王莉 張立圣 方賢德 黃永寬 莊鳳婷
摘要:管內(nèi)單相流強(qiáng)迫對流湍流傳熱廣泛應(yīng)用于各個工業(yè)領(lǐng)域。目前有很多管內(nèi)單相流強(qiáng)迫對流湍流傳熱關(guān)聯(lián)式,需要對其計算精度進(jìn)行評價分析,便于選用。本文通過試驗,獲得了46組R134a在水平圓銅管內(nèi)的單相流強(qiáng)迫對流湍流傳熱數(shù)據(jù),從23篇文獻(xiàn)中收集了1220組試驗數(shù)據(jù),建立了一個含有1266組數(shù)據(jù)的管內(nèi)單相流強(qiáng)迫對流湍流傳熱試驗數(shù)據(jù)庫。用這個數(shù)據(jù)庫對14個現(xiàn)有管內(nèi)單相流強(qiáng)迫對流湍流傳熱關(guān)聯(lián)式進(jìn)行了評價分析,鑒別出了預(yù)測精度高的關(guān)聯(lián)式,為管內(nèi)單相流強(qiáng)迫對流湍流傳熱關(guān)聯(lián)式的選用提供了依據(jù)。
關(guān)鍵詞:強(qiáng)迫對流;管內(nèi);傳熱;關(guān)聯(lián)式;湍流;單相流
中圖分類號:TK124??? 文獻(xiàn)標(biāo)識碼:A???? DOI:10.19452/j.issn1007-5453.2019.03.009
管內(nèi)單相流強(qiáng)迫對流(簡稱管內(nèi)強(qiáng)迫對流)湍流傳熱廣泛應(yīng)用于航空航天、能源建筑、石油化工等各個工業(yè)領(lǐng)域,如航空領(lǐng)域的飛機(jī)環(huán)境控制系統(tǒng)、動力系統(tǒng)、燃油系統(tǒng)等。相關(guān)設(shè)備和系統(tǒng)的研發(fā)設(shè)計離不開管內(nèi)強(qiáng)迫對流湍流傳熱的計算,因此許多研究者提出了管內(nèi)強(qiáng)迫對流湍流傳熱關(guān)聯(lián)式。
隨著航空航天技術(shù)和微電子技術(shù)的發(fā)展,大功率高密度電子設(shè)備的冷卻提出了兩相流傳熱技術(shù)的需求。研究發(fā)現(xiàn),大多數(shù)兩相流傳熱模型是在單相流傳熱模型的基礎(chǔ)上發(fā)展而來的,最常見的是基于Dittus-Boelter公式的傳熱模型,其次是基于Gnielinski公式的傳熱模型。因此,單相流傳熱關(guān)聯(lián)式的準(zhǔn)確性也直接影響兩相流傳熱計算的準(zhǔn)確度。
目前公開報道的管內(nèi)強(qiáng)迫對流湍流傳熱關(guān)聯(lián)式很多,這一方面給工程應(yīng)用帶來了方便,另一方面也給關(guān)聯(lián)式的選用帶來了困惑。使用者往往不知道該選用哪個關(guān)聯(lián)式。為此,本文一方面廣泛收集整理管內(nèi)強(qiáng)迫對流湍流試驗數(shù)據(jù),并通過試驗獲得部分?jǐn)?shù)據(jù),建立試驗數(shù)據(jù)庫;另一方面收集現(xiàn)有傳熱關(guān)聯(lián)式。在此基礎(chǔ)上,利用試驗數(shù)據(jù)對關(guān)聯(lián)式進(jìn)行評價分析,獲得各關(guān)聯(lián)式對數(shù)據(jù)庫的預(yù)測精度,為管內(nèi)強(qiáng)迫對流湍流傳熱關(guān)聯(lián)式的選用提供依據(jù)。
1管內(nèi)強(qiáng)迫對流湍流傳熱的試驗研究
1.1試驗裝置
試驗裝置如圖1所示,主要由試驗段、冷凝器、儲液罐、過冷器、齒輪栗、流量計以及預(yù)熱段組成。試驗段為光滑圓銅管,內(nèi)徑分別為1.002mm和2.168mm,長200mm,水平放置。
工質(zhì)為R134a制冷劑。制冷劑由儲液罐被齒輪泵抽出,經(jīng)過渦輪流量計,進(jìn)入預(yù)熱段。預(yù)熱后經(jīng)過長100mm的發(fā)展段,進(jìn)入試驗段。制冷劑在試驗段中再次被加熱,經(jīng)過冷凝器,回到儲液罐。如此循環(huán)。預(yù)熱段和試驗段有均勻纏繞的銅絲,用于通電加熱R134a制冷劑。發(fā)展段的管徑與試驗段的管徑一致。溫度用T型熱電偶測量。
1.2試驗結(jié)果和不確定度分析
本試驗共獲得46組R134a在水平圓管中的強(qiáng)迫對流湍流傳熱試驗數(shù)據(jù)。限于篇幅,數(shù)據(jù)整理過程不予詳述。試驗參數(shù)范圍見表1。試驗的不確定度根據(jù)Kline和McClintock提出的方法確定,見表2。
2從現(xiàn)有文獻(xiàn)中獲得的管內(nèi)強(qiáng)迫對流湍流傳熱試驗數(shù)據(jù)
除了通過試驗獲得的46組R134a管內(nèi)強(qiáng)迫對流湍流傳熱試驗數(shù)據(jù)外,從23篇已經(jīng)發(fā)表的文獻(xiàn)中收集了1220組試驗數(shù)據(jù),見表3。表中的試驗數(shù)據(jù)參數(shù)范圍為:雷諾數(shù)Re=3040?651357,普朗特數(shù)Pr=0.9?7.3,熱流密度q=2?34468kW/m,質(zhì)量流速G=139?39832kg/(m·s),水力直徑D=0.25?17.68mm,包含了水、氮、二氧化碳、氬、R134a、RC318和R113等7種工質(zhì)。
3管內(nèi)強(qiáng)迫對流湍流傳熱關(guān)聯(lián)式
