal of China Coal Society,2016,41(12):3181-3189.
[3]WANG Guo fa,XU Yong xiang,REN Huai wei.Intelligent and ecological coal mining as well as clean utilization technology in China:review and prospects[J].International Journal of Mining Science and Technology,2019,29(2):161-169.
[4]陳建閣.交流耦合式電荷感應(yīng)法粉塵濃度檢測(cè)技術(shù)研究[D].北京:煤炭科學(xué)研究總院,2014.
CHEN Jian ge.Research on detection technology of AC coupled charge induction dust concentration[D].Beijing:China Coal Research Institute,2014.
[5]Okpeafoh S A,Anthony J M,Jan S.Modelling of artefacts in estimations of particle size of needle like particles from laser diffraction measurements[J].Chemical Engineering Science,2017,158:445-452.
[6]Milana I,Igor B,Milica V,et al.Size and shape particle analysis by applying image analysis and laser diffraction inhalable dust in a dental laboratory[J].Measurement,2015,66:109-117.
[7]陳繼民,陳鶴天.激光在粉塵檢測(cè)領(lǐng)域的進(jìn)展與應(yīng)用[J].應(yīng)用激光,2018,38(3):496-501.
CHEN Ji min,CHEN He tian.The development and application of laser in dust detection[J].Applied Laser,2018,38(3):496-501.
[8]Grasa G,Abanades J C.A calibration procedure to obtain solid concentrations from digital images of bulk powders[J].Powder Technology,2001,114(1-3):125-128.
[9]Baldevbhai P J,Anand R S.Color image segmentation for medical images using lab color space[J].Journal of Electronics and Communication Engineering,2012,1(2):24-45.
[10]Wasswa W,Andrew W,Annabella H,et al.Cervical cancer classification from pap smears using an enhanced fuzzy C means algorithm[J].Informatics in Medicine Unlocked,2019,14:23-33.
[11]Hassanien A E,Soliman O S.Contrast enhancement of breast MRI images based on fuzzy type Ⅱ[C]//Soft Computing Models in Industrial and Environmental Applications,6th International Conference SOCO 2011,2011:77-83.
[12]Khairunnisa H,Nor A,Mat I.Adaptive fuzzy intensity measure enhancement technique for non uniform illumination and low contrast images[J].Signal,Image and Video Processing,2015,9(6):1419-1442.
[13]Muhammad T,Malik J K.An intelligent mobile application for diagnosis of crop diseases in Pakistan using fuzzy inference system[J].Computers and Electronics in Agriculture,2018,153:1-11.
[14]Yongyingsakthavorn P,Vallikul P,F(xiàn)ungtammasan B,et al.Application of the maximum entropy technique in tomographic reconstruction from laser diffraction data to determine local spray drop size distribution[J].Experiments in Fluids,2007,42(3):471-481.
[15]馬 翔,楚瑩瑩,陳允杰.基于空間信息熵活動(dòng)輪廓模型的圖像分割[J].控制工程,2018,25(11):2010-2016.
MA Xiang,CHU Ying ying,CHEN Yun jie.Medical image segmentation based on active contour model of spatial information entropy[J].Control Engineering of China,2018,25(11):2010-2016.
[16]成 婷,張 擴(kuò),續(xù)欣瑩.鄰域粗糙集約簡(jiǎn)算法在圖像特征選擇中的應(yīng)用[J].現(xiàn)代電子技術(shù),2018,41(21):56-62.
CHENG Ting,ZHANG Kuo,XU Xin ying.Application of neighborhood rough set reduction algorithm in image feature selection[J].Modern Electronics Technique,2018,41(21):56-62.
[17]郭 健,李 智.基于ICA閾值優(yōu)化耦合信息熵的邊緣提取算法[J].西南大學(xué)學(xué)報(bào)(自然科學(xué)版),2018,40(9):150-155.
GUO Jian,LI Zhi.An edge extraction algorithm based on ICA threshold optimization and information entropy[J].Journal of Southwest University(Natural Science Edition),2018,40 (9):150-155.
[18]YU Hai yan,ZHI Xiao bin,F(xiàn)AN Jiu lun.Image segmentation based on weak fuzzy partition entropy[J].Neurocomputing,2015,168(11):994-1010.
[19]LIN Yao jin,LI Yu wen,WANG Chen xi,et al.Attribute reduction for multi label learning with fuzzy rough set[J].Knowledge Based Systems,2018,152:51-61.
[20]LI Hua,LI De yu,ZHAI Yan hui,et al.A novel attribute reduction approach for multi label data based on rough set theory[J].Information Sciences,2016,367-368:827-847.
[21]Hadi Y,Hamid M,Mohammad A E F,et al.Determining the fragmented rock size distribution using textural feature extraction of images[J].Powder Technology,2019,342:630-641.
[22]Andrea P,Massimo P,F(xiàn)abio L,et al.Dust detection and analysis in museum environment based on pattern recognition[J].Measurement,2015,66:62-72.
[23]Farid G L,Jair C,Asdr bal L,et al.Segmentation of images by color features:a survey[J].Neurocomputing,2018,292(5):1-27.
[24]陳天華,王福龍.實(shí)時(shí)魯棒的特征點(diǎn)匹配算法[J].中國(guó)圖象圖形學(xué)報(bào),2016,21(9):1213-1220.
CHEN Tian hua,WANG Fu long.Real time robust feature point matching algorithm[J].Journal of Image and Graphics,2016,21(9):1213-1220.
[25]李婷婷,江朝暉,饒 元,等.結(jié)合基因表達(dá)式編程與空間模糊聚類的圖像分割[J].中國(guó)圖象圖形學(xué)報(bào),2017,22(5):575-583.
LI Ting ting,JIANG Zhao hui,RAO Yuan,et al.Image segmentation based on gene expression programming and spatial fuzzy clustering[J].Journal of Image and Graphics,2017,22(5):575-583.