研究者提出了很多管內(nèi)強(qiáng)迫對流湍流傳熱關(guān)聯(lián)式,本文收集整理了14個,分別是Dittus-Boelter,Gnielinski,Sieder-Tate,Petukhov-Kirillov,Adams,Heta,Kakac,Ghajar-Tam,Hausen,Choi,Yu,Wang-Peng,Debray和Wu-Little等。由于篇幅限制,這里只列出對于本文數(shù)據(jù)庫預(yù)測精度較高的前5個關(guān)系式,見表4。表中,f為Moody摩擦因數(shù);D為管內(nèi)徑或水力直徑,單位為m;L為換熱有效長度與熱入口段長度的和,單位為m;μ為[動力]黏度,單位為Pa·s;下標(biāo)w表示定性溫度為壁面溫度,其他參數(shù)的定性溫度為流體平均溫度。
4管內(nèi)強(qiáng)迫對流湍流傳熱關(guān)聯(lián)式的評價
本文采用平均絕對誤差(MAD)作為評價管內(nèi)強(qiáng)迫對流湍流傳熱關(guān)聯(lián)式預(yù)測精度的標(biāo)準(zhǔn)。MAD越小,預(yù)測精度越高。
此外,采用平均相對誤差反映關(guān)聯(lián)式在總體上是高估(MRD>0%)還是低估(MRD<0%)了數(shù)據(jù)庫。
利用上述試驗獲得的46組和從文獻(xiàn)中收集到的1220組管內(nèi)強(qiáng)迫對流湍流試驗數(shù)據(jù)組成的數(shù)據(jù)庫,對14個管內(nèi)強(qiáng)迫對流湍流傳熱關(guān)聯(lián)式進(jìn)行評價分析。表5中列出了預(yù)測精度最高的前5個關(guān)聯(lián)式的評價結(jié)果。從表中可以看出,預(yù)測精度最高的是Gnielinski關(guān)聯(lián)式,MAD=19.5%。Gnielinski、Sieder-Tate和Ghajar-Tam關(guān)聯(lián)式對壁溫的影響進(jìn)行了修正。這種修正有助于提高公式的預(yù)測精度,但同時也增加了公式使用的困難。另外,在實際應(yīng)用中,由于壁溫一般是未知條件,含有與壁溫有關(guān)的參數(shù)會增加公式預(yù)測的不確定性。綜合分析可知,管內(nèi)強(qiáng)迫對流湍流傳熱關(guān)聯(lián)式還需進(jìn)一步深入研究。
圖2和圖3分別是Gnielinski公式和Dittus-Boelter公式傳熱系數(shù)計算值與試驗值的比較。可以看出,在傳熱系數(shù)大于60kW/(m·K)時,Gnielinski公式的計算精度顯著高于Dittus-Boeltert1]公式的計算精度。
圖4和圖5分別是Gnielinski公式和Dittus-Boelter公式努塞爾數(shù)計算值與試驗值的比較。可以看出,當(dāng)努塞爾數(shù)Nu=150?250時,Dittus-Boelter公式預(yù)測精度較高,其他情況下,Gnielinski公式預(yù)測精度較高。
5結(jié)論
本文建立了一個由1266組試驗數(shù)據(jù)組成的管內(nèi)強(qiáng)迫對流湍流傳熱試驗數(shù)據(jù)庫,包括作者試驗獲得的46組和從現(xiàn)有文獻(xiàn)中獲取的1220組。用該數(shù)據(jù)庫對14個管內(nèi)強(qiáng)迫對流湍流傳熱關(guān)聯(lián)式進(jìn)行了評價分析,可以得出以下結(jié)論:
(1)基于本文數(shù)據(jù)庫,預(yù)測準(zhǔn)確度最好的前5個關(guān)聯(lián)式依次為Gnielinski,Dittus-Boelter,Sieder-Tate、Petukhov-Kirillov和Ghajar-Tam關(guān)聯(lián)式,其MAD分別為19.5%、21.4%、23.3%、23.4%和24.2%。
(2)在本文數(shù)據(jù)范圍內(nèi),在傳熱系數(shù)大于60 kW/(m2·K)時,Gnielinski公式的計算精度顯著高于Dittus-Boelter公式的計算精度;當(dāng)Nu=150?250時,Dittus-Boelter公式預(yù)測精度較高,其他情況下,Gnielinski公式預(yù)測精度較高。
(3)Gnielinski、Sieder-Tate和Ghajar-Tam關(guān)聯(lián)式引入了壁溫影響的修正,實際應(yīng)用中含有與壁溫有關(guān)的參數(shù)會增加公式預(yù)測的不確定性,當(dāng)壁溫和流體溫度相差不是很大時,可舍去壁溫修正項。
(4)管內(nèi)強(qiáng)迫對流湍流傳熱關(guān)聯(lián)式的預(yù)測精度仍有待提高。
參考文獻(xiàn)
[1]Dittus F W,Boelter L M K.Heat transfer in automobile radiator of the tubular type[J].International Communications in Heat and Mass Transfer,1985,12(l):3-22.
[2]Gnielinski V.New equations for heat and mass transfer in turbulent pipe and channel flow[J].International Chemical Engineering,1976,16(2):359-368.
[3]Kline S J,Me Clintock F A.Describing uncertainties in singlesample experiments[J].Mechanical Engineering,1953,75:3-8.
[4]Liang Z H,Wen Y,Gao C,et al.Experimental investigation on flow and heat transfer characteristics of single-phase flow with simulated neutronic feedback in narrow rectangular channel[J].Nuclear Engineering&Design,2012,248:82-92.
[5]Wang C C,Chiou C B,Lu D C.Single-phase heat transfer and flow friction correlations for micro fin tubes[J].International Journal of Heat&Fluid Flow,1996,17(5):500-508.
[6]Liu N,Li J.Experimental study on pressure drop of R32,R152a and R22 during condensation in horizontal minichannels[J].Experimental Thermal&Fluid Science,2016,71:14-24.
[7]Qi S L,Zhang P,Wang R Z,et al.Single-phase pressure drop and heat transfer characteristics of turbulent liquid nitrogen flow in micro-tubes[J].International Journal of Heat&Mass Transfer,2007,50(9-10):1993-2001.
[8]Ma J,Li L,Huang Y,et al.Experimental studies on singlephase flow and heat transfer in a narrow rectangular channel[J].Nuclear Engineering&Design,2011,241(8):2865-2873.
[9]Adams T M,Dowling M F,Abdel-Khalik S I,et al.Applicability of traditional turbulent single-phase forced convection correlations to non-circular microchannels[J].International Journal of Heat&Mass Transfer,1999,42(42):4411-4415.
[10]Tian W,Cao X,Yan C,et al.Experimental study of singlephase natural circulation heat transfer in a narrow,vertical,rectangular channel under rolling motion conditions[J].International Journal of Heat&Mass Transfer,2017,107:592-606.
[11]Wang C,Gao P,Tan S,et al.Forced convection heat transfer and flow characteristics in laminar to turbulent transition region in rectangular channel[J].Experimental Thermal&Fluid Science,2013,44(1):490-497.
[12]Ducoulombier M,Colasson S,Haberschill P,et al.Charge reduction experimental investigation of C02,single-phase flow in a horizontal micro-channel with constant heat flux conditions[J].International Journal of Refrigeration,2011,34(4):827-833.
[13]Grohmann S.Measurement and modeling of single-phase and flow-boiling heat transfer in microtubes[J].International Journal of Heat&Mass Transfer,2005,48(19):4073-4089.
[14]Meyer J P,Mckrell T J,Grote K.The influence of multi-walled carbon nanotubes on single-phase heat transfer and pressure drop characteristics in the transitional flow regime of smooth tubes[J].International Journal of Heat&Mass Transfer,2013,58(1-2):597-609.
[15]Aroonrat K,Jumpholkul C,Leelaprachakul R,et al.Heat transfer and single-phase flow in internally grooved tubes[J].International Communications in Heat&Mass Transfer,2013,42(3):62-68.
[16]Fernando P,Palm B,Ameel T,et al.A minichannel aluminium tube heat exchanger-Part I:Evaluation of single-phase heat transfer coefficients by the Wilson plot method[J].International Journal of Refrigeration,2008,31(4):669-680.
[17]Man C,Lv X,Hu J,et al.Experimental study on effect of heat transfer enhancement for single-phase forced convective flow with twisted tape inserts[J].International Journal of Heat&Mass Transfer,2016,106:877-883.
[18]Bang I C,Chang S H,Baek W P.Visualization of the subcooled flow boiling of R-134a in a vertical rectangular channel with an electrically heated wall[J].International Journal of Heat&Mass Transfer,2004,47(19):4349-4363.
[19]Sarwar M S,Jeong Y H,Chang S H.Subcooled flow boiling CHF enhancement with porous surface coatings[J].International Journal of Heat&Mass Transfer,2007,50(17):3649-3657.
[20]Hua S,Huang R,Li Z,et al.Experimental study on the heat transfer characteristics of subcooled flow boiling with cast iron heating surface[J].Applied Thermal Engineering,2015,77:180-191.
[21]Vlachou M C,Lioumbas J S,David K,et al.Effect of channel height and mass flux on highly subcooled horizontal flow boiling[J].Experimental Thermal&Fluid Science,2017,83:157-168.
[22]Yan J,Bi Q,Cai L,et al.Subcooled flow boiling heat transfer of water in circular tubes with twisted-tape inserts under high heat fluxes[J].Experimental Thermal&Fluid Science,2015,68:11-21.
[23]Belyaev A V,Varava A N,Dedov A V,et al.An experimental study of flow boiling in minichannels at high reduced pressure[J].International Journal of Heat&Mass Transfer,2017,110:360-373.
[24]Hata K,Masuzaki S.Subcooled boiling heat transfer for turbulent flow of water in a short vertical tube[J].ASME Journal of Heat Transfer,2009,132(1):011501.
[25]Hata K,Masuzaki S.Critical heat fluxes of subcooled water flow boiling in a short vertical tube at high liquid Reynolds number[J].Nuclear Engineering&Design,2010,240(10):3145-3157
[26]Papell S S.Subcooled boiling heat transfer under forced convection in a heated tube[Z].Lewis Research Center,1963.
[27]Sieder E N,Tate G E.Heat transfer and pressure drop of liquids in tubes[J].Industrial&Engineering Chemistry,1936,28(12):1429-1435.
[28]Petukhov B S,Kirillov V V.On heat exchange at turbulent flow of liquid in pipes[J].Teploenergetika,1958(4):63-68.
[29]Adams T M,Abdel-Khalik S I,Jeter S M,et al.An experimental investigation of single-phase forced convection in microchannels[J].International Journal of Heat&Mass Transfer,1998,41(6-7):851-857.
[30]Hata K,Kai N,Shirai Y,et al.Transient turbulent heat transfer for heating of water in a short vertical tube[J].Journal of Power&Energy Systems,2008,2(3):318-329.
[31]Kakac S,Shah R K,Aung W.Handbook of single-phase convective heat transfer[M].New York:John Wiley and Sons,1987.
[32]Ghajar A J,Tam L M.Heat transfer measurements and correlations in the transition region for a circular tube with three different inlet configurations[J].Experimental Thermal&Fluid Science,1992,8(4):79-90.
[33]Rohsenow R W,Hartnett J P,Cho Y I.Handbook of heat transfer[M].McGraW-Hill,1998.
[34]Choi S B,Barron R F,Warrington R O.Fluid flow and heat transfer in microtubes[C]//Micromechanical Sensors,Actuators and Systems:Proceedings of 1991 ASME Winter Annual Meeting,1991:123-134.
[35]Hao P F,He F,Zhu K Q.Flow characteristics in a trapezoidal silicon microchannel[J].Journal of Micromechanics&Microengineering,2005,15(15):1362-1368.
[36]Wang B X,Peng X F.Experimental investigation on liquid forced-convection heat transfer through microchannels[J].International Journal of Heat&Mass Transfer,1994,37(94):73-82.
[37]Debray F,F(xiàn)ranc J P,Maitre T,et al.Mesure des coefficients de transfert thermique par convection forcee en mini-canaux[J].Mecanique&Industries,2001,2(5):443-454.
[38]Wu P,Little W A.Measurement of friction factors for the flow of gases in very fine channels used for microminiature Joule-Thomson refrigerators[J].Cryogenics,1983,23(5):273-277.